19 research outputs found

    Editorial

    Get PDF
    The ethics of immunisatio

    Comparison of tablet-based strategies for incision planning in laser microsurgery

    Get PDF
    Recent research has revealed that incision planning in laser surgery deploying stylus and tablet outperforms stateof-the-art micro-manipulator-based laser control. Providing more detailed quantitation regarding that approach, a comparative study of six tablet-based strategies for laser path planning is presented. Reference strategy is defined by monoscopic visualization and continuous path drawing on a graphics tablet. Further concepts deploying stereoscopic or a synthesized laser view, point-based path definition, real-time teleoperation or a pen display are compared with the reference scenario. Volunteers were asked to redraw and ablate stamped lines on a sample. Performance is assessed by measuring planning accuracy, completion time and ease of use. Results demonstrate that significant differences exist between proposed concepts. The reference strategy provides more accurate incision planning than the stereo or laser view scenario. Real-time teleoperation performs best with respect to completion time without indicating any significant deviation in accuracy and usability. Point-based planning as well as the pen display provide most accurate planning and increased ease of use compared to the reference strategy. As a result, combining the pen display approach with point-based planning has potential to become a powerful strategy because of benefiting from improved hand-eye-coordination on the one hand and from a simple but accurate technique for path definition on the other hand. These findings as well as the overall usability scale indicating high acceptance and consistence of proposed strategies motivate further advanced tablet-based planning in laser microsurgery. © 2015 SPIE

    Stereo vision-based tracking of soft tissue motion with application to online ablation control in laser microsurgery

    Get PDF
    Recent research has revealed that image-based methods can enhance accuracy and safety in laser microsurgery. In this study, non-rigid tracking using surgical stereo imaging and its application to laser ablation is discussed. A recently developed motion estimation framework based on piecewise affine deformation modeling is extended by a mesh refinement step and considering texture information. This compensates for tracking inaccuracies potentially caused by inconsistent feature matches or drift. To facilitate online application of the method, computational load is reduced by concurrent processing and affine-invariant fusion of tracking and refinement results. The residual latency-dependent tracking error is further minimized by Kalman filter-based upsampling, considering a motion model in disparity space. Accuracy is assessed in laparoscopic, beating heart, and laryngeal sequences with challenging conditions, such as partial occlusions and significant deformation. Performance is compared with that of state-of-the-art methods. In addition, the online capability of the method is evaluated by tracking two motion patterns performed by a high-precision parallel-kinematic platform. Related experiments are discussed for tissue substitute and porcine soft tissue in order to compare performances in an ideal scenario and in a setup mimicking clinical conditions. Regarding the soft tissue trial, the tracking error can be significantly reduced from 0.72 mm to below 0.05 mm with mesh refinement. To demonstrate online laser path adaptation during ablation, the non-rigid tracking framework is integrated into a setup consisting of a surgical Er:YAG laser, a three-axis scanning unit, and a low-noise stereo camera. Regardless of the error source, such as laser-to-camera registration, camera calibration, image-based tracking, and scanning latency, the ablation root mean square error is kept below 0.21 mm when the sample moves according to the aforementioned patterns. Final experiments regarding motion-compensated laser ablation of structurally deforming tissue highlight the potential of the method for vision-guided laser surgery.EU/FP/-ICT/28866

    Methods for a fusion of Optical Coherence Tomography and stereo camera image data

    Get PDF
    This work investigates combination of Optical Coherence Tomography and two cameras, observing a microscopic scene. Stereo vision provides realistic images, but is limited in terms of penetration depth. Optical Coherence Tomography (OCT) enables access to subcutaneous structures, but 3D-OCT volume data do not give the surgeon a familiar view. The extension of the stereo camera setup with OCT imaging combines the benefits of both modalities. In order to provide the surgeon with a convenient integration of OCT into the vision interface, we present an automated image processing analysis of OCT and stereo camera data as well as combined imaging as augmented reality visualization. Therefore, we care about OCT image noise, perform segmentation as well as develop proper registration objects and methods. The registration between stereo camera and OCT results in a Root Mean Square error of 284 μm as average of five measurements. The presented methods are fundamental for fusion of both imaging modalities. Augmented reality is shown as application of the results. Further developments lead to fused visualization of subcutaneous structures, as information of OCT images, into stereo vision. © 2015 SPIE

    Endoluminal non-contact soft tissue ablation using fiber-based Er:YAG laser delivery

    Get PDF
    The introduction of Er:YAG lasers for soft and hard tissue ablation has proven promising results over the last decades due to strong absorption at 2.94 μm wavelength by water molecules. An extension to endoluminal applications demands laser delivery without mirror arms due to dimensional constraints. Therefore, fiber-based solutions are advanced to provide exible access while keeping space requirements to a minimum. Conventional fiber-based treatments aim at laser-tissue interactions in contact mode. However, this procedure is associated with disadvantages such as advancing decrease in power delivery due to particle coverage of the fiber tip, tissue carbonization, and obstructed observation of the ablation progress. The objective of this work is to overcome aforementioned limitations with a customized fiber-based module for non-contact robot-assisted endoluminal surgery and its associated experimental evaluation. Up to the authors knowledge, this approach has not been presented in the context of laser surgery at 2.94 μm wavelength. The preliminary system design is composed of a 3D Er:YAG laser processing unit enabling automatic laser to fiber coupling, a GeO2 solid core fiber, and a customized module combining collimation and focusing unit (focal length of 20 mm, outer diameter of 8 mm). The performance is evaluated with studies on tissue substitutes (agar-agar) as well as porcine samples that are analysed by optical coherence tomography measurements. Cuts (depths up to 3mm) with minimal carbonization have been achieved under adequate moistening and sample movement (1.5mms-1). Furthermore, an early cadaver study is presented. Future work aims at module miniaturization and integration into an endoluminal robot for scanning and focus adaptation. © 2016 SPIE

    Foil-to-foil interconnection of capacitive humidity sensors using electrically conductive adhesives

    Get PDF
    The present study presents the development and comparison of two foil-to-foil lamination and interconnection methods of foil-based capacitive humidity sensors. The first method uses confined anisotropic conductive adhesive (ICA) in laser ablated vias through foil (TFV). The second method uses anisotropic conductive adhesive (ACA). Both integration methods were characterized during accelerated humidity (85°C / 85 R.H.),shock temperature (-40°C / 125°C) and bending forces. While the ACA method requires less processing steps and the TFV method was shown to be more robust to bending forces, the interconnection of both methods withstood more than 900 hours of environmental ageing. Finally, the correct functionality of two types of foil-based capacitive humidity sensors was successfully demonstrated by exposing them to different R.H. levels and comparing their readings to a commercial sensor

    cognitive supervision for transoral laser microsurgery

    Get PDF
    This chapter introduces the problem of the automatic supervision of laser-induced effects during laser surgery. A top-down approach is used to tackle this problem: specific circumstances in which surgeons would value enhanced information regarding the effects of their laser actions on tissues are identified. The problem is grounded in the identification of variables of interest that are selected as target for the supervision. In the scope of this thesis, we explore the application of artificial cognitive approaches to monitor these variables in a surgical scenario

    Effects of mood on survey responses

    No full text
    M.S.Jack M. Feldma

    Personality and job performance under non-routine conditions

    No full text
    Ph.D.Jack Feldma
    corecore