30 research outputs found

    Cooperative Multi-Cell Networks: Impact of Limited-Capacity Backhaul and Inter-Users Links

    Full text link
    Cooperative technology is expected to have a great impact on the performance of cellular or, more generally, infrastructure networks. Both multicell processing (cooperation among base stations) and relaying (cooperation at the user level) are currently being investigated. In this presentation, recent results regarding the performance of multicell processing and user cooperation under the assumption of limited-capacity interbase station and inter-user links, respectively, are reviewed. The survey focuses on related results derived for non-fading uplink and downlink channels of simple cellular system models. The analytical treatment, facilitated by these simple setups, enhances the insight into the limitations imposed by limited-capacity constraints on the gains achievable by cooperative techniques

    On the Capacity of the Binary-Symmetric Parallel-Relay Network

    Full text link
    We investigate the binary-symmetric parallel-relay network where there is one source, one destination, and multiple relays in parallel. We show that forwarding relays, where the relays merely transmit their received signals, achieve the capacity in two ways: with coded transmission at the source and a finite number of relays, or uncoded transmission at the source and a sufficiently large number of relays. On the other hand, decoding relays, where the relays decode the source message, re-encode, and forward it to the destination, achieve the capacity when the number of relays is small. In addition, we show that any coding scheme that requires decoding at any relay is suboptimal in large parallel-relay networks, where forwarding relays achieve strictly higher rates.Comment: Author's final version (to appear in Transactions on Emerging Telecommunications Technologies

    Fronthaul data compression for Uplink CoMP in cloud radio access network (C-RAN)

    Get PDF
    The design of efficient wireless fronthaul connections for future heterogeneous networks incorporating emerging paradigms such as cloud radio access network has become a challenging task that requires the most effective utilisation of fronthaul network resources. In this paper, we propose to use distributed compression to reduce the fronthaul traffic in uplink Coordinated Multi-Point for cloud radio access network. Unlike the conventional approach where each coordinating point quantises and forwards its own observation to the processing centre, these observations are compressed before forwarding. At the processing centre, the decompression of the observations and the decoding of the user message are conducted in a successive manner. The essence of this approach is the optimisation of the distributed compression using an iterative algorithm to achieve maximal user rate with a given fronthaul rate. In other words, for a target user rate the generated fronthaul traffic is minimised. Moreover, joint decompression and decoding is studied and an iterative optimisation algorithm is devised accordingly. Finally, the analysis is extended to multi-user case and our results reveal that, in both dense and ultra-dense urban deployment scenarios, the usage of distributed compression can efficiently reduce the required fronthaul rate and a further reduction is obtained with joint operation
    corecore