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Abstract

Kernel smoothing is one of the most widely used non-parametric data smoothing tech-
niques. We introduce a new R package ks for multivariate kernel smoothing. Currently it
contains functionality for kernel density estimation and kernel discriminant analysis. It is
a comprehensive package for bandwidth matrix selection, implementing a wide range of
data-driven diagonal and unconstrained bandwidth selectors.
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1. Introduction

Kernel density estimation is a popular tool for visualising the distribution of data. See Si-
monoff (1996), for example, for an overview. When multivariate kernel density estimation is
considered it is usually in the constrained context with diagonal bandwidth matrices, e.g. in
the packages sm (Bowman and Azzalini 2007) and KernSmooth (Wand and Ripley 2006) for
R (R Development Core Team 2007). We introduce a new R package ks—available from the
Comprehensive R Archive Network at http://CRAN.R-project.org/—which implements di-
agonal and unconstrained data-driven bandwidth matrices for kernel density estimation, which
can also be used for multivariate kernel discriminant analysis. The ks package implements
selectors for 2- to 6-dimensional data.

In Section 2, we supply a brief review of kernel density estimation and indicate some reasons
why unconstrained matrix selectors would be a useful generalisation over diagonal selectors.
The optimal bandwidth selection problem for these unconstrained matrices is considered in
Section 3. Also in this section are examples from ks for density estimation. We demonstrate
the package’s functionality for discriminant analysis in Section 4. With these unconstrained
selectors now available, we conclude by offering some general recommendations.
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2. Kernel density estimation

For a d-variate random sample X1,X2, . . . ,Xn drawn from a density f , the kernel density
estimate is defined by

f̂(x; H) = n−1
n∑
i=1

KH(x−Xi) (1)

where x = (x1, x2, . . . , xd)> and Xi = (Xi1, Xi2, . . . , Xid)>, i = 1, 2, . . . , n. Here K(x) is the
kernel which is a symmetric probability density function, H is the bandwidth matrix which
is symmetric and positive-definite, and KH(x) = |H|−1/2K(H−1/2x). The choice of K is not
crucial: we take K(x) = (2π)−d/2 exp(−1

2x>x), the standard normal throughout. In contrast,
the choice of H is crucial in determining the performance of f̂ .

According to Wand and Jones (1993), the most useful parameterisations of the bandwidth
matrix are the diagonal H = diag(h2

1, h
2
2, . . . , h

2
d) and the general or unconstrained which has

no restrictions on H, provided that H remains positive definite and symmetric.

To compare these two parameterisations, we examine the ‘dumbbell’ density, given by the
normal mixture
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and displayed on the left in Figure 1. This density is unimodal. On the right is a sample of
200 data points.

From this data sample, we compute a diagonal and an unconstrained bandwidth matrix:[
0.4477 0

0 0.5612

]
and

[
0.5648 −0.4045
−0.4045 0.4935

]
.

From these matrices, all the diagonal elements approximately lie in the range 0.45 to 0.56,
so the smoothing in the co-ordinate directions are comparable. The main difference is that
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Figure 1: Target ‘dumbbell’ density: contour plot (left), scatter plot (right).
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Figure 2: Kernel density estimates for dumbbell data: diagonal bandwidth matrix (left),
unconstrained bandwidth matrix (right).

the off-diagonal elements in the latter matrix are almost the same size in magnitude as the
diagonal elements, and so induce substantial smoothing in an oblique direction.

The respective kernel density estimates are produced in Figure 2. The diagonal bandwidth
matrix constrains the smoothing to be performed in directions parallel to the co-ordinate
axes, so it is not able to apply accurate levels of smoothing to the obliquely oriented central
portion. The result is a bimodal density estimate. The unconstrained bandwidth matrix
correctly produces a unimodal density estimate.

Wand and Jones (1993) and Duong and Hazelton (2003, 2005b) contain more extensive sim-
ulation studies on a range of target densities concerning the relative gains in efficacy when
using an unconstrained parametrisation as compared to a diagonal one. The general conclu-
sion from these papers is that an unconstrained bandwidth matrix is most useful when there
is large probability mass oriented away from the co-ordinate directions, such as the dumbbell
density examined here.

Closely related to the bandwidth parameterisation is the pre-transformation of the data.
Instead of basing our bandwidth selection on the original data X1,X2, . . . ,Xn, we could use
the transformed data X∗1,X

∗
2, . . . ,X

∗
n, where the transformation is either sphering

X∗ = S−1/2X

where S is the sample covariance matrix of the untransformed data; or scaling

X∗ = S−1/2
D X

where SD = diag(s21, s
2
2, . . . , s

2
d) and s21, s

2
2, . . . , s

2
d are the marginal sample variances. The

bandwidth matrix H∗ suitable for the sphered or scaled data can be back transformed to the
original scale by H = S1/2H∗S1/2 or H = S1/2

D H∗S1/2
D , as appropriate.

The transformed data are more aligned to the co-ordinate axes which may lead us to believe
that more restricted bandwidth parametrisations may be suitable for these transformed data.
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Sphering or scaling with the most restricted parameterisation H∗ = h∗2I, where I is the
identity matrix, gives H = h∗2S or H = h∗2SD. However Wand and Jones (1993) strongly
advise against these combinations of pre-transformation and bandwidth parametrisation.

In light of this, we need to use at least the diagonal bandwidth matrix with these transfor-
mations. Let H∗ = diag(h∗21 , h

∗2
2 , . . . , h

∗2
d ). The bandwidth matrix obtained with pre-scaled

data is H = diag(s21h
∗2
1 , s

2
2h
∗2
2 , . . . , s

2
dh
∗2
d ) which is still a diagonal matrix, so it is not clear

that this offers any advantage over a diagonal bandwidth matrix without pre-scaling. On the
other hand, with pre-sphering, the resulting H = S1/2H∗S1/2 is non-diagonal. However, the
off-diagonal elements are still constrained since they rely on the sample variance, whereas
those in the unconstrained parametrisation do not have this restriction. So the latter will
be better in situations where the sample variance is not an appropriate summary of the dis-
persion of the data. With this in mind, we focus on bandwidth selectors for the maximally
general unconstrained parametrisation.

3. Optimal bandwidth selectors

We briefly present the main ideas behind optimal, data-based bandwidth selectors. The reader
can consult Duong and Hazelton (2003, 2005b) and references therein for more details on the
multivariate bandwidth selection problem.

We measure the performance of f̂ (in common with the majority of researchers in this field)
using the Mean Integrated Squared Error (MISE) criterion,

MISE (H) = E

∫
Rd

[f̂(x; H)− f(x)]2 dx.

Our aim in bandwidth selection is to estimate

HMISE = argmin
H

MISE (H),

over the space of all symmetric, positive definite d × d matrices. It is well known that the
optimal bandwidth HMISE does not have a closed form. To make progress it is usual to employ
an asymptotic approximation, known as the AMISE (Asymptotic MISE)

AMISE (H) = n−1(4π)−d/2|H|−1/2 +
1
4

(vech>H)Ψ4(vech H) (2)

where vech is the vector half operator e.g.

vech H = vech
[
h2

1 h12

h12 h2
2

]
=

 h2
1

h12

h2
2

 .
The subscript 4 on Ψ relates to the order of the derivatives involved. See Wand and Jones
(1995, p. 98) for the general expression of the 1

2d(d + 1) × 1
2d(d + 1) matrix Ψ4. For the

purposes of this paper, this expression is not required. All that we need is that the elements
of Ψ4 are integrated density derivative functionals

ψr =
∫

Rd
f (r)(x)f(x) dx
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where r = (r1, r2, . . . , rd), |r| =
∑d

i=1 ri, and the partial derivatives of f are

f (r)(x) =
∂|r|

∂r1x1 . . . ∂
rd
xd

f(x).

We make use of the tractability of AMISE by seeking

HAMISE = argmin
H

AMISE (H).

For the next step we estimate the MISE or AMISE. A data-driven bandwidth selector is either

Ĥ = argmin
H

M̂ISE (H) or Ĥ = argmin
H

ÂMISE (H). (3)

Different selectors arise from the different methods used in the estimation step.

3.1. Plug-in bandwidth selectors

The most well-known univariate plug-in selector is due to Sheather and Jones (1991). One
multivariate extension of this is developed in Wand and Jones (1994). The plug-in estimate
of the AMISE,

PI(H) = n−1(4π)−d/2|H|−1/2 +
1
4

(vech>H)Ψ̂4(vech H), (4)

can be numerically minimised to give the plug-in bandwidth matrix, ĤPI. If we note that
ψr = Ef (r)(X) where X ∼ f , then a natural estimator of ψr is

ψ̂r(G) = n−1
n∑
i=1

f̂ (r)(Xi; G) = n−2
n∑
i=1

n∑
j=1

K
(r)
G (Xi −Xj), (5)

where G is a pilot bandwidth matrix. These ψ̂r(G) are the elements of Ψ̂4.

Like H, we need to choose a sensible value for G. We consider pilot bandwidth matrices
of the form G = g2I along with the pre-transformations of Section 2. This combination
of bandwidth parameterisation and pre-transformation is ill-advised for selecting the final
bandwidth H but it is acceptable for selecting a pilot bandwidth G. This is because it is not
crucial to select G with the same accuracy as for H. With this restricted parameterisation
g2I, we are able to derive analytical expressions for optimal pilot selectors, allowing us to
avoid computationally intensive numerical optimisation for pilot bandwidth selection.

The MSE (Mean Squared Error) for ψ̂r(g) is

MSE (g) = E[ψ̂r(g)− ψr]2.

Wand and Jones (1994) select g to minimise the Asymptotic MSE (AMSE). However, at-
tempting to minimise this criterion may lead to numerical instabilities, as documented in
Duong and Hazelton (2003). These authors propose the Sum of AMSE (SAMSE) criterion
which has better numerical and theoretical properties

SAMSE (g) =
∑

r:|r|=4

AMSE (g).
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Duong and Hazelton (2003) contains the explicit formula for the selector which minimises this
SAMSE.

3.2. Cross validation bandwidth selectors

Cross-validation selectors are the main alternative to plug-in selectors. There are three main
flavours of cross-validation selectors: least squares, biased and smoothed.

Least squares cross validation

The multivariate version of the least squares cross validation (LSCV) criterion of Rudemo
(1982) and Bowman (1984) is

LSCV(H) =
∫

Rd
f̂(x; H)2 dx− 2n−1

n∑
i=1

f̂−i(Xi; H),

where the leave-one-out estimator is

f̂−i(x; H) = (n− 1)−1
n∑
j=1
j 6=i

KH(x−Xj).

The LSCV selector ĤLSCV is the minimiser of LSCV(H). We can rewrite LSCV as

LSCV(H) = n−1(4π)−d/2|H|−1/2 + n−1(n− 1)−1
n∑
i=1

n∑
j=1
j 6=i

(K2H − 2KH)(Xi −Xj). (6)

We can show that E[LSCV(H)] = MISE(H)−
∫

Rd f(x)2 dx, indicating that LSCV estimates
the MISE directly.

Biased cross validation

Plug-in methods use a pilot bandwidth matrix G, which is independent of H, to estimate
Ψ4. For BCV, we set G = H and use slightly different estimators. There are two versions of
BCV, depending on the estimator of ψr, see Sain, Baggerly, and Scott (1994). We can use

ψ̌r(H) = n−2
n∑
i=1

n∑
j=1
j 6=i

K
(r)
2H(Xi −Xj)

or we could use

ψ̃r(H) = n−1
n∑
i=1

f̂
(r)
−i (Xi; H) = n−1(n− 1)−1

n∑
i=1

n∑
j=1
j 6=i

K
(r)
H (Xi −Xj).

The estimates Ψ̌4 and Ψ̃4 are obtained from Ψ4 by substituting ψ̌r and ψ̃r for ψr. From this
we obtain respectively

BCV1(H) = n−1(4π)−d/2|H|−1/2 +
1
4
µ2(K)2(vech>H)Ψ̌4(vech H)

BCV2(H) = n−1(4π)−d/2|H|−1/2 +
1
4
µ2(K)2(vech>H)Ψ̃4(vech H). (7)
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The BCV selectors ĤBCV1 and ĤBCV2 are the minimisers of the appropriate BCV function.

Smoothed cross validation

Smoothed cross validation (SCV) was introduced by Hall, Marron, and Park (1992). The
SCV can be motivated by starting with a slightly modified version of LSCV in Equation (6),
known as the leave-in-diagonals version, for data samples which have no repeated values

LSCV(H) = n−1(4π)−d/2|H|−1/2 + n−2
n∑
i=1

n∑
j=1

(K2H − 2KH +K0)(Xi −Xj)

where K0 is the Dirac delta function. To form SCV, we pre-smooth the data differences
Xi −Xj by K2G, i.e. replace Xi −Xj by the convolution with K2G(Xi −Xj):

SCV(H) = n−1(4π)−d/2|H|−1/2 + n−2
n∑
i=1

n∑
j=1

(K2H+2G − 2KH+2G +K2G)(Xi −Xj). (8)

The SCV selector ĤSCV is the minimiser of SCV(H). Again, we consider pilot bandwidth
matrices of the form G = g2I with pre-transformations. A suitable selector for g is the
minimiser of

Q(g) ≡ tr MSE(g) =
d∑
i=1

d∑
j=i

E[ĥSCV,ij − hAMISE,ij ]2,

where ĥSCV,ij is the (i, j)-th element of ĤSCV and hAMISE,ij is the (i, j)-th element of HAMISE.
Its closed form expression is given in Duong and Hazelton (2005b).

Duong and Hazelton (2005a) show that for a selector Ĥ,

d∑
i=1

d∑
j=1

E[ĥij − hAMISE,ij ]2 = O

(
E

[
∂

∂ vech H
(ÂMISE−AMISE)(HAMISE)

]2)
.

For the plug-in selector, they show that the right hand side is O(tr E[Ψ̂4(g)−Ψ4]2), which is a
weighted sum of the individual mean squared errors E[ψ̂r(g)−ψr]2, |r| = 4. On the other hand,
the SAMSE pilot selector minimises the unweighted sum of these terms, though we still have
SAMSE(g) = O(tr E[Ψ̂4(g) −Ψ4]2). This establishes that the SAMSE pilot asymptotically
minimises the distance between ĤPI and HAMISE. An alternative pilot selector based on the
weighted MSEs may have better finite sample properties, but this is not pursued further here.

3.3. Code examples

Like in Section 2, we generate a sample of 200 points from the dumbbell density to compute
bandwidth selectors and their corresponding density estimates.

R> library("ks")
R> samp <- 200
R> mus <- rbind(c(-2,2), c(0,0), c(2,-2))
R> Sigmas <- rbind(diag(2), matrix(c(0.8, -0.72, -0.72, 0.8), nrow = 2),
+ diag(2))
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R> cwt <- 3/11
R> props <- c((1-cwt)/2, cwt, (1-cwt)/2)
R> x <- rmvnorm.mixt(n = samp, mu = mus, Sigma = Sigmas, props = props)

We use Hpi for unconstrained plug-in selectors and Hpi.diag for diagonal plug-in selectors.
There are three other arguments which further specify the plug-in selector: nstage is the
number of pilot estimation stages (1 or 2). We recommend using 2 stages of pilot esti-
mation, see Wand and Jones (1995, pp. 73-74). The type of pilot estimation is set using
pilot ("amse" or "samse"). The argument pre involves the pre-transformations ("scale" or
"sphere"). We can use the pre-sphering or pre-scaling transformation with the unconstrained
bandwidths. For the diagonal bandwidths, we should only use the pre-scaling, otherwise the
back-transformation of pre-sphering results in a non-diagonal matrix.

R> Hpi1 <- Hpi(x = x, pilot = "amse", pre = "scale")
R> Hpi2 <- Hpi(x = x, pilot = "samse", pre = "scale")
R> Hpi3 <- Hpi(x = x, pilot = "amse", pre = "sphere")
R> Hpi4 <- Hpi(x = x, pilot = "samse", pre = "sphere")
R> Hpi5 <- Hpi.diag(x = x, pilot = "amse", pre = "scale")
R> Hpi6 <- Hpi.diag(x = x, pilot = "samse", pre = "scale")

To compute a kernel density estimate, the command is kde, which creates a kde class object

R> kde(x = x, H = Hpi1)

etc. We use the plot method for kde objects to display these kernel density estimates. The
default is a contour plot with the upper 25%, 50% and 75% contours. These contours are the
boundaries of the sample highest density regions, as defined in Bowman and Foster (1993)
and Hyndman (1996). These regions are useful for displaying and summarising multivariate
densities. For a random variable X ∼ f , the highest density region at level α, for a kernel
density estimator f̂(·; H), is Rα = {x : f̂(x; H) ≥ Yα} where Yα is the α-quantile of Y =
f̂(X; H). Then

Pr(X ∈ Rα) = Pr(f̂(X; H) ≥ Yα) = Pr(Y ≥ Yα) = 1− α.

Hyndman (1996) shows that Rα is the region with the smallest hypervolume which contains
1−α of the total probability mass. The sample highest density region is obtained by replacing
Yα with the α-quantile of Yi = f̂(Xi; H). These regions are also plotted by the sm library.

Recalling that the true density is unimodal, of the density estimates displayed in Figure 3, only
the density estimates with unconstrained bandwidth matrices and pre-sphering reproduce this
unimodality.

The commands Hlscv and Hlscv.diag are the unconstrained and diagonal LSCV selectors.
The command Hbcv implements both BCV1 and BCV2. The default is BCV1; set whichbcv
= 2 to call BCV2. Their diagonal counterpart is Hbcv.diag. The unconstrained SCV selector
is Hscv and its diagonal version is Hscv.diag. The argument pre is the same as before.

R> Hlscv1 <- Hlscv(x = x)
R> Hlscv2 <- Hlscv.diag(x = x)
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Figure 3: Kernel density estimates with plug-in selectors.
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R> Hbcv1 <- Hbcv(x = x, whichbcv = 1)
R> Hbcv2 <- Hbcv.diag(x = x, whichbcv = 1)
R> Hscv1 <- Hscv(x = x, pre = "scale")
R> Hscv2 <- Hscv.diag(x = x, pre = "scale")

In Figure 4, we leave out the estimates with BCV2 since they are similar to BCV1.. Also
omitted are the SCV selectors with pre-sphering, as they are similar to those with pre-scaling.
The most reasonable density estimates are from the unconstrained SCV and LSCV selectors,
though unlike the previous plug-in plots, the choice of pre-transformation has much less effect
on the resulting density estimate.

More extensive simulation studies are reported in Duong and Hazelton (2003, 2005b). These
confirm the general behaviour and performance of the bandwidth selectors demonstrated here
for a wider range of target density shapes.

So far the calls to kde compute f̂ exactly. This exact computation is O(n2) complexity
which becomes infeasible for large sample sizes, say n = 10 000 on a current desktop PC. One
common technique for increasing computational speed for these large samples is binned kernel
estimation, see Wand and Jones (1994, Appendix D), and is implemented in KernSmooth
(Wand and Ripley 2006). Binning converts the data sample of size n to a grid of size m, so
binned estimation remains O(m) regardless of the sample size. Suitable default binning grid
sizes are m = 401, 1512, 513 for d = 1, 2, 3. Computing density estimates on a grid becomes
less feasible for d > 3.

Binned estimation is only defined with diagonal bandwidth matrices. Applicable cases in-
clude kernel density estimators with diagonal bandwidth matrices and the integrated density
functional estimators with g2I pilot bandwidth matrices for the plug-in and SCV selectors.
In the Hpi, Hpi.diag, Hscv, Hscv.diag and kde commands, we set binned = TRUE, e.g.

R> x <- rmvnorm.mixt(10000, mus, Sigmas, props)
R> Hpi(x = x, binned = TRUE, pilot = "samse")
R> Hdiag <- Hscv.diag(x = x, binned = TRUE)
R> kde(x = x, H = Hdiag, binned = TRUE)

4. Kernel discriminant analysis

We have ν populations, each associated with a density fj and a prior probability πj , j =
1, 2, . . . , ν. We wish to allocate a point x in the sample space to one (and only one) of these
populations. A common allocation rule is the Bayes discriminant rule:

Allocate x to group j0 where j0 = argmax
j∈{1,2,...,ν}

πjfj(x).

From each fj , we have a random sample Xj1,Xj2, . . . ,Xj,nj . These Xji are collectively
known as the training data. In the cases where we wish only to classify a data sample, rather
than the entire sample space, the random sample Y 1,Y 2, . . . ,Y m drawn from

∑ν
j=1 πjfj is

known as the test data.
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Figure 4: Kernel density estimates with cross validation selectors.
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The kernel discriminant rule (KDR) is obtained from the Bayes discriminant rule by replacing
fj by its kernel density estimate

f̂j(x; Hj) = n−1
j

nj∑
i=1

KHj (x−Xji), (9)

and πj is usually replaced by the sample proportion nj/n where n =
∑ν

j=1 nj ; that is

KDR : Allocate x to group j0 where j0 = argmax
j∈{1,2,...,ν}

π̂j f̂j(x; Hj). (10)

This now raises the question of the most appropriate bandwidth selectors for these density
estimates. We take the simplest approach by using an optimal bandwidth selector for each of
the training data sub-samples. These bandwidths are optimal for MISE for a single density
function. An alternative is to select bandwidths which satisfy an error measure tailored to
discriminant analysis, as is done by Hall and Kang (2005). Their data-driven bandwidth se-
lectors are too computationally intensive for inclusion in ks. Fortunately they show that their
discriminant analysis-optimal selectors are the same asymptotic order as density estimation-
optimal selectors.
To illustrate, we use the well-known iris data which is part of the base software for R. There
are 50 records each from 3 species of iris: Iris setosa, I. versicolor and I. virginica. We take
the first three variables: sepal length, sepal width and petal length. Figure 5 is a scatter plot
of these data.

R> library("MASS")
R> data("iris")
R> ir <- iris[,1:3]
R> ir.group <- iris[,5]

The commands for bandwidth selection in this case are similar to those for density estimation.
The basic commands are Hkda and Hkda.diag for unconstrained and diagonal matrices. We

Figure 5: Scatter plot for iris data: I. setosa red, I. versicolor green and I. virginica blue.
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set bw = "plugin", bw = "lscv" or bw = "scv" for the plug-in, LSCV or SCV selectors. Due
to the poor performance of BCV selectors for density estimation, they are not implemented
for discriminant analysis. The other arguments to further specify the bandwidth selectors are
the same as before.

R> Hpi1 <- Hkda(x = ir, x.group = ir.group, bw = "plugin",
+ pilot = "samse", pre = "sphere")
R> Hpi2 <- Hkda.diag(x = ir, x.group = ir.group, bw = "plugin",
+ pilot = "samse", pre = "scale")
R> Hscv1 <- Hkda(x = ir, x.group = ir.group, bw = "scv", pre = "sphere")
R> Hscv2 <- Hkda.diag(x = ir, x.group = ir.group, bw = "scv", pre = "scale")

To generate density estimates, the command is kda.kde which produces an object of class
kda.kde, e.g.

R> kda.kde(x = ir, x.group = ir.group, Hs = Hpi1)

The kda.kde class has a plot method. For this example, it calls the rgl (Adler and Murdoch
2007) and misc3d (Feng and Tierney 2007) libraries to render the 3-dimensional display. In
Figure 6, the density estimate for each group is plotted in a separate colour, using the same
colours as in Figure 5. The default is to plot the contours of the upper 25% and 50% highest
density regions, with the more opaque contour shell being 25% and the less opaque being
50%.

The computation of a misclassification rate (MR) for a kernel discriminant rule depends
on whether the test data are independent of the training data. If the training data are
independent, then

M̂R = 1−m−1
m∑
j=1

1{Y j is correctly classified using KDR}

where KDR is the kernel discriminant rule in Equation (10). If the training and test data are
the same, then it is appropriate to use a cross validated estimate of the misclassification rate:

M̂RCV = 1− n−1
ν∑
j=1

nj∑
i=1

1{Xji is correctly classified using KDR−ji}

where KDR−ji is a kernel discriminant rule in Equation (10) except that π̂j and f̂j(x; Hj)
are replaced by π̂j,−i = (nj − 1)/(n− 1) and

f̂j,−i(x; Hj) = (nj − 1)−1

nj∑
i′=1
i′ 6=i

(x−Xji′).

For independent training data, the command is compare, which is not illustrated here. Since
we have test data which is equal to the training data, we use
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Figure 6: Kernel density estimates for kernel discriminant analysis: I. setosa red, I. versicolor
green and I. virginica blue: plug-in (upper left), plug-in diagonal (upper right), SCV (lower
right), SCV diagonal (lower right).

R> compare.kda.cv(x = ir, x.group = ir.group, bw = "plugin",
+ pilot = "samse", pre = "sphere")
R> compare.kda.diag.cv(x = ir, x.group = ir.group, bw = "plugin",
+ pilot = "samse", pre = "scale")
R> compare.kda.cv(x = ir, x.group = ir.group, bw = "scv", pre = "sphere")
R> compare.kda.diag.cv(x = ir, x.group = ir.group, bw = "scv",pre = "scale")

to give misclassification rates: plug-in 0.0533, plug-in diagonal 0.0667, SCV 0.0400 and SCV
diagonal 0.0533. The unconstrained SCV selector performs the best in this case.

5. General recommendations

The different bandwidth selectors available in ks may now pose a problem of too much choice.
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The unconstrained bandwidth selectors will be better than their diagonal counterparts when
the data have large mass oriented obliquely to the co-ordinate axes. Amongst the uncon-
strained selectors, we advise against using the BCV selector. The LSCV selector is useful in
some cases though its performance is known to be highly variable. The 2-stage plug-in and
the SCV selectors can be viewed as generally recommended selectors.
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