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Abstract

The π-calculus is not a closed theory, but rather a theory dependent upon some theory of names.
Taking an operational view, one may think of the π-calculus as a procedure that when handed a
theory of names provides a theory of processes that communicate over those names. This openness
of the theory has been exploited in π-calculus implementations, where ancillary mechanisms provide
a means of interpreting of names, e.g. as tcp/ip ports. But, foundationally, one might ask if there
is a closed theory of processes, i.e. one in which the theory of names arises from and is wholly
determined by the theory of processes.
Here we present such a theory in the form of an asynchronous message-passing calculus built on
a notion of quoting. Names are quoted processes, and as such represent the code of a process, a
reification of the syntactic structure of the process as an object for process manipulation. Name-
passing in this setting becomes a way of passing the code of a process as a message. In the presence
of a dequote operation, turning the code of a process into a running instance, this machinery yields
higher-order characteristics without the introduction of process variables.
As is standard with higher-order calculi, replication and/or recursion is no longer required as a
primitive operation. Somewhat more interestingly, the introduction of a process constructor to
dynamically convert a process into its code is essential to obtain computational completeness, and
simultaneously supplants the function of the ν operator. In fact, one may give a compositional
encoding of the ν operator into a calculus featuring dynamic quote as well as dequote.
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1 Introduction

The π-calculus ([10]) is not a closed theory, but rather a theory dependent
upon some theory of names. Taking an operational view, one may think of
the π-calculus as a procedure that when handed a theory of names provides a
theory of processes that communicate over those names. This openness of the
theory has been exploited in π-calculus implementations, like the execution
engine in Microsoft’s Biztalk [8], where an ancillary binding language providing
a means of specifying a ‘theory’ of names; e.g., names may be tcp/ip ports or
urls or object references, etc. But, foundationally, one might ask if there is a
closed theory of processes, i.e. one in which the theory of names arises from
and is wholly determined by the theory of processes. Behind this question lurk
a whole host of other exciting and potentially enlightening questions regarding
the role of names with structure in calculi of interaction and the relationship
between the structure of names and the structure of processes.

Speaking provocatively, nowhere in the tools available to the computer
scientist is there a countably infinite set of atomic entities. All such sets, e.g.
the natural numbers, the set of strings of finite length on some alphabet, etc.,
are generated from a finite presentation, and as such the elements of these sets
inherit structure from the generating procedure. As a theoretician focusing
on some aspects of the theory of processes built from such a set, one may
temporarily forget that structure, but it is there nonetheless, and comes to
the fore the moment one tries to build executable models of these calculi.

To illustrate the point, when names have structure, name equality becomes
a computation. But, if our theory of interaction is to provide a basis for a
theory of computation, then certainly this computation must be accounted for
as well. Moreover, the fact that any realization of these name-based, mobile
calculi of interaction must come to grips with names that have structure begs
the question: would the theoretical account of interaction be more effective,
both as a theory in its own right and as a guide for implementation, if it
included an account of the relationships between the structure of names and
the structure of processes?

1.1 Overview and contributions

Here we present a theory of an asynchronous message-passing calculus built
on a notion of quoting. Names are quoted processes, and as such represent
the code of a process, a reification of the syntactic structure of the process (up
to some equivalence). Name-passing, then becomes a way of passing the code
of a process as a message. In the presence of a dequote operation, turning the
code of a process into a running instance, this machinery yields higher-order

L.G. Meredith, M. Radestock / Electronic Notes in Theoretical Computer Science 141 (2005) 49–6750



characteristics without the introduction of process variables.

As is standard with higher-order calculi, replication and/or recursion is no
longer required as a primitive operation. Somewhat more interestingly, the
introduction of a process constructor to dynamically convert a process into its
code is essential to obtain computational completeness, and simultaneously
supplants the function of the ν operator. In fact, we give a compositional
encoding of the ν operator into the calculus, making essential use of dynamic
quote as well as dequote. Following the tradition started by Smith and des
Rivieres, [3] we dub this ability to turn running code into data and back again,
reflection; hence, the name reflective, higher-order calculus, or rho-calculus,
for short, or ρ-calculus for even shorter.

Certainly, the paper presents a concrete calculus that may be used to model
a variety of computations and highlights a number of interesting phenemona
in those computations. We take the view, however, that the main contribution
is that the calculus provides an instrument to bring to life a set of questions
regarding the role of names in calculi of interaction. These questions include
the calculation of name equality as a computation to be considered within the
framework of interaction and the roles of name equality in substitution versus
synchronization. These questions don’t really come to life, though, without
the instrument in hand. So, we turn immediately to the presentation of the
calculus.

2 The calculus

2.0.1 Notation

We let P, Q, R range over processes and x, y, z range over names.

ρ-calculus P, Q ::= 0 null process

| x(y) . P input

| x〈|P |〉 lift

| �x� drop

| P | Q parallel

x, y ::= �P� quote
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2.0.2 Quote

Working in a bottom-up fashion, we begin with names. The technical detail
corresponding to the π-calculus’ parametricity in a theory of names shows up
in standard presentations in the grammar describing terms of the language:
there is no production for names; names are taken to be terminals in the
grammar. Our first point of departure from a more standard presentation of
an asynchronous mobile process calculus is here. The grammar for the terms
of the language will include a production for names in the grammar. A name
is a quoted process, �P�.

2.0.3 Parallel

This constructor is the usual parallel composition, denoting concurrent exe-
cution of the composed processes.

2.0.4 Lift and drop

Despite the fact that names are built from (the codes of) processes, we still
maintain a careful disinction in kind between process and name; thus, name
construction is not process construction. So, if one wants to be able to generate
a name from a given process, there must be a process constructor for a term
that creates a name from a process. This is the motivation for the production
x〈|P |〉, dubbed here the lift operator. The intuitive meaning of this term is
that the process P will be packaged up as its code, �P�, and ultimately made
available as an output at the port x.

A more formal motivation for the introduction of this operator will become
clear in the sequel. But, it will suffice to say now that �P� is impervious to
substitution. In the ρ-calculus, substitution does not affect the process body
between quote marks. On the other hand, x〈|P |〉 is susceptible to substitution
and as such constitutes a dynamic form of quoting because the process body
ultimately quoted will be different depending on the context in which the
x〈|P |〉 expression occurs.

Of course, when a name is a quoted process, it is very handy to have a
way of evaluating such an entity. Thus, the �x� operator, pronounced drop x,
(eventually) extracts the process from a name. We say ‘eventually’ because
this extraction only happens when a quoted process is substituted into this
expression. A consequence of this behavior is that �x� is inert except under
and input prefix. One way of saying this is that if you want to get something
done, sometimes you need to drop a name, but it should be the name of an
agent you know.
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Remark 2.1 The lift operator turns out to play a role analogous to (ν x)P .
As mentioned in the introduction, it is essential to the computational com-
pleteness of the calculus, playing a key role in the implementation of replica-
tion. It also provides an essential ingredient in the compositional encoding of
the ν operator.

Remark 2.2 It is well-known that replication is not required in a higher-order
process algebra [13]. While our algebra is not higher-order in the traditional
sense (there are not formal process variables of a different type from names) it
has all the features of a higher-order process algebra. Thus, it turns out that
there is no need for a term for recursion. To illustrate this we present below
an encoding of !P in this calculus. Intuitively, this will amount to receiving a
quoted form of a process, evaluating it, while making the quoted form available
again. The reader familiar with the λ-calculus will note the formal similarity
between the crucial term in the encoding and the paradoxical combinator [1].

2.0.5 Input and output

The input constructor is standard for an asynchronous name-passing calculus.
Input blocks its continuation from execution until it receives a communication.
Lift is a form of output which – because the calculus is asynchronous – is
allowed no continuation. It also affords a convenient syntactic sugar, which
we define here.

x[y] � x〈|�y�|〉

2.0.6 The null process

As we will see below, the null process has a more distinguished role in this
calculus. It provides the sole atom out of which all other processes (and the
names they use) arise much in the same way that the number 0 is the sole
number out of which the natural numbers are constructed; or the empty set is
the sole set out of which all sets are built in ZF -set theory [7]; or the empty
game is the sole game out of which all games are built in Conway’s theory of
games and numbers [2]. This analogy to these other theories draws attention,
in our opinion, to the foundational issues raised in the introduction regarding
the design of calculi of interaction.

2.1 The name game

Before presenting some of the more standard features of a mobile process
calculus, the calculation of free names, structural equivalence, etc., we wish to
consider some examples of processes and names. In particular, if processes are
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built out of names, and names are built out of processes, is it ever possible to
get off the ground? Fortunately, there is one process the construction of which
involves no names, the null process, 0. Since we have at least one process, we
can construct at least one name, namely �0� 3 . Armed with one name we
can now construct at least two new processes that are evidently syntactically
different from the 0, these are �0�[�0�] and �0�(�0�) .0. As we might expect,
the intuitive operational interpretation of these processes is also distinct from
the null process. Intuitively, we expect that the first outputs the name �0� on
the channel �0�, much like the ordinary π-calculus process x[x] outputs the
name x on the channel x, and the second inputs on the channel �0�, much
like the ordinary π-calculus process x(x) . 0 inputs on the channel x.

Of course, now that we have two more processes, we have two more names,
��0�[�0�]� and ��0�(�0�) . 0�. Having three names at our disposal we can
construct a whole new supply of processes that generate a fresh supply of
names, and we’re off and running. It should be pointed out, though, that as
soon as we had the null process we also had 0|0 and 0|0|0 and consequently,
we had the names �0|0�, and �0|0|0�, and .... But, since we ultimately wish
to treat these compositions as merely other ways of writing the null process
and not distinct from it, should we admit the codes of these processes as
distinct from �0�?

This question leads to several intriguing and apparently fundamental ques-
tions. Firstly, if names have structure, whether this derives from the struc-
ture of processes or something else, what is a reasonable notion of equality on
names? How much computation, and of what kind, should go into ascertain-
ing equality on names? Additionally, what roles should name equality play
in a calculus of processes? In constructing this calculus we became conscious
that substitution and synchronization identify two potentially very different
roles for name equality to play in name-passing calculi. That these are very
different roles is suggested by the fact that they may be carried out by very
different mechanisms in a workable and effective theory. We offer one choice,
but this is just one design choice among infinitely many. Most likely, the
primary value of this proposal is to raise the question. Likewise, we offer a
proposal regarding the calculation of name equality that is just one of many
and whose real purpose is to make the question vivid. We wish to turn to the
core mechanics of the calculus with these questions in mind.

3 pun gratefully accepted ;-)
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2.2 Free and bound names

The syntax has been chosen so that a binding occurrence of a name is sand-
wiched between round braces, ( · ). Thus, the calculation of the free names of
a process, P , denoted FN (P ) is given recursively by

FN (0)= ∅

FN (x(y) . P )= {x} ∪ (FN (P ) \ {y})

FN (x〈|P |〉)= {x} ∪ FN (P )

FN (P | Q) =FN (P ) ∪ FN (Q)

FN (�x�) = {x}

An occurrence of x in a process P is bound if it is not free. The set of
names occurring in a process (bound or free) is denoted by N (P ).

2.3 Structural congruence

The structural congruence of processes, noted ≡, is the least congruence, con-
taining α-equivalence, ≡α, that satisfies the following laws:

P | 0≡ P ≡ 0 | P

P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)

2.4 Name equivalence

We now come to one of the first real subtleties of this calculus. Both the
calculation of the free names of a process and the determination of struc-
tural congruence between processes critically depend on being able to estab-
lish whether two names are equal. In the case of the calculation of the free
names of an input-guarded process, for example, to remove the bound name
we must determine whether it is in the set of free names of the continuation.
Likewise, structural congruence includes α-equivalence. But, establishing α-
equivalence between the processes x(z) . w〈|y[z]|〉 and x(v) . w〈|y[v]|〉, for
instance, requires calculating a substitution, e.g. x(v) . w〈|y[v]|〉{z/v}. But
this calculation requires, in turn, being able to determine whether two names,
in this case the name in the object position of the output, and the name being
substituted for, are equal.

As will be seen, the equality on names involves structural equivalence
on processes, which in turn involves alpha equivalence, which involves name
equivalence. This is a subtle mutual recursion, but one that turns out to be
well-founded. Before presenting the technical details, the reader may note that
the grammar above enforces a strict alternation between quotes and process
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constructors. Each question about a process that involves a question about
names may in turn involve a question about processes, but the names in the
processes the next level down, as it were, are under fewer quotes. To put it
another way, each ‘recursive call’ to name equivalence will involve one less
level of quoting, ultimately bottoming out in the quoted zero process.

Let us assume that we have an account of (syntactic) substitution and α-
equivalence upon which we can rely to formulate a notion of name equivalence,
and then bootstrap our notions of substitution and α-equivalence from that.
We take name equivalence, written ≡N , to be the smallest equivalence relation
generated by the following rules.

��x�� ≡N x
(Quote-drop)

P ≡ Q

�P� ≡N �Q�

(Struct-equiv)

2.5 Syntactic substitution

Now we build the substitution used by α-equivalence. We use Proc for the set
of processes, �Proc� for the set of names, and {�y/�x} to denote partial maps,
s : �Proc� → �Proc�. A map, s lifts, uniquely, to a map on process terms,
ŝ : Proc → Proc by the following equations.

(0) ̂{�Q�/�P�}= 0

(R | S) ̂{�Q�/�P�}= (R) ̂{�Q�/�P�} | (S) ̂{�Q�/�P�}

(x(y) . R) ̂{�Q�/�P�}= (x){�Q�/�P�}(z) . ((R̂{z/y}) ̂{�Q�/�P�})

(x〈|R|〉) ̂{�Q�/�P�}= (x){�Q�/�P�}〈|R ̂{�Q�/�P�}|〉

(�x�) ̂{�Q�/�P�}=

⎧⎨
⎩

��Q�� x ≡N �P�

�x� otherwise

where

(x){�Q�/�P�} =

⎧⎨
⎩

�Q� x ≡N �P�

x otherwise

and z is chosen distinct from �P�, �Q�, the free names in Q, and all the
names in R. Our α-equivalence will be built in the standard way from this
substitution.
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But, given these mutual recursions, the question is whether the calculation
of ≡N (respectively, ≡, ≡α) terminates. To answer this question it suffices to
formalize our intuitions regarding level of quotes, or quote depth, #(x), of a
name x as follows.

#(�P�)= 1 + #(P )

#(P )=

⎧⎨
⎩

max{#(x) : x ∈ N (P )} N (P ) 	= ∅

0 otherwise

The grammar ensures that #(�P�) is bounded. Then the termination of
≡N (respectively, ≡, ≡α) is an easy induction on quote depth.

2.6 Dynamic quote: an example

Anticipating something of what’s to come, consider applying the substitution,
̂{u/z}, to the following pair of processes, w〈|y[z]|〉 and w[�y[z]�].

w〈|y[z]|〉̂{u/z}=w〈|y[u]|〉

w[�y[z]�]̂{u/z}=w[�y[z]�]

Because the body of the process between quotes is impervious to substitu-
tion, we get radically different answers. In fact, by examining the first process
in an input context, e.g. x(z) . w〈|y[z]|〉, we see that the process under the
lift operator may be shaped by prefixed inputs binding a name inside it. In
this sense, the lift operator will be seen as a way to dynamically construct
processes before reifying them as names.

2.7 Semantic substitution

The substitution used in α-equivalence is really only a device to formally
recognize that binding occurrences do not depend on the specific names. It is
not the engine of computation. The proposal here is that while synchronization
is the driver of that engine, the real engine of computation is a semantic notion
of substitution that recognizes that a dropped name is a request to run a
process. Which process? Why the one whose code has been bound to the
name being dropped. Formally, this amounts to a notion of substitution that
differs from syntactic substitution in its application to a dropped name.

(�x�) ̂{�Q�/�P�}=

⎧⎨
⎩

Q x ≡N �P�

�x� otherwise

In the remainder of the paper we will refer to semantic and syntactic
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substitutions simply as substitutions and rely on context to distinguish which

is meant. Similarly, we will abuse notation and write {y/x} for ̂{y/x}.

Finally equipped with these standard features we can present the dynamics
of the calculus.

2.8 Operational Semantics

The reduction rules for ρ-calculus are

x0 ≡N x1

x0〈|Q|〉 | x1(y) . P → P{�Q�/y}
(Comm)

In addition, we have the following context rules:

P → P ′

P | Q → P ′ | Q
(Par)

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q
(Equiv)

The context rules are entirely standard and we do not say much about
them, here. The communication rule does what was promised, namely make
it possible for agents to synchronize and communicate processes packaged as
names. For example, using the comm rule and name equivalence we can now
justify our syntactic sugar for output.

x[z] | x(y) . P

= x〈|�z�|〉 | x(y) . P

→ P{��z��/y}

≡ P{z/y}

But, it also provides a scheme that identifies the role of name equality in
synchronization. There are other relationships between names with structure
that could also mediate synchronization. Consider, for example, a calculus
identical to the one presented above, but with an alternative rule governing
communication.
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∀R.[Pchannel | Qchannel →∗ R] ⇒ R →∗ 0

�Qchannel�〈|Q|〉 | �Pchannel�(y) . P → P{�Q�/y}

(Comm-annihilation)

Intuitively, it says that the codes of a pair of processes, Pchannel, Qchannel,
stand in channel/co-channel relation just when the composition of the pro-
cesses always eventually reduces to 0, that is, when the processes annihilate
one another. This rule is well-founded, for observe that because 0 ≡ 0 | 0,
0 | 0 →∗ 0. Thus, �0� serves as its own co-channel. Analogous to our gen-
eration of names from 0, with one such channel/co-channel pair, we can find
many such pairs. What we wish to point out about this rule is that we can see
precisely an account of the calculation of the channel/co-channel relationship
as deriving from the theory of interaction. We do not know if the computa-
tion of name equality has a similar presentation, driving home the potential
difference of those two roles in calculi of interaction.

We mention, as a brief aside, that there is no reason why 0 is special in
the scheme above. We posit a family of calculi, indexed by a set of processes
{Sα}, and differing only in their communication rule each of which conforms
to the scheme below.

∀R.[Pchannel | Qchannel →∗ R] ⇒ R →∗ R′ ≡ Sα

�Qchannel�〈|Q|〉 | �Pchannel�(y) . P → P{�Q�/y}

(Comm-annihilation-S)

We explore this family of calculi in a forthcoming paper. For the rest of
this paper, however, we restrict our attention to the calculus with the less
exotic communication rule, using → for reduction according to that system
and ⇒ for →∗.

3 Replication

As mentioned before, it is known that replication (and hence recursion) can
be implemented in a higher-order process algebra [13]. As our first example
of calculation with the machinery thus far presented we give the construction
explicitly in the ρ-calculus.

D(x)�x(y) . (x[y]|�y�)

!P (x)�x〈|D(x) | P |〉 | D(x)
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!P (x)

= x〈|(x(y) . (x[y]|�y�)) | P |〉 | x(y) . (x[y]|�y�)

→ (x[y]|�y�){�(x(y) . (�y�|x[y])) | P�/y}

=x[�(x(y) . (x[y]|�y�)) | P�] | (x(y) . (x[y]|�y�)) | P

→ . . .

→∗ P | P | . . .

Of course, this encoding, as an implementation, runs away, unfolding !P
eagerly. A lazier and more implementable replication operator, restricted to
input-guarded processes, may be obtained as follows.

!u(v) . P � x〈|u(v) . (D(x) | P )|〉 | D(x)

It is worth noting that the lift operator is essential to get computational
completeness. A similar calculus equipped with only a static quote enjoys
a computational expressiveness at least equivalent to context-free grammars,
but short of context-sensitive. This fact is established and exploited in a
forthcoming paper on a type system for the ρ-calculus.

4 Bisimulation

Having taken the notion of restriction out of the language, we carefully place
it back into the notion of observation, and hence into the notion of program
equality, i.e. bisimulation. That is, we parameterize the notion of barbed
bisimulation by a set of names over which we are allowed to set the barbs.
The motivation for this choice is really comparison with other calculi. The
set of names of the ρ-calculus is global. It is impossible, in the grammar of
processes, to guard terms from being placed into contexts that can potentially
observe communication. So, we provide a place for reasoning about such
limitations on the scope of observation in the theory of bisimulation.

Definition 4.1 An observation relation, ↓N , over a set of names, N , is the
smallest relation satisfying the rules below.

y ∈ N , x ≡N y

x[v] ↓N x
(Out-barb)

P ↓N x or Q ↓N x

P | Q ↓N x
(Par-barb)

We write P ⇓N x if there is Q such that P ⇒ Q and Q ↓N x.
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Notice that x(y) . P has no barb. Indeed, in ρ-calculus as well as other
asynchronous calculi, an observer has no direct means to detect if a message
sent has been received or not.

Definition 4.2 An N -barbed bisimulation over a set of names, N , is a sym-
metric binary relation SN between agents such that P S NQ implies:

(i) If P → P ′ then Q ⇒ Q′ and P ′ S NQ′.

(ii) If P ↓N x, then Q ⇓N x.

P is N -barbed bisimilar to Q, written P
�

≈N Q, if P S NQ for some N -barbed
bisimulation SN .

5 Interpreting π-calculus

Here we provide an encoding of the pure asynchronous π-calculus into the
ρ-calculus. Since all names are global in the ρ-calculus, we encounter a small
complication in the treatment of free names at the outset. There are several
ways to handle this. One is to insist that the translation be handed a closed
program (one in which all names are bound either by input or by restric-
tion). This alternative feels inelegant. Another is to provide an environment,
r : Nπ → �Proc�, for mapping the free names in a π-calculus process into
names in the ρ-calculus. Maintaining the updates to the environment, how-
ever, obscures the simplicity of the translation. We adopt a third alternative.

To hammer home the point that the π-calculus is parameterized in a theory
of names, we build a π-calculus in which the names are the names of ρ-calculus.
This is no different than building a π-calculus using the natural numbers, or
the set of URLs as the set of names. Just as there is no connection between
the structure of these kinds of names and the structure of processes in the
π-calculus, there is no connection between the processes quoted in the names
used by the theory and the processes generated by the theory, and we exploit
this fact.
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5.1 π-calculus

More formally,

π-calculus P, Q ::= 0

| x[y]

| x(y) . P

| (ν x)P

| P | Q

| !P

x, y ::= x, y ∈ �Proc�

Note well: names are quoted ρ-calculus processes.

5.2 Structural congruence

Definition 5.1 The structural congruence, ≡, between processes is the least
congruence closed with respect to alpha-renaming, satisfying the abelian monoid
laws for parallel (associativity, commutativity and 0 as identity), and the fol-
lowing axioms:

(i) the scope laws:

(ν x)0≡ 0,

(ν x)(ν x)P ≡ (ν x)P,

(ν x)(ν y)P ≡ (ν y)(ν x)P,

P | (ν x)Q≡ (ν x)P | Q, if x 	∈ FN (P )

(ii) the recursion law:

!P ≡ P | !P

(iii) the name equivalence law:

P ≡ P{x/y}, if x ≡N y

5.3 Operational semantics

The operational semantics is standard.

x[z] | x(y) . P → P{z/y}
(Comm)
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In addition, we have the following context rules:

P → P ′

P | Q → P ′ | Q
(Par)

P → P ′

(ν x)P → (ν x)P ′

(New)

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q
(Equiv)

Again, we write ⇒ for →∗, and rely on context to distinguish when →
means reduction in the π-calculus and when it means reduction in the ρ-
calculus. The set of π-calculus processes will be denoted by Procπ.

5.4 The translation

The translation will be given by a function, [[−]](−,−) : Procπ × �Proc� ×
�Proc� → Proc. The guiding intuition is that we construct alongside the pro-
cess a distributed memory allocator, the process’ access to which is mediated
through the second argument to the function. The first argument determines
the shape of the memory for the given allocator.

Given a process, P , we pick n and p such that n 	= p and distinct from the
free names of P . For example, n = �Πm∈FN (P )m[�0�]� and p = �Πm∈FN (P )

m(�0�) . 0�. Then

[[P ]] = [[P ]]2nd(n, p)

where

[[0]]2nd(n, p) = 0

[[x[y]]]2nd(n, p) =x[y]

[[x(y) . P ]]2nd(n, p) =x(y) . [[P ]]2nd(n, p)

[[P | Q]]2nd(n, p) = [[P ]]2nd(n
l, pl) | [[Q]]2nd(n

r, pr)

[[!P ]]2nd(n, p) =n ⊗ p〈|[[P ]]3rd(n
r, pr, n ⊗ p)|〉 | D(n ⊗ p) | nr

[nl
] | pr

[pl
]

[[(ν x)P ]]2nd(n, p) = p(x) . [[P ]]2nd(n
l, pl) | p[n]

and
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xl ��x[x]�

xr ��x(x) . 0�

x ⊗ y ��x[y] | y[x]�

[[P ]]3rd(n
′′, p′′, x)�n′′

(n) . p′′(p) . ([[P ]]2nd(n, p) | (D(x) | n′′〈|n[n]|〉 | p′′〈|p[p]|〉))

Remark 5.2 It is also noteworthy that the translation is dependent on how
the parallel compositions in a process are associated. Different associations
will result in different bindings for ν-ed names. This will not result in dif-
ferent behavior, however, as the bindings will be consistent throughout the
translation of the process.

Theorem 5.3 (Correctness) P
�

≈π Q ⇐⇒ [[P ]]
�

≈
r(FN(P )) [[Q]].

Proof. [Sketch] An easy structural induction. �

One key point in the proof is that there are contexts in the ρ-calculus
that will distinguish the translations. But, these are contexts that can see the
fresh names, n, and the communication channel, p, for the ‘memory allocator’.
These contexts do not correspond to any observation that can be made in the
π-calculus and so we exclude them in the ρ-calculus side of our translation by
our choice of N for the bisimulation. This is one of the technical motivations
behind our introduction of a less standard bisimulation.

Example 5.4 In a similar vein consider, for an appropriately chosen p and n
we have

[[(ν v)(ν v)u[v]]] = p(v) . ((�p[p]�(v) . u[v]) | (�p[p]�[�n[n]�])) | p[n]

and

[[(ν v)u[v]]] = p(v) . u[v] | p[n]

Both programs will ultimately result in an output of a single fresh name
on the channel u. But, the former program will consume more resources. Two
names will be allocated; two memory requests will be fulfilled. The ρ-calculus
can see this, while the π-calculus cannot. In particular, the π-calculus requires
that (ν x)(ν x)P ≡ (ν x)P .

Implementations of the π-calculus, however, having the property that
(ν x)P involves the allocation of memory for the structure representing the
channel x come to grips with the implications this requirement has regarding
memory management. If memory is allocated upon encountering the ν-scope,
there are situations where the left-hand side of the equation above will fail
while the right-hand will succeed. Remaining faithful to the equation above
requires that such implementations are lazy in their interpretation of (ν x)P ,
only allocating the memory for the fresh channel at the first moment when
that channel is used.
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Having a detailed account of the structure of names elucidates this issue at
the theoretical level and may make way to offer guidance to implementations.

5.5 Higher-order π-calculus

As noted above, the lift and drop operators of the ρ-calculus effectively give
it features of a higher-order calculus [14], [15]. The translation of the higher-
order π-calculus is quite similar to the translation for π-calculus. Of course,
the higher-order π-calculus has application and one may wonder how this is
accomplished. This is where the susceptibility of lift to substitutions comes
in handy. For example, to translate the parallel composition of a process that
sends an abstraction, (v)P , to a process that receives it and applies it to the
values, v we calculate

[[x[(v)P] | (x(Y ) . Y 〈v〉)]](z) = (z(v) . x〈|[[P ]](z′)|〉) | (x(y).�y�|z[[[v]](z′′)])

where the translation is parameterized in a channel, z, for sending values, and
z′ and z′′ are constructed from z in some manner analogous to what is done
with n and p above.

More generally, one may seek to understand the trade-offs between a pre-
sentation of higher-order capability in the higher-order π-calculus and the
ρ-calculus. A detailed study is a subject worthy of an entire paper, but at a
high level of description one may note that the same argument levied with the
ordinary π-calculus applies here: the higher-order π-calculus does not offer a
theory of names, but rather depends upon one being provided. An investigator
interested in the higher-order π-calculus as an executable language must still
address computation on names, such as calculating name equality in substitu-
tion or synchronization, outside of the framework of the theory. Additionally,
the higher-order π-calculus has a larger inventory of moving parts: process
variables, for sending and receiving processes, as well as names. On both
counts the ρ-calculus is more minimalist, needing neither a theory of names,
nor the machinery of process variables. On the other hand, minimalism does
not always align with ease of use. Experience shows that when writing specifi-
cations in the ρ-calculus of any reasonable size one quickly adopts conventions
that make the calculus resemble a more traditional higher-order calculus.

6 Conclusions and future work

We studied an asynchronous message-passing calculus built out of a notion of
quote. We showed that the calculus provides a workable, effective theory of
computation capable of encoding the π-calculus with a compositional account
of the ν-operator, as well as the higher-order π-calculus. These encodings
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bring to light interesting computational phenomena that implementations of
the π-calculus have had to face. Additionally, the development of the cal-
culus highlights several intriguiging aspects of the relationships between the
structure of processes and the structure of names.

We note that this work is situated in the larger context of a growing inves-
tigation into naming and computation. Milner’s studies of action calculi led
not only to reflexive action calculi [11], but to Power’s and Hermida’s work on
name-free accounts of action calculi [6] as well as Pavlovic’s [12]. Somewhat
farther afield, but still related, is Gabbay’s theory of freshness [5]. Very close
to the mark, Carbone and Maffeis observe a tower of expressiveness resulting
from adding very simple structure to names [9]. In some sense, this may be
viewed as approaching the phenomena of structured names ‘from below’. By
making names be processes, this work may be seen as approaching the same
phenomena ‘from above’. But, both investigations are really the beginnings
of a much longer and deeper investigation of the relationship between process
structure and name structure.

Beyond foundational questions concerning the theory of interaction, such
an investigation may be highly warranted in light of the recent connection
between concurrency theory and biology. In particular, despite the interesting
results achieved by researchers in this field, there is a fundamental difference
between the kind of synchronization observed in the π-calculus and the kind of
synchronization observed between molecules at the bio-molecular level. The
difference is that interactions in the latter case occur at sites with extension
and behavior of their own [4]. An account of these kinds of phenomena may
be revealed in a detailed study of the relationship between the structure of
names and the structure of processes.
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