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We consider the spontaneous emission of a two-level quantum emitter, such as an atom or a quantum dot, in
a modulated time-dependent environment with a photonic band gap. An example of such an environment is a
dynamical photonic crystal or any other environment with a band gap whose properties are modulated in time,
in the effective mass approximation. After introducing our model of a dynamical photonic crystal, we show
that it allows new possibilities to control and tailor the physical features of the emitted radiation, specifically its
frequency spectrum. In the weak-coupling limit and in an adiabatic case, we obtain the emitted spectrum and we
show the appearance of two lateral peaks due to the presence of the modulated environment, separated from the
central peak by the modulation frequency. We show that the two side peaks are not symmetric in height, and that
their height ratio can be exploited to investigate the density of states of the environment. Our results show that
a dynamical environment can give further possibilities to modify the spontaneous emission features, such as its
spectrum and emission rate, with respect to a static one. Observability of the phenomena we obtain is discussed,
as well as relevance for tailoring and engineering radiative processes.

DOI: 10.1103/PhysRevA.96.023802

I. INTRODUCTION

The possibility of controlling and tailoring radiative pro-
cesses of atoms and quantum emitters [1], in particular the
spontaneous emission process, through the properties of the
environment has been investigated since the pioneering works
of Purcell [2], Kleppner [3], Yablonovitch [4], John and
Quang [5], and, more recently, many others (for a review,
see [1,6,7]). This possibility has also received remarkable
experimental verifications [8,9]. Photonic-band-gap environ-
ments, for example, photonic crystals [1,10,11], nanophotonic
waveguides [12,13], coupled cavity arrays [14], and coupled
transmission line resonators [15], have shown excellent po-
tentialities to control and tailor radiative properties of atoms,
molecules, and quantum dots. Photonic crystals are structured
materials made by a periodic arrangement of dielectrics with
different refractive index [16]. Coupled cavity arrays are
arrays of cavities where photon hopping can occur between
neighboring cavities [14]. Important examples are inhibition
and enhancement of the spontaneous emission rate (see, for
example, [8,17]). This is due to the change of the dispersion
relation of the photons and of the photonic density of states due
to the environment, that can also yield a photonic band gap,
where the density of states is very small, as well as frequency
ranges with peaks of the density of states. Recently, it has also
been shown that photonic crystals are very good candidates to
enhance and control radiation-mediated forces between atoms
or molecules such as the resonance interaction [18,19] and the
dipole-dipole interaction [20,21].

Dynamical (modulated) environments, whose optical prop-
erties are periodically modulated in time, have been recently
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obtained. Oscillating boundaries have been usually considered
in the framework of the dynamical Casimir [22] and Casimir-
Polder [23–25] effects, as well as modifications of these
interactions in the case of a fixed boundary [26], or boundaries
with quantum fluctuations of their position [27,28]. The
modification of the spontaneous emission process of an atom
near an oscillating plate has been also recently investigated
using a simple model to quantize the electromagnetic field in
the presence of the moving boundary [29]. The modulation
setup we consider in this paper is completely different from
that in [29] (oscillating conducting plane boundary), due to
the presence of a photonic band gap and a quadratic dispersion
relation near the gap edge. The presence of a modulated band
gap, whose edge oscillates in time, is an important feature
of our system yielding additional features to the emission
spectrum. A general dynamical control of the decay of a state
coupled with a continuum has been considered in Ref. [30].
Important examples of dynamical environments are modulated
photonic crystals [31] and optomechanical crystals [32] whose
optical properties are periodically modulated in time.

New effects arise in the modulated case; for example,
amplification of light [33]. Ultrafast control of spontaneous
emission in a cavity, on time scales faster than the spontaneous
lifetime, has been also achieved [34], as well as the control of
spontaneous emission of a quantum dot by tuning a photonic
crystal cavity [35]. A modulation frequency of photonic crystal
nanocavities in the range of gigahertz has been obtained using
acoustic phonons [36].

In this paper, we show that new possibilities for controlling
and tailoring spontaneous emission exist when the structured
environment becomes dynamics, i.e., when its properties are
modulated in time through a periodic external action. A
relevant case we consider in detail is that of a dynamical
photonic crystal. After introducing a model for a dynamical
photonic crystal, we show that a dynamical band gap exists,
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and consider the effect on the spontaneous emission of a two-
level quantum emitter. More specifically, we show that not only
a modification of the emission rate is obtained, but that also
the emission spectrum can be modified and controlled through
the modulated environment. We show that two side peaks
appear in the emission spectrum of the atom, whose distance
from the central peak is related to the modulation frequency
of the environment. We discuss how this feature, specific of
our model of modulated photonic crystal, could be exploited
to obtain the density of states of the environment from the
emission spectrum of a quantum emitter of fixed frequency
by sweeping the environment’s modulation frequency. The
two peaks are not symmetric in height, due to the peculiar
photon density of states of the photonic crystal, which is
different at the frequencies of the two peaks. This clearly
shows how a dynamical environment, even in the adiabatic
regime we consider, can allow one to obtain a qualitative
change of the emission spectrum and gives new possibilities
to tailor the features of the spontaneous emission process
of the quantum emitter. We point out that the dynamical
environment we consider has physical features very different
from the oscillating reflecting plate considered in [29], being
characterized by a completely different dynamical dispersion
relation yielding a dynamical photonic-band-gap and dynam-
ical quadratic dispersion relation.

This paper is organized as follows. In Sec. II we introduce
our model of a modulated photonic-band-gap environment,
obtaining explicitly the dynamical dispersion relation and gap
frequencies for a modulated photonic crystal in the adiabatic
hypothesis. In Sec. III we investigate the emission spectrum
of a two-level quantum emitter embedded in our modulated
band-gap environment, and discuss its main physical features.
Section IV is dedicated to our conclusive remarks.

II. THE MODEL OF TIME-MODULATED
BAND-GAP ENVIRONMENT

A photonic-band-gap environment possesses a forbidden
gap in the photon frequencies, where photons cannot propagate
because the density of states vanishes. In the region external
to the gap, and in the proximity of its edge, the dispersion
relation in the effective mass approximation has the following
quadratic form [1,37,38]:

ωk = ωg ± A(k − k0)2, (1)

where ωg = ωl ,ωu is the frequency at the band edge (ωl being
the lower edge of the gap and ωu its upper edge), k0 the wave
number at which the gap occurs, A is a positive constant, whose
value depends on the specific environment considered, and
the sign plus or minus refers to frequencies above the upper
edge or below the lower edge, respectively.

In the dynamical case, one can assume that both the
gap frequency and the curvature of the parabolic dispersion
relation (1) are modulated in time with a frequency ωc:

ωg(t) = ωg + ξ̄ sin(ωct), (2)

ωk(t) = ωg(t) + A(k − k0)2[1 + ξ ′ sin(ωct)], (3)

where k0, ωg , ξ̄ , ξ ′, and A are constants characterizing the
modulated environment. This is the generic kind of dynamical

environment we will assume in this paper. We will now
develop a model of a one-dimensional modulated photonic
crystal and an isotropic three-dimensional one, yielding a
band-edge frequency and dispersion relation in the form given
by Eqs. (2) and (3) with ξ ′ = 0; thus, in this specific case
the only effect of the modulation is a periodic change of the
gap-edge frequency (at the end of this section we will mention
other modulated environments where also the curvature of
the dispersion relation changes in time). From the dispersion
relation (3), in the isotropic three-dimensional case we can
obtain the following dynamical density of states valid above
the gap in the effective mass approximation

ρ(ωk(t),t) = V

(2π )3

k2
0�[ωk(t) − ωg(t)]

2
√

A
√

ωk(t) − ωg(t)

(
1 − ξ ′

2
sin(ωct)

)
,

(4)

where �(x) is the Heaviside function. Equations (2)–(4)
characterize our dynamical environment. We wish to stress,
however, that our results are not limited to such a case,
being valid for any periodically modulated photonic-band-
gap environment with a quadratic dispersion relation and a
periodically driven edge frequency (a coupled cavities array
with a time-dependent hopping constant, for example).

Our model of a modulated photonic crystal consists of a
periodic sequence of dielectric slabs whose refractive index
or lattice constant depend periodically on time, within the
effective mass approximation. It is an extension of the static
model introduced in Refs. [37,38] and it is illustrated in
Fig. 1. It consists of dielectric slabs of thickness 2a made of
a nondispersive and nondissipative dielectric with refractive
index n, separated by a distance b of vacuum space; L =
2a + b is the periodicity of the crystal in one direction, while
it is homogeneous in the two other directions. In the static

gap

(a)

(b)

FIG. 1. (a) Typical dispersion relation in a photonic-band-gap
system for frequencies close to the band edge. The dispersion relation
for k > k0 has been translated to the first Brillouin zone. In our setup
the modulation of the environment induces oscillations of the lower
and upper edge frequencies. (b) Sketch of a time-modulated band-gap
system such as a photonic crystal, where the refractive index or the
lattice constants depend on time.
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case, the implicit dispersion relation is [6]

cos(kL) = cos

(
ωkb

c

)
cos

(
2ωkna

c

)

− n2 + 1

2n
sin

(
ωkb

c

)
sin

(
2ωkna

c

)
. (5)

This relation can be inverted by assuming b = 2na, obtain-
ing [6]

ωk = c

4na
arccos

[
4n cos [2ka(1 + n)] + (1 − n)2

(1 + n)2

]
. (6)

This relation gives frequency gaps at k = mπ/L, with m

integer, and Fig. 1(a) shows the dispersion relation and the
first gap at k0 = π/L. In the proximity of the band edges,
the effective mass approximation can be used, yielding the
dispersion relation (1), where the frequency gap edges ωg =
ω�,ωu and the constant A can be expressed in terms of the
physical parameters of the crystal [6,7,37,38], even if it can
overestimate the density of states in the proximity of the
band edges [7]. In the isotropic three-dimensional model, this
dispersion relation is assumed valid regardless of the direction
of propagation of the photon [37]. This isotropic model has
been frequently used in the literature and proved to be a good
model of a real photonic crystal for studying many radiative
processes in a structured environment [5,20,39], even if it can
overestimate the density of states in the proximity of the band
edges [7].

In our dynamical (modulated) extension, we assume that
some generic system parameter r , for example the refractive
index of the dielectric slabs or the lattice constant (see Fig. 1),
depends periodically on time according to the following
law, r(t) = r0[1 + ξ sin(ωct)], where ωc is the oscillation
frequency of the parameter, r0 its average value, and ξ � 1
the oscillation amplitude, assumed small. Such modulation
can be experimentally obtained, for example, by exploiting
acoustic phonons in the medium, as in Ref. [36], or by inducing
mechanical vibrations in the structure [32].

We first assume that the modulation of the crystal is
obtained by a periodic modulation of the refractive index of
the dielectric slabs, and we derive the dynamical dispersion
relation, the frequency gaps, and the density of states. Similar
results are also obtained in the case of a periodic modulation
of the lattice constants (a and b), as we will discuss later on.
The time-dependent refractive index is

n(t) = n0[1 + ξ (t)] = n0[1 + ξ sin(ωct)] (7)

with ξ (t) = ξ sin(ωct), and where n0 is its average value and
ωc is the modulation frequency.

The Maxwell wave equation for the electric field is

∇2E = 1

c2

∂2

∂t2
[ε(x,t)E], (8)

where ε(x,t) is the time-dependent dielectric constant of the
slabs of the photonic crystal, which depends on x according
to the periodicity of the photonic crystal and on time due
to the periodic modulation of the refractive index n(t).
Terms containing time derivatives of ε(x,t) appear in (8),
eventually leading to the dynamical Casimir effect [22] or
amplification of light [33]. It is not easy to find solutions

of (8) with the boundary conditions given by the photonic
crystal [40]; however, assuming a slowly varying modulation
of the dielectric constant, we can neglect the time derivatives
of ε(x,t) in (8). This adiabatic approximation consists in
assuming that ωc is much smaller than any other characteristic
frequency involved in the problem, in particular the atomic
transition frequency and field frequencies relevant for the
process considered. Real photons emission by the dynamical
Casimir effect is thus neglected.

Under the hypothesis of the adiabatic modulation men-
tioned above, the implicit dispersion relation is the same as that
of the static one given in (5) with the substitution of n with
the time-dependent refractive index n(t). Thus our implicit
dispersion relation becomes

cos(kL) = cos

(
ωkb

c

)
cos

(
2ωkan0[1 + ξ (t)]

c

)

− n2
0[1 + ξ (t)]2 + 1

2n0(1 + ξ (t))
sin

(
ωkb

c

)

× sin

(
2ωkan0[1 + ξ (t)]

c

)
. (9)

The usual assumption 2na = b, used to invert Eq. (5) in
order to obtain an explicit dispersion relation as in (6), cannot
be used in our modulated case because n(t) depends on time,
while a and b are fixed. We thus expand (9) at first order
in ξ , assuming a small perturbation of the photonic crystal
[ξ (t),ξ � 1] and 2n0a = b. After straightforward algebraic
calculations, we obtain

cos(kL) � cos2 x − n2
0 + 1

2n0
sin2 x −

[(
1 + n2

0 + 1

2n0

)

×x sin x cos x + n2
0 − 1

2n0
sin2 x

]
ξ (t), (10)

where x = 2ωk(t)n0a/c is a dimensionless quantity that in
general depends on t through ωk(t). When (10) is inverted
to obtain the explicit dispersion relation, it shows frequency
gaps due to the multivalue character of the arccos(y) func-
tion, analogously to the well-known static case. We can
now expand (10) at first order in ξ (t) around the value
of x(t) corresponding to the static case xg = 2ωgn0a/c,
ωg = (c/4an0) arccos[(1 + n2

0 − 6n0)/(1 + n2
0 + 2n0)] being

the lower edge frequency obtained in the static case. For the
first gap at k0 = π/L, we obtain the following expression of
the frequency of the edge of the dynamical gap

ωg(t) = ωg + c

2n0a

α

β
ξ sin(ωct), (11)

where

α = − (n0 + 1)2

2n0
xg sin(2xg) − n2

0 − 1

2n0
sin2 xg,

β = (n0 + 1)2

2n0
sin(2xg). (12)

Equation (11) is in the form (2) with ξ̄ = cα/(2n0aβ). Also,
expanding the left-hand side of (10) around k0 = π/L, we can
obtain the dynamical dispersion relation in the proximity of
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the band edge (effective mass approximation),

ωk(t) = ωg(t) + A(k − k0)2, (13)

where ωg(t) is given by (11) and the coefficient A by

A = cL2

4n0aβ
= cL2

2a

1

(n0 + 1)2 sin
(

4n0aωg

c

) . (14)

The results (11) and (13) yield a dynamic gap frequency and
dispersion relation in the form (2) and (3), respectively, with
ξ ′ = 0. This shows that, at the order considered in ξ , the effect
of the modulation of the photonic crystal is a periodic change
of the gap frequencies. Similarly to the usual static case, the
isotropic model we will use in the following extends this
dispersion relation to the three-dimensional case, assuming
it valid independently of the propagation direction of the
photon. In the next section we will investigate the effect of
the modulation of the photonic crystal on the spontaneous
emission of a quantum emitter such as an initially excited
atom or quantum dots, in particular on the emission spectrum.

Similar results can be obtained if the modulation involves
one or more lattice constants. For example, let us assume a
time modulation of the lattice constant L(t) = b(t) + 2a(t) =
L0[1 + η sin(ωct)] (see Fig. 1), keeping constant the refractive
index n. Under the hypothesis of an adiabatic modulation, the
implicit dispersion relation reads

cos[kL(t)] = cos
ωkb(t)

c
cos

(
2ωna(t)

c

)
− n2 + 1

2n

× sin

(
ωkb(t)

c

)
sin

(
2ωkna(t)

c

)
.

(15)

Contrarily to the previous case of a time-dependent refrac-
tive index, in this case it is possible to take the assumption
2na(t) = b(t) by an appropriate choice of a simultaneous
modulation of the constants a and b, allowing one to simplify
the dispersion relation as in the static case. Thus, in the
effective mass approximation we immediately get

ωk(t) = ωg(t) + A(t)(k − k0)2, (16)

where, working at the first order in η, ωg(t) = ωg[1 −
η sin(ωct)] and A(t) = A[1 + η̄ sin(ωct)] with η̄ = η[1 −
4ωna

c
cot( 4ωna

c
)]. We thus again recover a dispersion relation of

the form (3). The isotropic dynamical three-dimensional model
we will consider in the next section is the extension of the one-
dimensional model introduced in this section, assuming that
the dispersion relation is valid for any propagation direction
of the photon. The static isotropic model has proven to be a
reliable model of realistic three-dimensional photonic crystals,
in particular for processes involving frequencies not too close
to the edge of the band gap, as those we are considering [7] (at
frequencies very close to the band-gap edge it overestimates
the contribution of these field modes, due to the Van Hove
divergence in the density of states).

To conclude this section, we would like to mention that
a similar dispersion relation can be also obtained if a tight-
binding model of coupled cavities is considered. In this case
the time-dependent parameter is the hopping constant J (t) that
leads to the dispersion relation ωk(t) = ωcav − J (t) cos(ka)

where ωcav is the cavity frequency and a the lattice constant.
If only one of the two edges is considered, it is possible to
perform an effective mass approximation and the dispersion
relation reduces again to the form given in (2) and (3).

III. SPONTANEOUS EMISSION IN THE MODULATED
PHOTONIC-BAND-GAP ENVIRONMENT

We now consider the spontaneous emission of a two-
level atom (or any other quantum emitter) embedded in the
dynamical band-gap environment described in the previous
section, with special reference to the dynamical photonic
crystal; |e〉 and |g〉 are, respectively, its excited- and
ground-state energy levels separated by an energy h̄ω0.
The Hamiltonian, in the minimal coupling scheme and in
the dipole approximation [41], and within our adiabatic
approximation, is

H = Hatom +
∑
kλ

h̄ωk(t)a†
kλakλ − e

m

∑
kλ

(
2πh̄

ωk(t)V

)1/2

× (êkλ · p)
(
akλe

−iωk (t)t + a
†
kλe

iωk (t)t
)
, (17)

where Hatom is the Hamiltonian of the atom located at R = 0,
p the atomic momentum operator, and λ is the polarization
index. The mode frequencies ωk(t) explicitly depend on time
due to the presence of the external modulated environment.
We assume the atomic transition frequency ω0 above the
upper edge of the (average) photonic gap ωg = ωu and enough
far from the edge so that a weak-coupling approach can be
applied [in other words, sufficiently far from the divergence
of the density of states (4) at the band edge]. Thus, the
divergence of the density of states at the band edge, typical
of the one-dimensional or the isotropic three-dimensional
photonic crystal, does not play a significant role in our
case; this is obtained when ω0 − ωg � 2ω0

7/2 |deg |2 /(3h̄c3),
deg = −ie/(mω0)peg being the matrix element of the atomic
dipole moment operator d between the excited and ground
states [5].

An analogous Hamiltonian holds in a one-dimensional case,
for example when the quantum emitter is placed in a photonic
waveguide [42], and relevant field modes have a frequency
above the cutoff frequency of the guide. Recent experiments
have shown striking possibilities of engineering radiative
processes of atoms or quantum dots exploiting a photonic
crystal waveguide; for example, superradiant emission [43]
and atom-atom interactions [44]. In the one-dimensional case
the wave vector k is along the axis of the guide.

We now consider our modulated (dynamical) case, specif-
ically that described by the dispersion relation (13), extended
to the isotropic three-dimensional case. As mentioned, in this
case and at first order, the modulation of the environment
has one main effect, that is, a time dependence of the gap
frequency, while the curvature of the dispersion relation in the
effective mass approximation is constant and equal to the static
case. We will show that this yields striking consequences on
the spontaneous decay of an atom embedded in the modulated
environment, in particular on the spectrum of the radiation
emitted. This indicates a further possibility to control the
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spontaneous emission process through the modulation of the
environment, in comparison to a static one.

In our adiabatic hypothesis (slow oscillation frequency of
the environment with respect to the atomic transition frequency
and relevant field frequencies), the solution of the Heisenberg
equation for the field annihilation operator is

akλ(t) = akλ(0)e−i[ωkt+φ(t)], (18)

where

φ(t) =
∫ t

0
dt ′ξ̄ sin(ωct

′) (19)

is a phase factor arising from the adiabatic time dependence of
the dispersion relation. Assuming the atom in its excited state
|e〉 at t = 0 and using first-order time-dependent perturbation
theory, the transition probability from the excited to the ground
state of the atom, using Eq. (18) and the dynamical dispersion
relation given above, after some algebraic calculations, is
obtained as

P (t) = 2πω0
2

h̄V

∑
kλ

| êkλ · deg |2

×
∣∣∣∣
∫ t

0
dt ′

1√
ωk(t ′)

ei(ωk−ω0)t ′eiφ(t ′)
∣∣∣∣
2

. (20)

When compared to the analogous quantity in the static case,
the main differences in (20) are the time dependence of ωk(t ′)
and the presence of the phase factor φ(t ′) inside the time
integral. Assuming a small amplitude of the modulation of
the environment, we can expand the square root of ωk(t ′) and
the exponential function with the phase factor φ(t ′) at the first
order in ξ̄ . This allows us to perform analytically the time
integral in (20). Taking into account that ωc � ωk,ωg and
keeping only terms up to the first order in ξ̄ , we can perform
the integral in (20), and we get

P (t) = 2πe2

h̄m2V

∑
kλ

| êkλ · peg |2 1

ωk

∣∣∣∣∣2 sin
( (ωk−ω0)t

2

)
ωk − ω0

+ iξ̄

ωc

[
−2 sin

( (ωk−ω0)t
2

)
ωk − ω0

+ eiωct/2 sin
( (ωk−ω0+ωc)t

2

)
ωk − ω0 + ωc

+ e−iωct/2 sin
( (ωk−ω0−ωc)t

2

)
ωk − ω0 − ωc

]∣∣∣∣∣
2

. (21)

In the isotropic three-dimensional case and in the contin-
uum limit V → ∞, after polarization sum, angular integration,
introducing the appropriate density of states given in our case
by (4) with ξ ′ = 0, and using

∑
kλ

→
∫

dωk(t)ρ(ωk(t),t)
∑

λ

∫
d�,

∑
λ

∫
d� | êkλ · peg |2= 8π

3
|peg |2 ,

ρ(ωk(t),t) = V

(2π )3

k2
0�

[
ωk(t) − ωg(t)

]
2
√

A
√

ωk(t) − ωg(t)
, (22)

after some algebra and taking into account that in our case the
time dependence in (4) cancels out, we finally obtain

P (t) =
∫ ∞

ωg

P (ωk,t)dωk, (23)

where P (ωk,t) represents the probability density of emission
at time t of a photon with frequency ωk , given by

P (ωk,t) � k2
0e

2 |peg |2
3h̄m2

√
A

1√
ωk − ωg

1

ωk

∣∣∣∣∣2 sin
( (ωk−ω0)t

2

)
ωk − ω0

+ iξ̄

ωc

[
−2 sin

( (ωk−ω0)t
2

)
ωk − ω0

+ eiωct/2 sin
( (ωk−ω0+ωc)t

2

)
ωk − ω0 + ωc

+ e−iωct/2 sin
( (ωk−ω0−ωc)t

2

)
ωk − ω0 − ωc

]∣∣∣∣∣
2

. (24)

The first term in the squared modulus in Eq. (24) does
not depend on the environment modulation, and its explicit
evaluation yields, after integration over ωk and for large times
(t � ω0

−1), the same decay probability, proportional to t , of
the static case [5]

P stat(t) � 2k2
0e

2 |peg |2 t

3h̄m2
√

Aω0
√

ω0 − ωg

. (25)

The terms proportional to ξ̄ in (24) give the change
to the transition probability due to the modulation of the
environment. The long-time limit of expression (24) gives
the spectrum of the radiation emitted by the atom, S(ωk) =
limt→∞ P (ωk,t). Our results are also valid in the case of
modulation of the lattice length constants, rather than the
refractive index, as well as in the case of a coupled cavities
array, when the dynamical dispersion relation is respectively
given by (16) or (3). In fact, it is possible to show that,
within our assumptions, the effect of the time dependence
of the constant A(t) is negligible, and thus the effect of the
modulation is mainly the periodical change of the gap-edge
frequency, as in the case explicitly considered in this section.
An expression similar to (24) (differing only for constant
factors) can be obtained also for the one-dimensional case,
so all the results and physical considerations that follow hold
in that case too, for example, for an atom or quantum dot in a
photonic crystal waveguide, provided its transition frequency
is above the cutoff frequency of the guide.

Figures 2 and 3 show the emission probability for unit
frequency obtained from (24), respectively, for the static
(ξ̄ = 0) and dynamical cases, obtained from (20) after po-
larization sum and angular integration, at time t̄ = 1200ω−1

0 .
In the dynamical case, we clearly observe, apart from the usual
peak at ω ∼ ω0, the presence of two side peaks in the radiation
emitted at frequencies ω ∼ ω0 ± ωc related to the presence of
the energy denominators containing ω − ω0 ± ωc in (24). It
should be noted that the widths of the central and side peaks
result from having plotted the emission probability at a finite
time, and are not related to the natural width of the spectral
lines due to our perturbative approach. In the limit t → ∞,
the three peaks become more and more sharply peaked at
frequencies ω0 − ωc,ω0,ω0 + ωc.
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FIG. 2. Emission probability for unit frequency (arbitrary units)
of a photon with frequency ω at time t̄ = 1200ω−1

0 in the static case.
We have used ωg/ω0 = 0.5.

The presence of the two peaks in the emission spectrum is
our main result on the features of the spontaneous emission
in the dynamical environment. They are shifted from the
atomic frequency ω0 by the modulation frequency ωc of the
environment. They are asymmetric, due to the different density
of states at their frequency. This effect is a sort of beat between
the two natural frequencies involved in the system, ω0 and ωc,
as one could expect from general considerations based on the
Floquet theory of systems periodic in time. The two peaks,
which are reminiscent of the Stokes and anti-Stokes lines in
quantum optomechanics [45], are not symmetric in height, due
to the different density of states of the photonic crystal at the
frequencies of the two peaks; this asymmetry can be enhanced
by making the atomic frequency closer to the edge of the
band gap. This is a peculiar feature of our dynamical photonic
crystal environment, not present in other cases; for example,
an oscillating reflecting plate. The ratio between the heights
of the two peaks at ωk = ω0 ± ωc can be obtained from (24),

0.8 0.9 1 1.1 1.2 1.30.7

FIG. 3. Emission probability for unit frequency (arbitrary units)
of a photon with frequency ω at time t̄ = 1200ω−1

0 in the dynamical
case. We have used the following parameters: ωc/ω0 = 0.1, ωg/ω0 =
0.5, and ξ̄ = 0.01ω0. The figure shows clearly two side peaks at
frequencies 0.9ω0 and 1.1ω0, that is, ω � ω0 ± ωc. The asymmetry
between the two lateral peaks is due to the different density of states
of the band-gap environment at frequencies ω ∼ ω0 ± ωc.

and is given by

P (ωk = ω0 − ωc)

P (ωk = ω0 + ωc)
� ρ(ω0 − ωc)

ρ(ω0 + ωc)
=

√
ω0 + ωc − ωg

ω0 − ωc − ωg

, (26)

with ωc � ω0,ωg , and where ρ(ω) is the static density of states
(or the average dynamical one)

ρ(ω) = V

(2π )3

k2
0�

(
ω − ωg

)
2
√

A
√

ω − ωg

. (27)

This relation linking the height of the lateral peaks to the
density of states at their frequency shows the possibility
of investigating the density of states of the environment by
sweeping the modulation frequency. In Fig. 3, the left peak is
higher than the right one because it is at a frequency closer
to the edge of the band gap, where the density of states is
higher. This is a peculiar feature occurring for a modulated
environment with a photonic band gap. Thus, from our results
we expect that we can experimentally explore the density of
states of a generic band-gap environment, and from that its
dispersion relation, by measuring the emitted spectrum of a
quantum emitter of fixed frequency inside it, by sweeping the
modulation frequency of the environment under investigation.
This important feature is not present in the case of an atom
in front of an oscillating mirror discussed in [29], and it is
a distinctive point of the modulated environment we have
considered.

In order to observe the two lateral peaks, they must be
separated in frequency from the central peak by more than
the natural width of the excited level. Assuming a typical
natural width of ∼108 Hz, this means that a modulation
frequency ωc of the order of ∼109 Hz is sufficient to
observe this phenomenon. Such a modulation frequency,
being much smaller than a typical optical frequency and
relevant field frequencies, is fully consistent with the adiabatic
approximation we have used. Also, such frequency is in reach
of the actual experimental techniques of dynamical photonic
crystals [36,46] or dynamical mirrors [47]. We also mention
that an explicit integration of (23) over ω allows one to
obtain the total emission probability. We can conclude that our
results clearly show a noteworthy aspect of the environment’s
modulation on the spontaneous emission process, specifically
that a dynamical environment allows one to control, apart from
the decay rate, also the photon spectrum. For example, it could
be exploited to tune processes involving exchange of resonant
photons between atoms or molecules, such as the resonant
energy transfer between molecules or chromophores [48,49],
or the dipole-dipole interaction [20], as well as to activate or
inhibit this kind of process by exploiting a modulation of the
environment with an appropriate frequency.

IV. CONCLUSIONS

In this paper we have considered a quantum two-level
emitter in a generic modulated photonic-band-gap environ-
ment. We have developed a model of such an environment,
specifically a dynamical photonic crystal, where the refractive
index or the lattice constants are periodically modulated; we
have obtained the dynamical frequency gap and dispersion
relation. We have then shown that the periodic modulation of
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the environment yields important effects on the spontaneous
emission process, compared to the common case of a static
environment. Specifically, we have found observable modifi-
cations of the emission spectrum, with two side peaks in the
photon spectrum. They are separated from the atomic transition
frequency by the environment modulation frequency. The two
side peaks are not symmetric, being their height different due
to the different density of states in the photonic crystal at
their frequency. This is an important feature of our model,
not present in the case of the oscillating plane boundary
discussed in Ref. [29]. Also, we show that it could be a
way to experimentally investigate the density of states of the
environment through the features of the spontaneous emission
a quantum emitter embedded in it, when the modulation
frequency of the environment is swept. Assuming typical
experimental values of the parameters involved, we have

also shown that this new effect can be observed with actual
experimental techniques of dynamical photonic crystals or
dynamical mirrors. More generally, our results clearly indicate
the impressive potentialities of modulated environments to
manipulate, tailor, or activate or inhibit resonant radiative
processes.
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