266 research outputs found

    A Reflective Higher-order Calculus

    Get PDF
    AbstractThe π-calculus is not a closed theory, but rather a theory dependent upon some theory of names. Taking an operational view, one may think of the π-calculus as a procedure that when handed a theory of names provides a theory of processes that communicate over those names. This openness of the theory has been exploited in π-calculus implementations, where ancillary mechanisms provide a means of interpreting of names, e.g. as tcp/ip ports. But, foundationally, one might ask if there is a closed theory of processes, i.e. one in which the theory of names arises from and is wholly determined by the theory of processes.Here we present such a theory in the form of an asynchronous message-passing calculus built on a notion of quoting. Names are quoted processes, and as such represent the code of a process, a reification of the syntactic structure of the process as an object for process manipulation. Name- passing in this setting becomes a way of passing the code of a process as a message. In the presence of a dequote operation, turning the code of a process into a running instance, this machinery yields higher-order characteristics without the introduction of process variables.As is standard with higher-order calculi, replication and/or recursion is no longer required as a primitive operation. Somewhat more interestingly, the introduction of a process constructor to dynamically convert a process into its code is essential to obtain computational completeness, and simultaneously supplants the function of the ν operator. In fact, one may give a compositional encoding of the ν operator into a calculus featuring dynamic quote as well as dequote

    Der Einfluss geometrischer Wabenkernvariationen auf das Schalldämmmaß von massekonstanten Sandwichplatten

    Get PDF
    Die Anzahl von Fahr- und Flugzeugen steigt jedes Jahr immer weiter an. Dies erhöht die Gesamtmenge an Schadstoffen sowie den Lärmpegel. Deshalb wirkt die Politik mit Auflagen oder Forschungsprogrammen der Erhöhung von Schadstoffen und Lärmemissionen entgegen. Insbesondere in der Luftfahrt werden ständig leichtbaukonforme Lösungen gesucht, um die Strukturmasse des Flugzeugs und die Lärmbelastung für die Insassen zu verringern. Die störenden Schallquellen befinden sich außerhalb der Flugzeugkabine, weshalb die Herausforderung darin besteht, besonders leichte und steife Strukturen mit möglichst geringer Schalltransmission zu entwerfen. Aktuell reduzieren Dämmmatten die Schalltransmission, bringen aber zusätzliche Masse ins Flugzeug und verringern somit den Leichtbauvorteil. Diese Arbeit untersucht für den Sandwichverbund als Leichtbauweise den Einfluss der Kerngeometrie auf das Schalldämmmaß. Das Sandwich besteht aus einem Wabenkern, verklebt mit zwei identischen Glasfaserhartgewebeplatten als Decklagen. Die Wabenkerngeometrie wird massekonstant verändert, wobei die Gesamtabmessung der Sandwichplatten mit 800 mm x 600 mm x 20 mm konstant bleibt. Die Kernvariationen umfassen Winkelvariationen, die Änderung der Wabenanzahl sowie Vergleiche zwischen regelmäßigen und unregelmäßigen Wabenkernen. Die Größe der Wabenzellen liegt bei den Untersuchungen im Zentimeterbereich. Als Herstellungsverfahren für die Wabenkerne wird der 3D-Druck mit Stereolithographieverfahren gewählt. Die Analyse der Sandwichplatten besteht aus drei Teilen. Im ersten Teil wird mittels analytischer Berechnung der Einfluss der Kernvariation auf die Koinzidenzen der Sandwichplatte bestimmt. Im zweiten Teil werden die Kernvariationen mithilfe einer Simulation im Frequenzbereich zwischen 100 Hz und 2000 Hz untersucht. Dieser Frequenzbereich umfasst die Eigenformen der Sandwichplatten. Der dritte Teil beschäftigt sich mit der Validierung der Simulation durch experimentelle Messungen von ausgewählten Sandwichplatten im akustischen Transmissionsprüfstand. In der analytischen Untersuchung wird ein orthotropes Materialmodell für die Wabenkerne angenommen. Die geometrischen Veränderungen der Wabenkerne beeinflussen diejenigen Moduln, die zu einer Verschiebung der antisymmetrischen Koinzidenz führen. Die symmetrische Koinzidenz hingegen wird gar nicht durch die Kernvariation beeinflusst, da die hierfür relevanten Moduln nahezu unverändert bleiben. In der Simulation und im Experiment treten eigenformbedingte Schalldämmmaßminima auf. Besonders deutlich lassen sich die Schalldämmmaßminima der ersten und zweiten Eigenfrequenz identifizieren. Durch die Variation der Wabenkerne ändern sich die Frequenzen der Schalldämmmaßminima um bis zu 20 %. Neben den Schalldämmmaßminima, welche durch die Eigenfrequenz bedingt sind, treten weitere Minima auf. Diese sind durch die Hohlräume des Wabenkerns bedingt. Im Bereich der Hohlräume sind die Decklagen nicht gestützt. Diese Decklagensegmente können bei einer Anregung frei schwingen und sind alle gleich groß, wenn der Wabenkern regelmäßig ist. Dadurch entsteht ein Minimum im Schalldämmmaß, der der ersten Eigenfrequenz dieser Decklagensegmente entspricht. Wird die Schalldämmmaßanpassung durch die Decklagensegmente der Biegesteifigkeit und der Kernschubsteifigkeit des Sandwichs gegenübergestellt, ist kein eindeutiger Zusammenhang zwischen den mechanischen Größen und dem Schalldämmmaß festzustellen. So beeinflusst z. B. die Orientierung der Wabenkernwände das Schalldämmmaß und die Biegesteifigkeit in gleicher Richtung, während bei der Variation der Wabenanzahl ein gegensätzliches Verhalten zwischen Schalldämmmaß und Biegesteifigkeit festzustellen ist. Die geometrische Kernvariation stellt einen möglichen Designfreiheitsgrad dar, der zur Verbesserung der akustischen Eigenschaften von Strukturen beitragen kann. Dies ermöglicht akustisch angepassten Leichtbau, ohne die Masse durch Dämmmatten zu erhöhen. Diese leichtbaukonforme Lösung für Verkleidungselemente kann dazu beitragen, den Passagierkomfort zukünftiger Fahr- und Flugzeuge zu verbessern

    Dokumentlieferung innerhalb und außerhalb der Universität : [LEA, EVA; Vorlesung]

    Get PDF

    Development of a computational method for simulating the thermal unfolding of proteins and predicting their thermostability

    Get PDF
    In dieser Arbeit wurde ein Verfahren entwickelt, mit dem die Entfaltung von Proteinen simuliert werden kann. Anhand der Simulation kann die Schmelztemperatur bestimmt und damit die Thermostabilität einer Struktur untersucht werden. Außerdem ist die Untersuchung struktureller Veränderungen möglich, die während der Entfaltung auftreten und letztendlich zum globalen Zerfall der Struktur führen. Die Bereiche, von denen der globale Zerfall der Struktur ausgeht, können bestimmt werden. Es wurde untersucht, inwieweit diese Entfaltungsregionen Strukturbereiche darstellen, deren Mutation die thermische Stabilität der Struktur beeinflusst. Das entwickelte Verfahren basiert auf der Anwendung von Methoden aus der Rigiditätstheorie. Die thermische Entfaltung der Strukturen wird über das sukzessive Aufbrechen nichtkovalenter Wechselwirkungen in den Netzwerken simuliert. An-sätze aus der Perkolations- und Netzwerktheorie werden verwendet, um die Rigidität und Flexibilität in den Netzwerken während der Entfaltung zu untersuchen. Diese unter dem Begriff der Analyse statischer Netzwerke (constraint network analysis, CNA) zusammengefassten Methoden wurden im ersten Teil dieser Arbeit auf einen Datensatz homologer meso- und thermophiler Proteine angewendet. Dabei wurde untersucht, ob die thermophile Anpassung tatsächlich über eine Rigidisierung der Struktur erfolgt. Außerdem wurde die Theorie der korrespondierenden Zustände getestet, die besagt, dass bei der thermophilen Anpassung trotz globaler Rigidisierung für die Bioaktivität wichtige flexible Bereiche konserviert sind. Mit Hilfe der CNA wurden Entfaltungsregionen der Proteine aus dem Datensatz bestimmt und mit Strukturbereichen verglichen, in die thermostabilisierende Mutationen eingeführt wurden. Außerdem wurde untersucht, inwieweit vorhergesagt werden kann, ob eine möglicherweise thermostabilisierende Mutation die Aktivität negativ beeinflusst. Für zwei Drittel der thermophilen Proteine aus dem Datensatz konnte eine höhere Thermostabilität vorhergesagt werden als für das entsprechende mesophile Protein. Es konnte zudem gezeigt werden, dass die thermophile Anpassung dieser Proteine tatsächlich über eine Rigidisierung der Struktur erfolgt. Offensichtlich werden bei der Anwendung der CNA implizit alle möglichen Mechanismen der thermophilen Anpassung berücksichtigt. Die für zwei Paare meso- und thermophiler Proteine vorhergesagten Entfaltungsregionen stimmten sehr gut mit Bereichen überein, in die thermostabilisierende Mutationen eingeführt wurden. Damit wurde gezeigt, dass die CNA hilfreich zur Unterstützung des Protein Engineering ist, da die thermische Stabilität einer Struktur abgeschätzt werden kann, andererseits Hinweise darauf gegeben werden, in welchen Bereichen der Struktur thermostabilisierende Mutationen eingeführt werden können. Anhand des Vergleichs mikroskopischer Stabilitäten homologer Proteine konnte gezeigt werden, dass die CNA ein Abschätzen des Effekts einer thermostabilisierenden Mutation auf die Aktivität erlaubt, was wiederum für den Einsatz der CNA zur Unterstützung des Protein Engineering spricht. Im zweiten Teil dieser Arbeit wurde die CNA auf eine Serie von Phytasen unterschiedlicher Thermostabilitäten angewendet. Da es sich bei den Phytase-Strukturen um Homologie-modelle handelte, die nicht direkt mit der Analyse statischer Netzwerke untersucht werden konnten, wurde eine ensemblebasierte CNA etabliert. Dazu wurden kurze MD-Simulationen zur Verbesserung der homologiemodellierten Strukturen durchgeführt, aus denen dann ein konformationelles Strukturensemble extrahiert wurde. Aus den konformationellen Ensembles werden Thermostabilitäten vorhergesagt. Bei der Vorhersage der Thermostabilitäten ergab sich eine bemerkenswert gute Übereinstimmung mit experimentell bestimmten relativen Halbwertszeittemperaturen. Bereiche mit hoher Entfaltungsregionwahrscheinlichkeit stimmen gut mit Regionen überein, in denen thermostabilisierende Mutationen experimentell eingeführt wurden. Diese Ergebnisse offenbaren, dass mit der Entwicklung der ensemblebasierten CNA die methodischen Grundlagen für den Einsatz des Verfahrens zur Unterstützung des Protein Engineering von Phytasen geschaffen wurden.A computational method has been developed for simulating the thermal unfolding of proteins. From the unfolding simulation, a melting temperature can be obtained. Thereby, the thermostability of proteins can be predicted. Moreover, the approach allows for identifying structural features from which a destabilization of the structure originates upon thermal unfolding, i.e., unfolding nuclei. The approach is referred to as constraint network analysis (CNA) and is based on a graph-theoretical method that determines rigidity and flexibility within a protein structure in atomic resolution. Thermal unfolding of the protein structure can now be simulated by gradually removing non-covalent bond constraints from the constraint network. The method is applied to a data set of 19 pairs of homologous proteins from meso- and thermophilic organisms. By comparing microscopic stability features of homologues, it is shown that adaptive mutations in enzymes from thermophilic organisms maintain the balance between overall rigidity, important for thermostability, and local flexibility, important for activ-ity, at the appropriate temperature at which the protein functions. Thermophilic adaptation in general leads to an increase of structural rigidity but conserves the distribution of functionally important flexible regions between homologues from meso- and thermophilic organisms. This finding provides direct evidence for the hypothesis of corresponding states. CNA thereby im-plicitly captures and unifies many different mechanisms that contribute to increased thermostability and to activity at high temperatures. Changes in the flexibility of active site regions, induced either by a temperature change or by the introduction of mutations, are related to ex-perimentally observed losses of the enzyme function. From an application point of view, the results demonstrate that exploiting the principle of corresponding states not only allows for successful thermostability optimization but also for guiding experiments in order to improve enzyme activity in protein engineering. CNA is also applied to a data set of phytases. In this case, an ensemble-based approach was pursued in which conformations extracted from a trajectory, which was generated by a mo-lecular dynamics simulation, are individually subjected to CNA. Then, the results from the thermal unfolding simulations are averaged over the whole ensemble. As a further advantage over analyzing a single structure, this approach allows to determine the statistical significance of the results of the CNA. The wildtype phytase of Yersinia mollaretii was used for the identification of unfolding nuclei. Three main unfolding nuclei were identified. At two of the identified unfolding nuclei, saturation mutagenesis was performed, and the thermal stability of a mutant enzyme was determined. The results demonstrate as a proof of concept that mutations

    EVA - Volltextarchiv der Universitätsbibliothek Karlsruhe

    Get PDF

    Das Lokale Elektronische Aufsatzliefersystem LEA - ein erfolgreiches Pilotprojekt zur Einführung der elektronischen Dokumentlieferung an der Universität Karlsruhe

    Get PDF
    Das von der Universitätsbibliothek Karlsruhe(UB) entwickelte Aufsatzliefersystem LEA (http://www.ubka.uni-karlsruhe.de/docdel/) wird seit dem 1. August diesen Jahres den Mitarbeitern der Universität angeboten. Über das Internet können kostenlos Artikel von Zeitschriften der UB bestellt und empfangen werden. Es kann angenommen werden, daß LEA sich als erfolgreiche Dienstleistung etablieren wird. Über erste Erfahrungen mit dem elektronischen Aufsatzliefersystem wird berichtet

    Neu in der Universitätsbibliothek: Volltextserver

    Get PDF
    corecore