12 research outputs found

    Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces

    Get PDF
    The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems

    Microfluidic platform for the multiplexed electrochemical detection of cancer microRNAs

    No full text
    Le diagnostic prĂ©coce de maladies, telles que les cancers, reprĂ©sente un enjeu sociĂ©tal majeur. Pour rĂ©pondre Ă  ce besoin, de nouveaux outils de diagnostic fiables, rapides et miniaturisĂ©s doivent ĂȘtre mis au point. Dans ce contexte, les microARNs ont Ă©tĂ© identifiĂ©s comme biomarqueurs clĂ©s pour le diagnostic prĂ©coce de cancers. Plus prĂ©cisĂ©ment, la dĂ©tection de combinaisons prĂ©cises de sĂ©quences de microARNs assure une fiabilitĂ© maximale du diagnostic. Dans l’équipe du Dr. Jean Gamby au Centre de Nanosciences et de Nanotechnologies (C2N), une technique innovante pour la dĂ©tection rapide et sensible de microARNs a Ă©tĂ© dĂ©veloppĂ©e. Le but de mon doctorat Ă©tait de dĂ©velopper un dispositif microfluidique pour la dĂ©tection Ă©lectrochimique multiplexĂ©e de plusieurs sĂ©quences de microARNs. Ce dispositif composĂ© de deux principaux modules, permet la dĂ©tection de sĂ©quences spĂ©cifiques de microARNs, d’une vingtaine de paires de bases, en 30 minutes avec une limite de dĂ©tection de 10⁻ÂčÂČ M, sans amplification prĂ©alable. Ce niveau de sensibilitĂ© et de spĂ©cificitĂ© est rendu possible grĂące Ă  l’intĂ©gration d’un capteur Ă©lectrochimique Ă  deux Ă©lectrodes dans un dispositif microfluidique, et Ă  l’utilisation d’un intercalant rĂ©dox, le bleu de mĂ©thylĂšne, dans la solution Ă©lectrolyte pour un transfert d’électrons longue distance. La gĂ©omĂ©trie de la puce microfluidique est conçue pour permettre la dĂ©tection simultanĂ©e d’une combinaison de microARNs, composĂ©e de huit sĂ©quences diffĂ©rentes. En amont, un module microfluidique est adaptĂ© pour la dĂ©naturation de doubles brins d’acides nuclĂ©iques, prĂ©alablement greffĂ©s sur des nanoparticules, par hyperthermie magnĂ©tique. Ce module permet la prĂ©-concentration de sĂ©quences cibles de microARNs avant le module de dĂ©tection.Early diagnosis of diseases, such as cancers, is a major societal issue. To meet this rising need, new reliable, fast and miniaturized diagnosis tools have to be developed. In this context, microRNAs have been identified as key biomarkers to diagnose cancers at an early stage. Specifically, the detection of a specific combination of microRNA sequences ensure a reliable diagnosis. Dr. Jean Gamby and his team, at the Center for Nanoscience and Nanotechnology (C2N) developed an innovative technique for a fast and sensitive detection of microRNAs. The goal of my phD thesis was to develop a microfluidic device for the multiplexed electrochemical detection of multiple sequences of microRNAs. This device, composed of two main modules, enables a specific detection of microRNAs, around twenty bases, in 30 minutes with a limit of detection of 10⁻ÂčÂČ M, without any preliminary amplification. This level of sensitivity and specificity is achieved by the integration of an electrochemical sensor, with a two-electrode configuration, in a microfluidic device, and by using a DNA-binding redox probe, methylene blue, for long-range electron transfer. The microfluidic chip geometry is designed to enable the simultaneous detection of a microRNA combination, composed of eight different sequences. Upstream, a microfluidic module is adapted for the denaturation of double-stranded nucleic acids, previously grafted on nanoparticles, by magnetic hyperthermia. This module enables the preconcentration of targeted microRNAs sequences before the detection module

    Plateforme microfluidique pour la détection électrochimique multiplexée de microARNs du cancer

    No full text
    Early diagnosis of diseases, such as cancers, is a major societal issue. To meet this rising need, new reliable, fast and miniaturized diagnosis tools have to be developed. In this context, microRNAs have been identified as key biomarkers to diagnose cancers at an early stage. Specifically, the detection of a specific combination of microRNA sequences ensure a reliable diagnosis. Dr. Jean Gamby and his team, at the Center for Nanoscience and Nanotechnology (C2N) developed an innovative technique for a fast and sensitive detection of microRNAs. The goal of my phD thesis was to develop a microfluidic device for the multiplexed electrochemical detection of multiple sequences of microRNAs. This device, composed of two main modules, enables a specific detection of microRNAs, around twenty bases, in 30 minutes with a limit of detection of 10⁻ÂčÂČ M, without any preliminary amplification. This level of sensitivity and specificity is achieved by the integration of an electrochemical sensor, with a two-electrode configuration, in a microfluidic device, and by using a DNA-binding redox probe, methylene blue, for long-range electron transfer. The microfluidic chip geometry is designed to enable the simultaneous detection of a microRNA combination, composed of eight different sequences. Upstream, a microfluidic module is adapted for the denaturation of double-stranded nucleic acids, previously grafted on nanoparticles, by magnetic hyperthermia. This module enables the preconcentration of targeted microRNAs sequences before the detection module.Le diagnostic prĂ©coce de maladies, telles que les cancers, reprĂ©sente un enjeu sociĂ©tal majeur. Pour rĂ©pondre Ă  ce besoin, de nouveaux outils de diagnostic fiables, rapides et miniaturisĂ©s doivent ĂȘtre mis au point. Dans ce contexte, les microARNs ont Ă©tĂ© identifiĂ©s comme biomarqueurs clĂ©s pour le diagnostic prĂ©coce de cancers. Plus prĂ©cisĂ©ment, la dĂ©tection de combinaisons prĂ©cises de sĂ©quences de microARNs assure une fiabilitĂ© maximale du diagnostic. Dans l’équipe du Dr. Jean Gamby au Centre de Nanosciences et de Nanotechnologies (C2N), une technique innovante pour la dĂ©tection rapide et sensible de microARNs a Ă©tĂ© dĂ©veloppĂ©e. Le but de mon doctorat Ă©tait de dĂ©velopper un dispositif microfluidique pour la dĂ©tection Ă©lectrochimique multiplexĂ©e de plusieurs sĂ©quences de microARNs. Ce dispositif composĂ© de deux principaux modules, permet la dĂ©tection de sĂ©quences spĂ©cifiques de microARNs, d’une vingtaine de paires de bases, en 30 minutes avec une limite de dĂ©tection de 10⁻ÂčÂČ M, sans amplification prĂ©alable. Ce niveau de sensibilitĂ© et de spĂ©cificitĂ© est rendu possible grĂące Ă  l’intĂ©gration d’un capteur Ă©lectrochimique Ă  deux Ă©lectrodes dans un dispositif microfluidique, et Ă  l’utilisation d’un intercalant rĂ©dox, le bleu de mĂ©thylĂšne, dans la solution Ă©lectrolyte pour un transfert d’électrons longue distance. La gĂ©omĂ©trie de la puce microfluidique est conçue pour permettre la dĂ©tection simultanĂ©e d’une combinaison de microARNs, composĂ©e de huit sĂ©quences diffĂ©rentes. En amont, un module microfluidique est adaptĂ© pour la dĂ©naturation de doubles brins d’acides nuclĂ©iques, prĂ©alablement greffĂ©s sur des nanoparticules, par hyperthermie magnĂ©tique. Ce module permet la prĂ©-concentration de sĂ©quences cibles de microARNs avant le module de dĂ©tection

    Mobilités professionnelles aprÚs le chÎmage

    No full text
    XXVIIIe JournĂ©es de l'Association d'Economie Sociale UniversitĂ© de Reims Champagne-Ardenne, les 4 et 5 septembre 2008La sortie du chĂŽmage entraĂźne une forte mobilitĂ© professionnelle, seulement un quart des demandeurs d'emploi retrouvent le mĂȘme mĂ©tier. Ascendantes ou descendantes, ces mobilitĂ©s sont empruntes de fortes contraintes que nous tentons ici d'expliciter

    An Integrated Multiple Electrochemical miRNA Sensing System Embedded into a Microfluidic Chip

    No full text
    In this article, we present the design, fabrication and characterization of a microfluidic device and a dedicated electronic system to perform 8 multiplexed electrochemical measurements of synthetic miRNA strands, as well as the biochemical protocols developed for the functionalization of the electrodes and the quantification experiments. The outcomes of this work highlight that the parallelization of eight microchannels containing 2-electrode cells driven by the dedicated electronics offers a solution as robust as a conventional 3-electrode cell and commercially available potentiostats. In addition, this solution presents the advantage of simultaneously reduce the microfabrication complexity, as well as offering an integrated; multiplexed and portable system for the quantification of miRNA. The results presented demonstrate that the system shows a linear response on concentrations down to 10−18 mol/L of perfect matched reporter and capture sequences of synthetic miRNA

    Optimized reactor for Pb(Zr,Ti)O

    No full text
    Synthesis of PZT solutions for thin films applications are realised either by sol-gel methods using reactive precursors or by MOD (metallorganic deposition) methods using heavy and/or hydrophobic precursors (applications: piezo or pyroelectric devices, integrated capacitors). Understanding these processes is difficult because of the complex chemistry of alkoxides. A specific MOD solution to produce PZT films is taken as an example to study the most important parameters influencing the behaviour of the final solution during deposition (spin coating) and subsequent thermal treatments. In this context a pilot reactor was developed in order to control and to measure this main parameters with the objective of a process optimization

    Hyperthermie magnétique et détection électrochimique pour le relargage et la détection de microARN sans amplification de type PCR

    No full text
    International audienceLa rĂ©action en chaine par polymĂ©rase (PCR), mĂ©thode de rĂ©fĂ©rence pour la mesure d'acides nuclĂ©iques ADN en biologie clinique, est basĂ©e sur une amplification chimique du nombre des copies d'une ou plusieurs sĂ©quences ADN pour pouvoir les amener Ă  un seuil dĂ©tectable. Bien que robuste, la mĂ©thodologie PCR prĂ©sente l'inconvĂ©nient majeur d'ĂȘtre inadaptĂ©e pour la biologie d'urgence car le rendu d'un rĂ©sultat (prĂ©paration, extraction, amplification et quantification) peut atteindre entre 4 et 6 heures. L'autre inconvĂ©nient, dans le cas des sĂ©quences ARN, est une Ă©tape supplĂ©mentaire de transcription inverse (RT) (ARN en ADN), Ă©tape dĂ©licate rallongeant encore le temps du protocole. Enfin, la technologie PCR est trĂšs consommatrice en Ă©nergie Ă  cause des systĂšmes de rĂ©gulation nĂ©cessaires pour les cycles de tempĂ©ratures jusqu'Ă  95 °C. Cet article prĂ©sente la preuve de concept d'un nouveau procĂ©dĂ© couplant l'hyperthermie magnĂ©tique et la dĂ©tection Ă©lectrochimique (HDE) en microfluidique pour le relargage et la dĂ©tection directe en moins de 3 h, Ă  un seuil de dĂ©tection de 10-18 M, d'un microARN synthĂ©tique et spĂ©cifique des lĂ©sions du foie (miR 122). L'objectif est d'aboutir Ă  une sorte de biopsie microfluidique liquide rapide (1 h 30) pour le diagnostic d'urgence. Mots-clĂ©s Microfluidique, Ă©lectrochimie, hyperthermie, nanoparticules magnĂ©tiques, acides nuclĂ©iques, PCR
    corecore