179 research outputs found

    Learning task specific distributed paragraph representations using a 2-tier convolutional neural network

    Get PDF
    We introduce a type of 2-tier convolutional neural network model for learning distributed paragraph representations for a special task (e.g. paragraph or short document level sentiment analysis and text topic categorization). We decompose the paragraph semantics into 3 cascaded constitutes: word representation, sentence composition and document composition. Specifically, we learn distributed word representations by a continuous bag-of-words model from a large unstructured text corpus. Then, using these word representations as pre-trained vectors, distributed task specific sentence representations are learned from a sentence level corpus with task-specific labels by the first tier of our model. Using these sentence representations as distributed paragraph representation vectors, distributed paragraph representations are learned from a paragraph-level corpus by the second tier of our model. It is evaluated on DBpedia ontology classification dataset and Amazon review dataset. Empirical results show the effectiveness of our proposed learning model for generating distributed paragraph representations

    A convolutional attentional neural network for sentiment classification

    Get PDF
    Neural network models with attention mechanism have shown their efficiencies on various tasks. However, there is little research work on attention mechanism for text classification and existing attention model for text classification lacks of cognitive intuition and mathematical explanation. In this paper, we propose a new architecture of neural network based on the attention model for text classification. In particular, we show that the convolutional neural network (CNN) is a reasonable model for extracting attentions from text sequences in mathematics. We then propose a novel attention model base on CNN and introduce a new network architecture which combines recurrent neural network with our CNN-based attention model. Experimental results on five datasets show that our proposed models can accurately capture the salient parts of sentences to improve the performance of text classification

    Convolution-based neural attention with applications to sentiment classification

    Get PDF
    Neural attention mechanism has achieved many successes in various tasks in natural language processing. However, existing neural attention models based on a densely connected network are loosely related to the attention mechanism found in psychology and neuroscience. Motivated by the finding in neuroscience that human possesses the template-searching attention mechanism, we propose to use convolution operation to simulate attentions and give a mathematical explanation of our neural attention model. We then introduce a new network architecture, which combines a recurrent neural network with our convolution-based attention model and further stacks an attention-based neural model to build a hierarchical sentiment classification model. The experimental results show that our proposed models can capture salient parts of the text to improve the performance of sentiment classification at both the sentence level and the document level

    Learning user and product distributed representations using a sequence model for sentiment analysis

    Get PDF
    In product reviews, it is observed that the distribution of polarity ratings over reviews written by different users or evaluated based on different products are often skewed in the real world. As such, incorporating user and product information would be helpful for the task of sentiment classification of reviews. However, existing approaches ignored the temporal nature of reviews posted by the same user or evaluated on the same product. We argue that the temporal relations of reviews might be potentially useful for learning user and product embedding and thus propose employing a sequence model to embed these temporal relations into user and product representations so as to improve the performance of document-level sentiment analysis. Specifically, we first learn a distributed representation of each review by a one-dimensional convolutional neural network. Then, taking these representations as pretrained vectors, we use a recurrent neural network with gated recurrent units to learn distributed representations of users and products. Finally, we feed the user, product and review representations into a machine learning classifier for sentiment classification. Our approach has been evaluated on three large-scale review datasets from the IMDB and Yelp. Experimental results show that: (1) sequence modeling for the purposes of distributed user and product representation learning can improve the performance of document-level sentiment classification; (2) the proposed approach achieves state-of-The-Art results on these benchmark datasets

    Multi-task learning with mutual learning for joint sentiment classification and topic detection

    Get PDF
    Recently, advances in neural network approaches have achieved many successes in both sentiment classification and probabilistic topic modelling. On the one hand, latent topics derived from the global context of documents could be helpful in capturing more accurate word semantics and hence could potentially improve the sentiment classification accuracy. On the other hand, the word-level attention vectors obtained during the learning of sentiment classifiers could carry word-level polarity information and can be used to guide the discovery of topics in topic modelling. This paper proposes a multi-task learning framework which jointly learns a sentiment classifier and a topic model by making the word-level latent topic distributions in the topic model to be similar to the word-level attention vectors in the classifier through mutual learning. Experimental results on the Yelp and IMDB datasets verify the superior performance of the proposed framework over strong baselines on both sentiment classification accuracy and topic modelling evaluation results including perplexity and topic coherence measures. The proposed framework also extracts more interpretable topics compared to other conventional topic models and neural topic models

    Learning representations from heterogeneous network for sentiment classification of product reviews

    Get PDF
    There have been increasing interests in natural language processing to explore effective methods in learning better representations of text for sentiment classification in product reviews. However, most existing methods do not consider subtle interplays among words appeared in review text, authors of reviews and products the reviews are associated with. In this paper, we make use of a heterogeneous network to model the shared polarity in product reviews and learn representations of users, products they commented on and words they used simultaneously. The basic idea is to first construct a heterogeneous network which links users, products, words appeared in product reviews, as well as the polarities of the words. Based on the constructed network, representations of nodes are learned using a network embedding method, which are subsequently incorporated into a convolutional neural network for sentiment analysis. Evaluations on the product reviews, including IMDB, Yelp 2013 and Yelp 2014 datasets, show that the proposed approach achieves the state-of-the-art performance

    A gloss composition and context clustering based distributed word sense representation model

    Get PDF
    In recent years, there has been an increasing interest in learning a distributed representation of word sense. Traditional context clustering based models usually require careful tuning of model parameters, and typically perform worse on infrequent word senses. This paper presents a novel approach which addresses these limitations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned representations outperform the publicly available embeddings on half of the metrics in the word similarity task, 6 out of 13 sub tasks in the analogical reasoning task, and gives the best overall accuracy in the word sense effect classification task, which shows the effectiveness of our proposed distributed distribution learning model

    Identifying DNA-binding proteins by combining support vector machine and PSSM distance transformation

    Get PDF
    Background: DNA-binding proteins play a pivotal role in various intra- and extra-cellular activities ranging from DNA replication to gene expression control. Identification of DNA-binding proteins is one of the major challenges in the field of genome annotation. There have been several computational methods proposed in the literature to deal with the DNA-binding protein identification. However, most of them can't provide an invaluable knowledge base for our understanding of DNA-protein interactions. Results: We firstly presented a new protein sequence encoding method called PSSM Distance Transformation, and then constructed a DNA-binding protein identification method (SVM-PSSM-DT) by combining PSSM Distance Transformation with support vector machine (SVM). First, the PSSM profiles are generated by using the PSI-BLAST program to search the non-redundant (NR) database. Next, the PSSM profiles are transformed into uniform numeric representations appropriately by distance transformation scheme. Lastly, the resulting uniform numeric representations are inputted into a SVM classifier for prediction. Thus whether a sequence can bind to DNA or not can be determined. In benchmark test on 525 DNA-binding and 550 non DNA-binding proteins using jackknife validation, the present model achieved an ACC of 79.96%, MCC of 0.622 and AUC of 86.50%. This performance is considerably better than most of the existing state-of-the-art predictive methods. When tested on a recently constructed independent dataset PDB186, SVM-PSSM-DT also achieved the best performance with ACC of 80.00%, MCC of 0.647 and AUC of 87.40%, and outperformed some existing state-of-the-art methods. Conclusions: The experiment results demonstrate that PSSM Distance Transformation is an available protein sequence encoding method and SVM-PSSM-DT is a useful tool for identifying the DNA-binding proteins. A user-friendly web-server of SVM-PSSM-DT was constructed, which is freely accessible to the public at the web-site on http://bioinformatics.hitsz.edu.cn/PSSM-DT/
    • ÔÇŽ
    corecore