254 research outputs found

    SC-VAE: Sparse Coding-based Variational Autoencoder

    Full text link
    Learning rich data representations from unlabeled data is a key challenge towards applying deep learning algorithms in downstream supervised tasks. Several variants of variational autoencoders have been proposed to learn compact data representaitons by encoding high-dimensional data in a lower dimensional space. Two main classes of VAEs methods may be distinguished depending on the characteristics of the meta-priors that are enforced in the representation learning step. The first class of methods derives a continuous encoding by assuming a static prior distribution in the latent space. The second class of methods learns instead a discrete latent representation using vector quantization (VQ) along with a codebook. However, both classes of methods suffer from certain challenges, which may lead to suboptimal image reconstruction results. The first class of methods suffers from posterior collapse, whereas the second class of methods suffers from codebook collapse. To address these challenges, we introduce a new VAE variant, termed SC-VAE (sparse coding-based VAE), which integrates sparse coding within variational autoencoder framework. Instead of learning a continuous or discrete latent representation, the proposed method learns a sparse data representation that consists of a linear combination of a small number of learned atoms. The sparse coding problem is solved using a learnable version of the iterative shrinkage thresholding algorithm (ISTA). Experiments on two image datasets demonstrate that our model can achieve improved image reconstruction results compared to state-of-the-art methods. Moreover, the use of learned sparse code vectors allows us to perform downstream task like coarse image segmentation through clustering image patches.Comment: 15 pages, 11 figures, and 3 table

    Brain-wide versus genome-wide vulnerability biomarkers for severe mental illnesses

    Get PDF
    Severe mental illnesses (SMI), including major depressive (MDD), bipolar (BD), and schizophrenia spectrum (SSD) disorders have multifactorial risk factors and capturing their complex etiopathophysiology in an individual remains challenging. Regional vulnerability index (RVI) was used to measure individual\u27s brain-wide similarity to the expected SMI patterns derived from meta-analytical studies. It is analogous to polygenic risk scores (PRS) that measure individual\u27s similarity to genome-wide patterns in SMI. We hypothesized that RVI is an intermediary phenotype between genome and symptoms and is sensitive to both genetic and environmental risks for SMI. UK Biobank sample of N = 17,053/19,265 M/F (age = 64.8 ± 7.4 years) and an independent sample of SSD patients and controls (N = 115/111 M/F, age = 35.2 ± 13.4) were used to test this hypothesis. UKBB participants with MDD had significantly higher RVI-MDD (Cohen\u27s d = 0.20, p = 1 × 1

    Normative Modeling using Multimodal Variational Autoencoders to Identify Abnormal Brain Structural Patterns in Alzheimer Disease

    Full text link
    Normative modelling is an emerging method for understanding the underlying heterogeneity within brain disorders like Alzheimer Disease (AD) by quantifying how each patient deviates from the expected normative pattern that has been learned from a healthy control distribution. Since AD is a multifactorial disease with more than one biological pathways, multimodal magnetic resonance imaging (MRI) neuroimaging data can provide complementary information about the disease heterogeneity. However, existing deep learning based normative models on multimodal MRI data use unimodal autoencoders with a single encoder and decoder that may fail to capture the relationship between brain measurements extracted from different MRI modalities. In this work, we propose multi-modal variational autoencoder (mmVAE) based normative modelling framework that can capture the joint distribution between different modalities to identify abnormal brain structural patterns in AD. Our multi-modal framework takes as input Freesurfer processed brain region volumes from T1-weighted (cortical and subcortical) and T2-weighed (hippocampal) scans of cognitively normal participants to learn the morphological characteristics of the healthy brain. The estimated normative model is then applied on Alzheimer Disease (AD) patients to quantify the deviation in brain volumes and identify the abnormal brain structural patterns due to the effect of the different AD stages. Our experimental results show that modeling joint distribution between the multiple MRI modalities generates deviation maps that are more sensitive to disease staging within AD, have a better correlation with patient cognition and result in higher number of brain regions with statistically significant deviations compared to a unimodal baseline model with all modalities concatenated as a single input.Comment: Medical Imaging Meets NeurIPS workshop in NeurIPS 202

    The University of Pennsylvania Glioblastoma (UPenn-GBM) cohort: Advanced MRI, clinical, genomics, & radiomics

    Get PDF
    Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments

    MRI-based classification of IDH mutation and 1p/19q codeletion status of gliomas using a 2.5D hybrid multi-task convolutional neural network

    Get PDF
    Isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion status are important prognostic markers for glioma. Currently, they are determined using invasive procedures. Our goal was to develop artificial intelligence-based methods to non-invasively determine these molecular alterations from MRI. For this purpose, pre-operative MRI scans of 2648 patients with gliomas (grade II-IV) were collected from Washington University School of Medicine (WUSM; n = 835) and publicly available datasets viz. Brain Tumor Segmentation (BraTS; n = 378), LGG 1p/19q (n = 159), Ivy Glioblastoma Atlas Project (Ivy GAP; n = 41), The Cancer Genome Atlas (TCGA; n = 461), and the Erasmus Glioma Database (EGD; n = 774). A 2.5D hybrid convolutional neural network was proposed to simultaneously localize the tumor and classify its molecular status by leveraging imaging features from MR scans and prior knowledge features from clinical records and tumor location. The models were tested on one internal (TCGA) and two external (WUSM and EGD) test sets. For IDH, the best-performing model achieved areas under the receiver operating characteristic (AUROC) of 0.925, 0.874, 0.933 and areas under the precision-recall curves (AUPRC) of 0.899, 0.702, 0.853 on the internal, WUSM, and EGD test sets, respectively. For 1p/19q, the best model achieved AUROCs of 0.782, 0.754, 0.842, and AUPRCs of 0.588, 0.713, 0.782, on those three data-splits, respectively. The high accuracy of the model on unseen data showcases its generalization capabilities and suggests its potential to perform a 'virtual biopsy' for tailoring treatment planning and overall clinical management of gliomas

    Deformable Medical Image Registration: A Survey

    Get PDF
    Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: i) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; ii) longitudinal studies, where temporal structural or anatomical changes are investigated; and iii) population modeling and statistical atlases used to study normal anatomical variability. In this technical report, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this technical report is to provide an extensive account of registration techniques in a systematic manner.Le recalage déformable d'images est une des tâches les plus fondamentales dans l'imagerie médicale. Parmi ses applications les plus importantes, on compte: i) la fusion d' information provenant des différents types de modalités a n de faciliter le diagnostic et la planification du traitement; ii) les études longitudinales, oú des changements structurels ou anatomiques sont étudiées en fonction du temps; et iii) la modélisation de la variabilité anatomique normale d'une population et les atlas statistiques. Dans ce rapport de recherche, nous essayons de donner un aperçu des différentes méthodes du recalage déformables, en mettant l'accent sur les avancées les plus récentes du domaine. Nous avons particulièrement insisté sur les techniques appliquées aux images médicales. A n d'étudier les méthodes du recalage d'images, leurs composants principales sont d'abord identifiés puis étudiées de manière indépendante, les techniques les plus récentes étant classifiées en suivant un schéma logique déterminé. La contribution de ce rapport de recherche est de fournir un compte rendu détaillé des techniques de recalage d'une manière systématique

    MRF-based Diffeomorphic Population Deformable Registration & Segmentation

    Get PDF
    In this report, we present a novel framework to deform mutually a population of n-examples based on an optimality criterion. The optimality criterion comprises three terms, one that aims to impose local smoothness, a second that aims to minimize the individual distances between all possible pairs of images, while the last one is a global statistical measurement based on "compactness" criteria. The problem is reformulated using a discrete MRF, where the above constraints are encoded in singleton (global) and pair-wise potentials (smoothness (intra-layer costs) and pair-alignments (inter-layer costs)). Furthermore, we propose a novel grid-based deformation scheme, that guarantees the diffeomorphism of the deformation while being computationally favorable compared to standard deformation methods. Towards addressing important deformations we propose a compositional approach where the deformations are recovered through the sub-optimal solutions of successive discrete MRFs. The resulting paradigm is optimized using efficient linear programming. The proposed framework for the mutual deformation of the images is applied to the group-wise registration problem as well as to an atlas-based population segmentation problem. Both articially generated data with known deformations and real data of medical studies were used for the validation of the method. Promising results demonstrate the potential of our method

    Fast Mesh-Based Medical Image Registration

    Full text link
    In this paper a fast triangular mesh based registration method is proposed. Having Template and Reference images as inputs, the template image is triangulated using a content adaptive mesh generation algorithm. Considering the pixel values at mesh nodes, interpolated using spline interpolation method for both of the images, the energy functional needed for image registration is minimized. The minimization process was achieved using a mesh based discretization of the distance measure and regularization term which resulted in a sparse system of linear equations, which due to the smaller size in comparison to the pixel-wise registration method, can be solved directly. Mean Squared Difference (MSD) is used as a metric for evaluating the results. Using the mesh based technique, higher speed was achieved compared to pixel-based curvature registration technique with fast DCT solver. The implementation was done in MATLAB without any specific optimization. Higher speeds can be achieved using C/C++ implementations.Comment: Accepted manuscript for ISVC'201

    Anatomical Mirroring: Real-time User-specific Anatomy in Motion Using a Commodity Depth Camera

    Get PDF
    International audienceThis paper presents a mirror-like augmented reality (AR) system to display the internal anatomy of a user. Using a single Microsoft V2.0 Kinect, we animate in real-time a user-specific internal anatomy according to the user’s motion and we superimpose it onto the user’s color map. The user can visualize his anatomy moving as if he was able to look inside his own body in real-time. A new calibration procedure to set up and attach a user-specific anatomy to the Kinect body tracking skeleton is introduced. At calibration time, the bone lengths are estimated using a set of poses. By using Kinect data as input, the practical limitation of skin correspondance in prior work is overcome. The generic 3D anatomical model is attached to the internal anatomy registration skeleton, and warped on the depth image using a novel elastic deformer, subject to a closest-point registration force and anatomical constraints. The noise in Kinect outputs precludes any realistic human display. Therefore, a novel filter to reconstruct plausible motions based onfixed length bones as well as realistic angular degrees of freedom (DOFs) and limits is introduced to enforce anatomical plausibility. Anatomical constraints applied to the Kinect body tracking skeleton joints are used to maximize the physical plausibility of the anatomy motion, while minimizing the distance to the raw data. At run-time,a simulation loop is used to attract the bones towards the raw data, and skinning shaders efficiently drag the resulting anatomy to the user’s tracked motion.Our user-specific internal anatomy model is validated by comparing the skeleton with segmented MRI images. A user study is established to evaluate the believability of the animated anatomy
    • …
    corecore