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ABSTRACT 
Background.   IDH mutation and 1p/19q codeletion status are important prognostic markers for glioma that are 
currently determined using invasive procedures. Our goal was to develop artificial intelligence-based methods to 
noninvasively determine molecular alterations from MRI.
Methods.   Pre-operative MRI scans of 2648 glioma patients were collected from Washington University School 
of Medicine (WUSM; n = 835) and publicly available Brain Tumor Segmentation (BraTS; n = 378), LGG 1p/19q (n = 
159), Ivy Glioblastoma Atlas Project (Ivy GAP; n = 41), The Cancer Genome Atlas (TCGA; n = 461), and the Erasmus 
Glioma Database (EGD; n = 774) datasets. A 2.5D hybrid convolutional neural network was proposed to simulta-
neously localize glioma and classify its molecular status by leveraging MRI imaging features and prior knowledge 
features from clinical records and tumor location. The models were trained on 223 and 348 cases for IDH and 
1p/19q tasks, respectively, and tested on one internal (TCGA) and two external (WUSM and EGD) test sets.
Results.   For IDH, the best-performing model achieved areas under the receiver operating characteristic (AUROC) 
of 0.925, 0.874, 0.933 and areas under the precision-recall curves (AUPRC) of 0.899, 0.702, 0.853 on the internal, 
WUSM, and EGD test sets, respectively. For 1p/19q, the best model achieved AUROCs of 0.782, 0.754, 0.842, and 
AUPRCs of 0.588, 0.713, 0.782, on those three data-splits, respectively.
Conclusions.   The high accuracy of the model on unseen data showcases its generalization capabilities and suggests 
its potential to perform “virtual biopsy” for tailoring treatment planning and overall clinical management of gliomas.

Key Points

1.	 Hybrid 2.5D model jointly detects, segments glioma, and classifies molecular subtypes 
from MRI.

2.	Combining clinical knowledge with imaging features outperforms conventional 
convolutional neural network.

3.	External validation on 968 patients from 11 centers shows good model generalization.

MRI-based classification of IDH mutation and 1p/19q 
codeletion status of gliomas using a 2.5D hybrid multi-
task convolutional neural network  

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited.
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Gliomas are characterized by distinct imaging characteristics, 
response to therapy, prognoses, and varying survival rate. 
As per the World Health Organization (WHO) guidelines,1,2 
the definition of these tumors requires integrating histolog-
ical information with molecular parameters. Two of the most 
important molecular markers are the mutation status of 
isocitrate dehydrogenase (IDH) enzyme and the codeletion 
of chromosome arms 1p and 19q (1p/19q). These markers 
have unique prognostic significance that can considerably 
impact treatment planning. Therefore, their accurate deter-
mination can significantly improve patient outcome.

In clinical settings, gliomas are routinely resected at first 
appearance considering their potentially grim prognosis. 
The tissue-sample obtained from resection or biopsy pro-
cedures are used to determine IDH and 1p/19q status using 
immunohistochemistry (IHC). However, this can have asso-
ciated risk,3 may fail to capture intra-tumoral spatial hetero-
geneity, can be inaccessible in low-resource settings, or can 
lack adequate tumor content or optimal quality and quan-
tity of nucleic acid required for correct molecular charac-
terization.4 Therefore, noninvasive imaging techniques, like 
MRI, have been investigated as complementary “virtual bi-
opsy” procedures that can be potentially used to determine 
the molecular status of the gliomas even before the first re-
section, thus facilitating easier clinical decision-making.

Artificial intelligence-based approaches5 have attempted 
to perform molecular assessment by leveraging the var-
iation in tumor phenotypical characteristics manifested 
in MRI scans due to changes in molecular alterations.6–10 
Several studies11,12 have investigated machine learning 
(ML) approaches in conjunction with radiomic features for 
this purpose. However, these methods are limited by their 
requirement of separately generated tumor mask, manual 
feature selection, and reproducibility issues associated with 
radiomic features.13 On the other hand, deep learning (DL) 
approaches5 overcome these limitations by automatically 
learning hierarchical imaging features. Nevertheless, several 
challenges still limit their adoption in routine clinical practice. 
First, similar to ML methods, most existing DL methods re-
quire a manually drawn,14–16 or automatically generated6,17–19 
tumor segmentation mask. Manual delineation of tumor 
masks is tedious and prone to human error and observer 
bias, whereas automatically generated masks require an ad-
ditional task-specific model. Such task-specific models not 
only increase computational burden but also fail to leverage 

the context between different related tasks. To address this, 
multi-task DL models have been proposed.18,20 However, 
these focus solely on imaging information and fail to incor-
porate prior clinical knowledge. Second, most studies have 
assessed their methods either on one type of molecular 
status (only IDH mutation15,21 or 1p/19q codeletion10) or spe-
cific grades of glioma (eg, only low grade14,17). This failed to 
provide a comprehensive classification system that aligns 
with WHO classification and recognizes the importance of 
combined IDH and 1p/19q status prediction. Third, previous 
studies often used small samples and lacked rigorous ex-
ternal validation,14,16 which is necessary for accurately as-
sessing model generalizability. Fourth, existing studies have 
used varying datasets and performance metrics that make 
objective comparisons between various methods chal-
lenging. Without head-to-head comparisons and data-driven 
conclusions, it is difficult to gauge the advancements in the 
field and identify the best-performing methods.

To address these limitations, we propose a 2.5D multi-task 
hybrid convolutional neural network (CNN) approach for 
classifying both IDH mutation and 1p/19q codeletion status 
of high- and low-grade gliomas (grades 2–4) from routine 
MR sequences (ie, pre-operative postcontrast T1-weighted 
(T1c), T2-weighted (T2), and T2-weighted Fluid-attenuated 
inversion recovery (FLAIR). Our model jointly detects and 
segments the glioma before classifying its molecular status, 
thus obviating any additional tumor segmentation step. 
Additionally, it can integrate prior knowledge through a 
feature-fusion mechanism. We train the model on three or-
thogonal planes viz. axial, coronal, and sagittal, thus pro-
viding the model with richer spatial context compared to 2D 
models without incurring the computational burden of a 3D 
model. We assembled the largest sample till date for a study 
of this kind, consisting of 2648 patients from 14 institutions. 
The model has been extensively validated on 3 independent 
hold-out sets comprising 968 patient cases from 11 different 
institutions, to demonstrate its generalizability.

Materials and Methods

Datasets

Retrospective pre-operative MRI scans from 2648 patients 
with gliomas CNS WHO grades 2-4, confirmed using an 

Importance of the Study

We propose a 2.5D multi-task hybrid convolutional 
neural network for classifying IDH mutation and 1p/19q 
codeletion status of gliomas of all grades. Our model 
jointly detects and segments glioma before classifying 
its molecular status, thus obviating any requirement of 
multiple task-specific models. Additionally, the model 
integrates prior clinical knowledge through a feature-
fusion mechanism. Aggregating information from three 
orthogonal planes provides the model with richer 
spatial context than a 2D model without incurring the 

computational burden of a 3D model. To facilitate clin-
ical translation, no patient cases were excluded based 
on image acquisition parameters, image quality, or 
glioma grade. Extensive validation of the model on three 
independent hold-out sets comprising 968 patient cases 
from 11 different sites demonstrated good generaliza-
tion. Head-to-head comparisons were performed to two 
baseline methods to explore the methodological, com-
putational and performance advantages of the model. 
The code and trained models of this work are available.
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integrated histopathological and molecular definition, were 
considered for inclusion in the study (Figure 1). Data were 
acquired from 7 publicly available datasets across 13 dif-
ferent institutions: Brain Tumor Segmentation22–24 (BraTS; 
n = 378), LGG 1p/19q25 (n = 159), Ivy Glioblastoma Atlas 
Project26 (Ivy GAP; n = 41), The Cancer Genome Atlas27,28 
(TCGA; n = 461), and the Erasmus Glioma Database29 (EGD; 
n = 774). Additional data were acquired from retrospective 

health records of Washington University School of Medicine 
(WUSM; n = 835). Overlapping cases between the TCGA 
and BraTS data collections were removed. No patient cases 
were excluded based on image acquisition parameters or 
image quality to mirror the inherent heterogeneity present 
in clinical data. Additionally, to ensure a wide applicability 
of the method, only routine MRI sequences were used, and 
no exclusions were made based on glioma grade.

Initial set of patients (n = 2648)
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774

BraTS 2019
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LGG-1p/19q
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EGD
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41

159
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835
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BraTS 2019
BraTS 2018 testing LGG
Ivy-GAP
LGG-1p/19q
TCGA-GBM
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WUSM
EGD

Exclusion of LGG-1p/19q dataset Exclusion of Ivy-GAP dataset
IDH subset 1p/19q subset
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335
43
41
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774

BraTS 2019

Missing pre-operative T1c,
T2, or FLAIR scans
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TCGA-LGG
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74

324

TCGA-GBM

WUSM

Missing pre-operative T1c, or
T2 scans

TCGA-LGG
48
36

197

TCGA-GBM

WUSM

TCGA-GBM
TCGA-LGG
WUSM
EGD

n = 1058
147
42
34
57
16

337
425

BraTS 2019
BraTS 2018 testing LGG
Ivy-GAP
TCGA-GBM
TCGA-LGG
WUSM
EGD
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188

1
7

13
1
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349
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Ivy-GAP
TCGA-GBM
TCGA-LGG
WUSM
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174

1
4
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TCGA-GBM
WUSM
EGD

Failed in preprocessing
14
31
14
11

LGG-1p/19q
TCGA-GBM
TCGA-LGG
WUSM

Dataset overlap
102
108

TCGA-GBM (w/ BraTS)
TCGA-LGG (w/ BraTS)

Failed in preprocessing
11 TCGA-GBM

Final IDH subset (n = 1047)
147
42
34
46
16

337
425

BraTS 2019
BraTS 2018 testing LGG
Ivy-GAP
TCGA-GBM
TCGA-LGG
WUSM
EGD

Training set
(n = 223)

147
42
34

BraTS 2019
BraTS 2018 LGG
Ivy-GAP

Training set
(n = 348)

161
42

145

BraTS 2019
BraTS 2018 LGG
LGG-1p/19q

Internal test set
(n = 62)

46
16

TCGA-GBM
TCGA-LGG
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(n = 118)

77
41
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337 WUSM
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189 WUSM
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(n = 425)

425 EGD

EGD test set
(n = 259)

259 EGD

Figure 1.  Inclusion flowchart of data for IDH mutation and 1p/19q codeletion experiments. The underlined and italicized text within each box with 
dashed lines details the reason for exclusions. BraTS: Brain Tumor Segmentation dataset, Ivy-GAP: Ivy Glioblastoma Atlas Project, TCGA-GBM: 
The Cancer Genome Atlas Glioblastoma Multiforme, TCGA-LGG: The Cancer Genome Atlas Low Grade Glioma, WUSM: Washington University 
School of Medicine, EGD: Erasmus Glioma Database, T1c: postcontrast T1-weighted scan, T2: T2-weighted scan, FLAIR: Fluid Attenutated 
Inversion Recovery scan.
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Based on study requirements, two different but 
overlapping subsets of data were considered for IDH and 
1p/19q status classification. For both classification tasks, 
the training sets included only cases with available expert 
tumor segmentations (Supplementary Data S1.1), required 
to train the model. An internal test set, and two additional 
external sets were included for each task to accurately esti-
mate model generalizability.

For compilation of the IDH database, the inclusion cri-
teria were: (1) pathologically confirmed glioma CNS WHO 
grades 2-4, (2) known IDH status (Supplementary Data 
S1.1) and patient age at diagnosis, and (3) presence of T1c, 
T2, and FLAIR scans. Based on these criteria, 1047 patient 
cases were selected. These were subsequently split into 
four sets: cross-validation (n = 223 from BraTS and Ivy 
GAP), internal testing (n = 62 from TCGA), and two external 
test sets viz. WUSM (n = 337) and EGD (n = 425).

For compilation of the 1p/19q database, the following 
inclusion criteria were considered: (1) pathologically con-
firmed glioma CNS WHO grades 2-4, (2) known 1p/19q 
codeletion status (Supplementary Data S1.1), and (3) pres-
ence of T1c and T2 scans. We did not require the presence 
of FLAIR because the LGG 1p/19q dataset comprised only 
T1c and T2 scans. Based on these criteria, 914 patient cases 
were selected. These were subsequently split into four sets: 
cross-validation (n = 348 from BraTS and LGG 1p/19q), in-
ternal testing (n = 118 from TCGA), and two external test 
sets viz. WUSM (n = 189) and EGD (n = 259).

Image Acquisition, Preprocessing, and Feature 
Extraction

Due to being acquired from 8 different sources across 14 
different institutions, the data were extremely heteroge-
neous exhibiting high variability in acquisition protocol 
parameters (Supplementary Data S1.2, Supplementary 
Figures S1-S5). Data were either already preprocessed 
following the BraTS pre-processing protocol30 during 
collection or pre-processed during the study using the 
Integrative Imaging Informatics for Cancer Research: 
Workflow Automation for Neuro-oncology (I3CR-WANO) 
framework31 (Supplementary Data S1.3, S2.7).

Besides imaging data, two prior knowledge features viz. 
patient age at diagnosis (hereon referred to as “age”) and 
anatomical location of tumor (hereon referred to as “loc”) 
were included in the network (Supplementary Data S1.3).

Hybrid 2.5D Multi-task Model Architecture

We adopted a 2.5D approach, aiming to capture richer 
spatial context compared to 2D models, while minimizing 
computational requirements. Specifically, we train a sepa-
rate 2D model for each orthogonal plane (ie, axial, coronal, 
sagittal), whose predictions are combined into the final re-
sult through a multi-view aggregation step (Figure 2).

The end goal of our model is to classify the molecular 
status. However, due to the sparse presence of glioma in 
the MRI image, the classification performance of the net-
work might get affected by nontumorous image charac-
teristics. To resolve this, the proposed 2D models follow a 

Mask RCNN architecture32 and tackle two auxiliary tasks of 
glioma detection and segmentation besides the classifica-
tion task (Supplementary Data S1.4, Supplementary Figure 
S6). Additionally, we augment the 2D models into a hybrid 
architecture, which integrates imaging features with prior 
knowledge features.

CNNs are mostly image-intensity based, and hence are 
unable to take demographic features (eg, patient age) or 
neuroanatomical features (eg, tumor location features) 
into account. This is limiting given ample evidence re-
garding the importance of patient age in predicting IDH 
status33 and the association between tumor location and 
1p/19q codeletion status.6,9,10 To address this, we equipped 
our CNN with a late-fusion strategy34 to exploit additional 
features (ie, “age” and “loc” features), thus combining 
the strengths of image-derived features with clinical prior 
knowledge (Supplementary Data S1.4, Supplementary 
Figure S6A). Subsequently, this set of hybrid features is 
passed through a fully connected layer to the final clas-
sification layer of the network. The training and testing 
processes involving the hybrid features are end-to-end 
(Figure 2, Supplementary Data S1.5). The code and trained 
models of this work are available at https://github.com/
satrajitgithub/glioma_molecular_2.5D.git.

Statistical Analysis

We used Chi-square and Mann–Whitney tests to evaluate 
differences in patient demographics and clinical char-
acteristics between data splits. We performed ablation 
studies to determine the importance of prior knowledge 
features (Supplementary Data S1.6). Additionally, we in-
vestigated the effectiveness of aggregating information 
from three planes (ie, the 2.5D approach) compared to 2D 
(Supplementary Data S1.6) and 3D models (Supplementary 
Data S2.5). The performance of the best-performing model 
was compared to two baseline pre-trained models: (1) 
a multi-task U-net model by Voort et al.20 (hereon “Voort-
CNN”) for both IDH and 1p/19q, and (2) a CNN-radiomics 
hybrid model by Choi et al.19 (hereon “Choi-CNN”) for 
only IDH (Supplementary Data S1.7). Also, considering 
the randomness involved in DL approaches resulting in 
nondeterministic results, we have repeated the experi-
ments with the best performing models of both IDH and 
1p/19q five times in addition to the reported results and 
compared the performance across all runs to determine 
any differences (Supplementary data S1.10, S2.8).

The classification performance was quantified using 
accuracy, precision, recall, F1 score, area under re-
ceiver operating characteristics (AUROC), and area under 
precision-recall curves (AUPRC). For AUROC and AUPRC, 
95% confidence intervals (CI) were calculated using a 
1000-sample bootstrapping method (Supplementary data 
S1.8). Confusion matrices were calculated to show the 
error distribution across different classes. Statistical com-
parisons between methods were performed using the 
McNemar test35 for precision, the generalized score sta-
tistic36 for recall, and the DeLong test37 for AUROCs.

To assess the validity of our model in terms of WHO 
2016 and WHO 2021 glioma subtypes, we compared OS 
based on ground truth vs. predicted molecular status 
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prediction

Ensemble
classification result
across three planes

Final
predicted

class

Prior clinical features

Coronal slices

Prior clinical features

Axial slices

Input MR
volume

Prior clinical features

Figure 2.  Detailed schematic of the proposed deep learning system for predicting molecular status. (A) Multi-view aggregation architecture that 
combines predictions from planar models trained independently on 2D slices along three principal axes (axial, coronal, sagittal). The final classifi-
cation result is obtained by aggregating the classification result from all three networks. (B) Each planar 2D network is based on a hybrid network 
that simultaneously detects and segments the tumor and classifies the molecular status, based on 2D slices and prior knowledge features. During 
training (subpanel B1) expert-segmented multi-class tumor masks are used to (i) select 2D slices and (ii) supervise the tumor detection and seg-
mentation tasks. During testing (subpanel B2), the 2D planar model is applied to all available slices and a prediction is made through consensus 
of predictions for slices where a tumor was detected. For ease of visualization, we show only the axial workflow for one modality (postcontrast T1 
weighted), but models work across three planes for multiple modalities. MR: Magnetic Resonance, CNN: Convolutional Neural Network.
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(Supplementary Data S1.9). We hypothesized that the 
misclassified IDH-wt cases with IDH-mut like phenotype 
will have better OS. Accordingly, we used Kaplan–Meier 
survival curves to characterize and compare groups of 
misclassified cases (ie, IDH-wt predicted as IDH-mut and 
vice versa) in WUSM in terms of OS. Differences in the 
Kaplan–Meier curves were analyzed using Cox regression. 
Additionally, we examined recurring patterns in misclas-
sified cases for both IDH and 1p/19q classification tasks 
(Supplementary data S1.9).

Ethics Statement

Retrospective de-identified data were obtained from WUSM, 
with a waiver of consent in accordance with the Health 
Insurance Portability and Accountability Act, as approved 
by the Institutional Review Board (IRB ID # 202004209). 
Additional data were obtained from public datasets after 
completion of necessary data usage agreements.

Results

Dataset Characteristics

Patient demographics and clinical characteristics were cal-
culated for all datasets created for both prediction tasks 
(Table 1). For both IDH and 1p/19q subsets, the internal, 
WUSM, and EGD sets differed to varying degrees in terms 
of age, sex, and clinical characteristics (Supplementary 
Data S2.1).

IDH Mutation Status Prediction

Classification performance
Our ablation studies (Supplementary Data S2.2) deter-
mined the 2.5D CNN+age model to be the best-performing 
configuration for IDH status classification (Table 2, Figure 
3A, Supplementary Figure S7A). This model yielded high 
accuracies on the internal (93.5%), WUSM (90.4%), and 
EGD (94.1%) test sets. Compared to the internal test set, 
the model exhibited a 0.11 drop in precision (0.831), and 
very minor drops in recall (0.793) and AUROC values 
(0.874, 95% CI: 0.826–0.917) on the WUSM test set. For the 
EGD set, it yielded a similar precision (0.908), and minor 
improvements in recall (0.926) and AUROC (0.933, 95% CI: 
0.0.902–0.960) compared to the internal test set. Overall, 
the model showed good generalization on both external 
sets, with the performance being slightly better in EGD 
compared to WUSM.

Compared to the Voort-CNN baseline, this model 
performed significantly better with a higher preci-
sion (0.391 increase; P < 0.001), recall (0.22 increase; P = 
0.004), and AUROC (0.113 increase; P = 0.002) (Figure 3C, 
Supplementary Table S1, Supplementary Figure S7C). 
Similar improvements were obtained compared to the 
Choi-CNN baseline (Figure 3E, Supplementary Table S1, 
Supplementary Figure S7E) in terms of precision (0.393 
increase; P < 0.001), recall (0.149 increase; P = 0.028), and 
AUROC (0.17 increase; P < 0.001).

Failure Analysis and Correlation with Overall 
Survival

We identified the following main sources of error. First, 
given that the classification predictions are contingent 
upon successful tumor detections, we observed that the 
model failed to make any molecular status classification 
due to undetected tumors for a small number of cases 
(3 of 337 and 1 of 425 cases in WUSM and EGD sets, re-
spectively; columns marked with “BG” or background, 
Supplementary Figure S7A). Second, classifications were 
sometimes affected by poor off-plane resolution, specifi-
cally in the EGD test set (4 of the 11 IDH-mut cases misclas-
sified as IDH-wt) (Supplementary Data S2.3).

Comparison of OS demonstrated that there was a high 
alignment between the OS of patients based on ground 
truth WHO 2016 and WHO 2021 subtypes and corre-
sponding predicted subtypes (Supplementary Figure 
S8). Analysis of the misclassifications showed that for 
most of the misclassified cases, the predicted IDH status 
had a better concordance than the IDH ground-truth 
label with tumor phenotype, patient age at diagnosis, 
and OS (Figure 4A, Supplementary Data S2.3). Overall, 
the group predicted as IDH-mut had a higher median OS 
than the one predicted as IDH-wt (47.6 vs.16.94 months) 
(Figure 4B).

1p/19q Codeletion Status Prediction

Classification performance
Our ablation studies (Supplementary Data S2.4) deter-
mined the 2.5D CNN+loc model to be the best-performing 
configuration for 1p/19q codeletion status classification 
(Table 2, Figure 3B, Supplementary Figure S7B). This model 
achieved high accuracies on the internal (88.1%) and EGD 
(85.3%) test sets, with a minor drop on the WUSM (81.9%) 
set. Precision and recall metrics in the internal test set were 
affected by a small percentage of false-positive cases (7.8%, 
8 of 102) due to the high class imbalance therein (13.5% 
codeleted vs. 86.5% noncodeleted). Compared to the in-
ternal test set (57.9%), the precision was much higher on 
the WUSM (73.8%) and EGD (72.4%) sets. Similarly, model 
recall was much higher on the WUSM (73.8%) and EGD 
(76.4%) sets compared to the internal test set (62.5%). This 
led to a much higher AUPRC for the WUSM (0.713, 95% 
CI: 0.611–0.813) and EGD (0.782, 95% CI: 0.697–0.860) sets 
compared to the internal (0.588, 95% CI: 0.354–0.810) test 
set. However, the model achieved similar AUROC values 
for all three datasets (0.782, 95% CI: 0.627–0.916 for the 
internal test set; 0.754, 95% CI: 0.666–0.840 for the WUSM 
test set; and 0.842, 95% CI: 0.776–0.904 for the EGD test 
set). This disparity in AUROC and AUPRC can be explained 
by the severe class-imbalance in the internal test data 
(Supplementary Data S2.6). Overall, the model performed 
better on both external test sets compared to the internal 
test set, with the performance in EGD being slightly better 
than WUSM.

Compared to the Voort-CNN (Figure 3D, Supplementary 
Table S2, Supplementary Figure S7D), the proposed model 
showed minor improvement in terms of precision (0.06 
increase; P = 0.827) and AUROC (0.06 increase; P = 0.371) 
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and a significant improvement in recall (0.682 increase; P 
< 0.001).

Failure analysis and correlation with overall survival
We observed that the model failed to make a tumor de-
tection, and hence any subsequent molecular status clas-
sification, for a small number of cases (1 of 189 and 1 of 
259 cases in WUSM and EGD sets, respectively; columns 
marked with “BG” in Supplementary Figure S7B). For the 
other misclassifications, no discernible patterns could 
be identified. However, in the 13.7% (17 of 124) 1p/19q 
noncodeleted cases in WUSM test set that were misclas-
sified as codeleted, we found a predominance of IDH-mut 
cases compared to IDH-wt (11/17 IDH-mut, 3/17 IDH-wt, 3/17 
IDH status unknown). Additionally, certain cases showed 
typical features of 1p/19q codeletion like frontal location, 
heterogeneous texture, and cortical infiltration (Figure 
4C – case1). Of the 26.2% (17 of 65) 1p/19q codeleted 
cases in WUSM test set misclassified as noncodeleted, 
we found five CNS WHO grade 4 glioblastoma cases that 
were IDH-wt and had low survival (median OS 5.2 months, 
range 0.1–13.4 months) (Figure 4C - case2). This genetic-
histologic combination is more consistent with 1p/19q 
noncodeletion.

Discussion

We developed a DL model for classification of IDH muta-
tion and 1p/19q codeletion status that combines prior clin-
ical knowledge and imaging features through a hybrid CNN 
architecture. To the best of our knowledge, the proposed 

method has been validated on the largest dataset till date, 
obtained from one clinical and seven public sources. The 
model achieved high accuracy on this heterogeneous 
dataset and showed excellent generalization on unseen 
testing data. The code and trained models of this work are 
available.

Previous studies have explored the association be-
tween tumor phenotype and molecular status. Qualitative 
analyses have examined visual signatures from MRI ac-
cording to the Visually AcceSAble Rembrandt Images 
(VASARI) guidelines or the T2-FLAIR mismatch signa-
ture.38 Quantitative analyses have investigated combining 
radiomic features and ML.11,12 Though ML models have 
been shown to perform better than visual analysis,39 they 
still require manual intervention due to extensive feature 
engineering and selection. Hence, they often suffer from 
lack of reproducibility on new datasets. In contrast to both 
visual and ML approaches, our CNN-based workflow is 
completely end-to-end, does not require any manual in-
tervention, automatically learns hierarchical features, in-
tegrates readily available clinical information, and shows 
great generalization on external datasets.

Previous studies have also explored CNN-based ap-
proaches for predicting the molecular landscape of 
gliomas. Our study improves previous work in several 
ways. First, unlike previous studies14,16 with small sample 
size or lack of external validation, the generalizability of 
our model was validated on the largest external dataset 
till date, comprising 968 patient cases from 11 institutions. 
Second, previous methods often required a previously seg-
mented tumor mask6,15,18 or a manually extracted bounding 
box16 around the tumor for classification. In contrast, our 
model simultaneously detects and segments the glioma 

Table 2.  Performance of proposed model and comparison with Voort-CNN and Choi-CNN for prediction of IDH mutation and 1p/19q codeletion 
status

 Accuracy Precision Recall F1-score AUROC AUROC-95% CI AUPRC AUPRC-95% CI 

IDH

 � Test 0.935 0.944 0.850 0.895 0.925 (0.809, 1.000) 0.899 (0.740, 1.000)

 � WUSM 0.904 0.831 0.793 0.812 0.874 (0.826, 0.917) 0.702 (0.600, 0.812)

 � EGD 0.941 0.908 0.926 0.917 0.933 (0.902, 0.960) 0.853 (0.780, 0.918)

1p/19q

 � Test 0.881 0.579 0.687 0.628 0.782 (0.627, 0.916) 0.588 (0.354, 0.810)

 � WUSM 0.819 0.738 0.738 0.738 0.754 (0.666, 0.840) 0.713 (0.611, 0.813)

 � EGD 0.853 0.724 0.764 0.743 0.842 (0.776, 0.904) 0.782 (0.697, 0.860)

Comparison with Voort

 � Voort-CNN (IDH) 0.701 0.449 0.580 0.506 0.592 (0.522, 0.668) 0.300 (0.237, 0.402)

 � Proposed (IDH) 0.907 0.844 0.794 0.818 0.868 (0.810, 0.921) 0.700 (0.585, 0.826)

 � Voort-CNN (1p/19q) 0.667 0.667 0.045 0.085 0.666 (0.568, 0.759) 0.502 (0.377, 0.654)

 � Proposed (1p/19q) 0.814 0.727 0.727 0.727 0.733 (0.630, 0.834) 0.665 (0.539, 0.807)

Comparison with Choi

 � Choi-CNN (IDH) 0.691 0.438 0.648 0.523 0.705 (0.636, 0.767) 0.516 (0.418, 0.612)

Abbreviations: IDH, isocitrate dehydrogenase; WUSM, Washington University School of Medicine; EGD, Erasmus Glioma Database; AUROC, area 
under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve; CI, confidence interval.
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and classifies its molecular status. This multi-task approach 
obviates the requirement of any prior tumor segmentation 
and enables the model to learn context from multiple re-
lated tasks. Third, our model is agnostic to glioma grade 
and thus moves substantially beyond prior efforts14,17 that 
were limited to specific glioma grades. This facilitates the 
clinical translation of our model as the tumor grade is un-
known in the clinical pre-operative setting. Fourth, objec-
tive comparison between different methods is hindered 
by usage of different datasets and performance metrics. To 
address this, we performed head-to-head comparisons be-
tween our method and two recent approaches.19,20

Specifically, we used an independent dataset to explore 
methodological, computational and performance advan-
tages of the proposed method compared to the works of 
Voort et al.20 and Choi et al.19 Our model achieved signifi-
cantly better overall performance compared to the multi-
task CNN method by Voort et al.20 As shown by our ablation 

studies, this is due to our hybrid model’s ability to jointly 
learn from images as well as knowledge distilled from clin-
ical records and neuro-anatomical information. A hybrid 
approach was also proposed by Choi et al.19 However, their 
model combined radiomic features with a 2D CNN to pre-
dict only IDH status, thus not providing a full classification 
of the gliomas, and required a separate CNN for tumor seg-
mentation. In comparison with Choi-CNN, the proposed 
model yielded significantly higher overall performance. 
This improvement can be attributed to the usage of 2.5D 
models, which capture a richer spatial context of the brain 
compared to 2D models, while being computationally effi-
cient. This was also supported by our ablation studies that 
showed that the 2.5D model performed significantly better 
than the 2D planar models for both prediction tasks.

In an overall comparison between the IDH and 1p/19q 
classification performances, we found that the models 
generally yielded better results for IDH. This is in line with 
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a recent review of radiogenomic studies11 that observed 
a significantly poorer 1p/19q classification performance 
compared to other molecular subtypes.

For IDH status classification, multiple studies6,39,40 
have associated IDH-wt gliomas with thick, irregular, and 
poorly marginated enhancement on T1c scan and IDH-mut 
gliomas with minimal or no enhancement on T1c, and well-
defined tumor margins. There is also evidence39–41 of lower 
age of diagnosis in patients with IDH-mut gliomas com-
pared to IDH-wt. In our study, analysis of cases with mis-
classified IDH status showed that this existing knowledge 

of age, tumor phenotype, and OS trends was better aligned 
with the predicted class than with the ground truth. This 
alludes to possible errors in the histopathological assess-
ment of the tumor molecular status originating from var-
iability in cutoff values used to determine IDH status in 
immunohistochemistry (IHC) evaluations,42 heterogeneity 
of staining in IHC leading to partial uptakes,43 or heteroge-
neity in samples where only a fraction of tumor cells have 
IDH1-R132H expression.44

For 1p/19q status classification, several 1p/19q codeleted 
cases that were misclassified as noncodeleted were in fact 

KM-based on IDH prediction
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1
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GT = IDH-wt, Pred = IDH-mut

2

Glioblastoma multiforme, Grade: 4, Age: 75y, Survival: 5.2mo
GT = 1p/19q codeleted (IDH-wt), Pred = 1p/19q non-codeleted2
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4

Figure 4.  Case study of model misclassifications in IDH and 1p/19q prediction tasks. (A) T1c, T2 and FLAIR axial slices of four exemplary tumor 
cases which were misclassified in IDH prediction, (B) Kaplan–Meier survival curves characterizing the overall survival for predicted IDH-mut and 
predicted IDH-wt groups from misclassified cases of WUSM test set in the IDH prediction task, and (C) T1c, T2, and FLAIR axial slices of two ex-
emplary tumor cases which were misclassified in 1p/19q prediction.
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glioblastomas with low OS. This suggests possible histo-
pathological false-positive assessment for these cases 
caused by a partial 1p/19q codeletion45 being misclassified 
by the fluorescence in situ hybridization (FISH) technique 
due to its inability to distinguish partial from whole-arm 
deletions. Partial deletions, specifically interstitial and ter-
minal 1p deletions, have been suggested to be particularly 
common in glioblastomas and are known to confound the 
FISH assay.46

Besides these possible errors, other possible explan-
ations for misclassifications include previous nonclas-
sified glioma subtypes included in the newer WHO 2021 
classifications.2 However, the current histopathological 
and molecular assessment relies on invasively and locally 
obtained tissue samples. In contrast, the proposed work 
offers several advantages. First, our workflow can perform 
a noninvasive pre-operative determination of molecular 
status that can inform clinical decision-making and lead 
to a better OS.47,48 Second, the proposed model can en-
able fast, cost-effective tumor characterization that can be 
particularly useful in low-resource settings. Third, it can 
be useful for patients with certain risk factors for biopsy 
(eg, due to old age or other neurological conditions) or tu-
mors which are difficult to operate on (eg, due to location 
in eloquent brain). Fourth, besides pre-operative treatment 
planning, this model can be used for repeated evaluation 
of the molecular status, thus allowing longitudinal char-
acterization of tumor without any associated invasive 
interventions. Overall, in this emerging era of precision 
diagnostics, this workflow can drive personalized treat-
ment planning by streamlining molecular characterization 
of gliomas.

There are certain limitations in this study that merit dis-
cussion. First, studies have shown the importance of tumor 
blood flow information from perfusion imaging,49 or detec-
tion of 2-HG within tumor through MR-spectroscopy50 in 
IDH prediction. However, in this work, we included only 
routine MR sequences as advanced sequences are often 
not included in clinical tumor protocol. This makes clin-
ical translation of our model easier, while allowing us to 
leverage a much bigger dataset to train and validate our 
model. Second, we have included IDH and 1p/19q in this 
study as they are the two most important factors in classifi-
cation of glioma since the WHO 2016 guidelines.1 However, 
as per the recent WHO 2021 guidelines,2 knowledge of te-
lomerase reverse transcriptase (TERT) promoter meth-
ylation, epidermal growth factor receptor (EGFR) gene 
amplification, and combined chromosome 7 gain/chromo-
some 10 loss status are also required for classifying IDH-wt 
grade 2/3 gliomas into “Glioblastoma, IDH-wildtype” or 
“NEC (not elsewhere classified)” classes. These markers 
could not be included in this study due to the lack of avail-
ability, but future work should evaluate the possibility of 
predicting them based on pre-operative MRI.

In conclusion, we developed a CNN model that can 
classify IDH mutation and 1p/19q codeletion status from 
pre-operative structural MR sequences. The model can be 
extended to predict other molecular alterations that are 
associated with specific phenotypical signatures on MR 
images. The network provides an important step towards 
developing an artificial intelligence–augmented neuro-
oncology workflow that can pre-operatively predict tumor 

behavior and assist treatment planning leading to better 
outcomes.
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