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Abstract 

 

Several studies indicate that the data-driven models have proven to be 

potentially useful tools in hydrological modeling. Nevertheless, it is a common 

perception among researchers and practitioners that the usefulness of the system theoretic 

models is limited to forecast applications, and they cannot be used as a tool for scientific 

investigations. Also, the system-theoretic models are believed to be less reliable as they 

characterize the hydrological processes by learning the input-output patterns embedded in 

the dataset and not based on strong physical understanding of the system. It is imperative 

that the above concerns needs to be addressed before the data-driven models can gain 

wider acceptability by researchers and practitioners. 

 

In this research different methods and tools that can be adopted to promote 

transparency in the data-driven models are probed with the objective of extending the 

usefulness of data-driven models beyond forecast applications as a tools for scientific 

investigations, by providing additional insights into the underlying input-output patterns 

based on which the data-driven models arrive at a decision. In this regard, the utility of 

self-organizing networks (competitive learning and self-organizing maps) in learning the 

patterns in the input space is evaluated by developing a novel neural network model 

called the spiking modular neural networks (SMNNs).  The performance of the SMNNs 

is evaluated based on its ability to characterize streamflows and actual evapotranspiration 

process. Also the utility of self-organizing algorithms, namely genetic programming 

(GP), is evaluated with regards to its ability to promote transparency in data-driven 
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models. The robustness of the GP to evolve its own model structure with relevant 

parameters is illustrated by applying GP to characterize the actual-evapotranspiration 

process.  The results from this research indicate that self-organization in learning, both in 

terms of self-organizing networks and self-organizing algorithms, could be adopted to 

promote transparency in data-driven models. 

 

  In pursuit of improving the reliability of the data-driven models, different 

methods for incorporating uncertainty estimates as part of the data-driven model building 

exercise is evaluated in this research. The local-scale models are shown to be more 

reliable than the global-scale models in characterizing the saturated hydraulic 

conductivity of soils. In addition, in this research, the importance of model structure 

uncertainty in geophysical modeling is emphasized by developing a framework to 

account for the model structure uncertainty in geophysical modeling. The contribution of 

the model structure uncertainty to the predictive uncertainty of the model is shown to be 

larger than the uncertainty associated with the model parameters. Also it has been 

demonstrated that increasing the model complexity may lead to a better fit of the 

function, but at the cost of an increasing level of uncertainty. It is recommended that the 

effect of model structure uncertainty should be considered for developing reliable 

hydrological models.   
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Chapter 1 Introduction 

1.1  Background 

Hydrology may be defined as the science that attempts to answer the question, 

“What happens to rain?” (Penman, 1961). In an attempt to address the above query, a 

plethora of studies have been carried out in the past to characterize the different 

components of the hydrological cycle including, but not limited to, precipitation, 

evaporation, infiltration, ground water flow, and runoff. Experience has shown that 

characterizing the above processes still remains a daunting task, as these processes are 

embedded with high nonlinearity in both spatial and temporal scales. Although it may not 

be possible to fully address the above intricate query, research efforts are being focused 

on explaining the hydrological processes based on extension of observation and theory by 

developing models. A model can be defined “as a simplified representation of the 

essential aspects of an existing system (or a system to be constructed), which presents the 

knowledge of the system in a usable form” (Eykhoff, 1974). 

 

Hydrological models can be classified into different classes based on different 

criteria: (i) based on process description; hydrologic models can be classified as lumped 

or distributed, deterministic or stochastic or mixed, (ii) based on time scale; hydrologic 

models can be classified as event based, continuous time, and large time-scale, and (iii) 

based on solution technique; hydrologic models can be classified as numerical, analog, 

and analytical models (Singh, 1995). 
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In a broader perspective, hydrological models can be classified into a) 

conceptual or mechanistic models, and (b) black-box or data-driven models. The key 

differentiator between these two modeling types is that; mechanistic models give a 

physical insight of the system and can be built when the system is not yet constructed. 

Usually a set of differential equations supplemented with algebraic equations is used to 

give a mathematical description of the model. On the contrary, data-driven models 

attempt to develop relationships among the input and output variables involved in a 

physical process without considering a profound understanding of the underlying 

physical process. Construction of hydrological models can be accomplished by two 

approaches: (i) inductive approach, and (ii) deductive approach. In the case of inductive 

approach, the first step is to deduce a hypothesis based on a set of observations (inputs 

and outputs). The deduced hypothesis is then tested using a different set of observations, 

before being applied to a new set of observations. All data-driven models belong to the 

class of inductive approach. However, in the case of deductive approach, contrary to the 

inductive approach, a hypothesis is made straight away based on our knowledge of the 

system. The output from the system can then be calculated using the inputs and the 

assumed hypothesis. All conceptual models belong to the class of deductive approach. 

 

Conceptual mechanistic models that attempt to capture the characteristics of the 

underlying physical process through the equations of mass, momentum, and energy, are 

the most widely adopted models in hydrological literature. These conceptual models have 

been developed based on certain baseline assumptions, at a particular scale of interest, for 

some measure of meteorological and topographical control over the hydrological 
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processes. Nevertheless, these models are being widely adopted at all spatial and 

temporal scales, and the above mentioned shortcomings are tackled implicitly by the 

complicated and ad-hoc calibration process. This highlights the fact that, for a 

hydrological process under consideration, the ability of a conceptual model in providing 

reasonable estimates depends upon the success of the adopted calibration scheme. 

However, calibration of a conceptual hydrological model is not straight-forward, and is 

prone to several difficulties, requiring sophisticated mathematical tools, a significant 

amount of calibration data, and some degree of expertise and experience with the model 

(Duan et al., 1992). As a result, system-theoretic models are starting to be widely 

acknowledged as suitable alternatives to model the complex hydrological processes due 

to their ability to learn the input-output dynamics in the data without having the complete 

physical understanding of the system. The success of the data-driven models in modeling 

hydrological processes can be attributed to their intrinsic generality, flexibility, and 

global performance in most applications where other models tend to fail or become 

cumbersome (Shamseldin et al., 2002). 

 

1.2  Area of interest 

Linear time series models (e.g. autoregressive moving average (ARMA); 

autoregressive moving average with exogenous inputs (ARMAX)) are the most 

traditionally adopted data-driven models for characterizing hydrological time series, 

because such models are accepted as a standard representation of a stochastic time series 

(Maier and Dandy, 1997). As the linear time series models make use of classical statistics 

to analyze the historical data, they do not attempt to represent the nonlinear dynamics, if 
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any, between the input and the output variables. Nevertheless, most hydrological 

processes exhibit high nonlinearity between the input and the output variables, and hence 

in such cases, the linear time series models may not always perform well (Hsu et al., 

1995). In the past, owing to the difficulties associated with nonlinear model structure 

identification and parameter estimation, the usual practice was to assume linearity or 

piecewise linearity in modeling nonlinear hydrological processes (Hsu et al., 1995). 

 

Over the past few decades, advancement in computer power and technology has 

provided significant impetus to the way data-driven models are built to characterize the 

hydrological processes. The traditional methods of estimating dependencies from 

hydrological data using statistics (multivariate regression and classification), were slowly 

replaced by new techniques, which were not often based on the assumptions of the well-

behaved statistical distributions of random processes. One of the most exciting ideas that 

emerged from the vast pool of computer-based research is the thought of emulating the 

low-level mechanism of the human brain through artificial neural networks (ANNs). The 

idea of ANNs was first seeded by the pioneering work of McCulloch and Pitts (1943). 

However, the major developments behind the resurgence of ANNs occurred when the 

back-propagation algorithm for multilayer perceptrons (multilayer feed forward 

networks) was first proposed by Werbos (1974), and then reinvented several times before 

being popularized by Rumelhart et al. (1986). Similarly, another important technique to 

have emerged in the last decade, and which is being widely acknowledged as an 

important tool in the inventory of machine learning methods is the Genetic Programming 
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(GP). GP is an evolutionary algorithm that is based on the concepts of natural selection 

and genetics, and was first proposed by Koza (1992). 

 

1.3  Problem recognition 

The emergence of the ANNs, on the positive side, has provided many promising 

results in the field of hydrology and water resources engineering (ASCE Task Committee 

on Application of Artificial Neural Networks in Hydrology, 2000a, 2000b; Maier and 

Dandy, 2000), leading to the creation of a new chapter in hydrology that has been termed 

“neurohydrology.” However, on the darker side, until recently, ANNs were not readily 

accepted as a modeling tool by the wider hydrological community and decision makers, 

based on the perception that the ANNs are pure black-box models and they do not 

consider the underlying physics. Nevertheless, recent studies by Wilby et al. (2003), Jain 

et al. (2004), and Sudheer and Jain (2004) have demonstrated that the ANNs are not pure 

black-box models and it is possible to extract some of the physics involved. Hence lately, 

more research has been directed to identifying the mechanism by which ANNs learn the 

hydrological patterns embedded in the input-output data. Contrary to the ANNs, the 

advancements in the application of GP in hydrological literature is still in its nascent 

stage, irrespective of the fact that both the GP and the ANNs can be seen as alternative 

techniques for the same task, like, e.g., classification and approximation problems. This 

immaturity stems partly from the fact that GP, in addition to being a relatively new 

technique, is also computationally intensive and hence is consistently marginalized by the 

hydrological modellers. 
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Although several studies indicate that the data-driven models have proven to be 

potentially useful tools in hydrological modeling, two of the main issues that needs to be 

further explored before these models gain wider acceptability by researchers and 

practitioners are: (i) bringing transparency (insights), even if only partially, on the basic 

process by which these data-driven models arrive at a decision, and thereby extending 

their usefulness beyond forecast applications as a tool for scientific investigations; and 

(ii) identifying the effective ways for performing uncertainty analysis in the data-driven 

models, which in-turn contributes to improving the reliability of such models. Therefore 

this research, driven by the motivation of improving the credibility of the data-driven 

models among researchers and practitioners, is carried out to identify some of the 

possible solutions to the above mentioned issues. 

 

1.4  Research Objectives 

In pursuit of improving the credibility of the data-driven models in hydrological 

modeling, the objectives of this research can be itemized as: 

1. Extending the usefulness of the system-theoretic models beyond forecast 

applications as a tool for scientific investigations, by providing additional insights 

into the underlying input-output patterns on which the data-driven models arrive 

at a decision. 

2. Improving the reliability of the system-theoretic models by identifying ways for 

incorporating uncertainty estimates as part of the data-driven model building 

exercise. 

 



Chapter 1 

 7

1.5  Scope of the research 

The present work is part of a large research program that aims at developing a 

framework to help understand the hydrological processes that are dominant in 

reconstructed (reclaimed) watersheds, and thereby develop a sustainable reclamation 

strategy. A detailed overview of the research program can be found in (Boese, 2003), and 

for brevity, a concise description of the research program is given here. Large scale 

mining in the Athabasca basin, Alberta, Canada, involves stripping of large amount of 

organic and glacial deposits and a layer of saline/sodic cretaceous shale to gain access to 

the oil sands. Prior to mining, the shale overburden is stable since it is over consolidated, 

confined, and is exposed only to saline/sodic pore fluids. However, once the shale is 

placed on the surface, it is exposed to fresh water and oxygen and is susceptible to 

weathering, which in the long run affects the stability of the pile (Barbour et al., 2001). In 

order to overcome this problem, the piles are re-contoured and capped with sufficient soil 

cover so that the amount of precipitation percolating below the root zone can be 

minimized while maintaining enough moisture for vegetation. In this way, the 

overburden can be restored to its natural state by supporting vegetation. Over the years, 

several large scale soil cover (reconstructed watersheds) experiments are being conducted 

to assess the performance of different reclamation strategies by studying the basic 

mechanisms that control the moisture movement within these covers.  
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Figure 1-1 (modified after Jutla, 2006) shows the overall framework of this 

research program which is founded on the ongoing program of extensive monitoring.  

Initially, modeling of the reconstructed watersheds as a partially understood system is 

undertaken based on both the mechanistic and inductive modeling approaches. The 

knowledge gained from these approaches, supplemented by the knowledge gained from a 

comparison with natural systems, can be encapsulated together to formulate a decision 

analysis (DA) approach, entailing comprehensive and detailed sensitivity and uncertainty 

analyses. Based on the DA approach and the system understanding, feedback to the 

monitoring program and the modeling exercise can be provided. Re-directed monitoring 

and refined modeling will help achieve the desired comprehensive understanding of the 

system of reconstructed watersheds. Finally, the system understanding can be quantified 

towards modifying existing regulations and reclamation practices to develop sustainable 

reclamation strategy.  

 

The overall framework of this research program has the following specific tasks 

to be completed: 

 

1. Develop an in-house watershed simulation methodology using system dynamics 

modeling approach that can provide an understanding of the dynamics of the 

reconstructed watersheds. This task has been completed (Jutla, 2006) 

 

2. Simulate the reconstructed watersheds using some of the readily available 

watershed models (e.g., HSPF, SLURP), and compare their performance with the 
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model developed in Task 1. The purpose of such a comparison is to gauge the 

utility of different modeling approaches in modeling the dynamics of 

reconstructed watersheds in sub-humid regions; 

 

3. Evaluate the added gains, if any, of adopting inductive modeling approach for 

modeling the different components of the hydrological cycle; 

 

4. Develop analogous models for natural watersheds, and compare their performance 

with that of the reconstructed watersheds. This comparison can help in possibly 

identifying and infilling the knowledge gap, if any, in characterizing the 

reconstructed watersheds with regard to their evolution over time; 

 

5. Conduct a comprehensive study on identifying the different sources of 

uncertainty, and finding methods and tools to effectively incorporate uncertainty 

analysis into the watershed model building exercise. 

 

6. Develop an integrated or hybrid modeling approach that benefits from the 

knowledge gained by adopting mechanistic and inductive modeling approaches. 

The objective of this task is to develop and propose to both industry and scientists 

the best possible tools for modeling reconstructed watersheds; and 

 

7. Develop a multi-criterion decision analysis (MCDA) framework that can evaluate 

different reclamation alternatives. The objective of this task is to encapsulate the 
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knowledge gained with regard to reconstructed watersheds into a decision 

analysis tool, which can be adopted in orienting the future reclamation strategies; 

 

The scope of this research is constrained to evaluating the utility of inductive 

modeling approach for modeling the hydrological processes (Task 3), and addressing the 

issue of uncertainty analysis in system-theoretic models for characterizing the 

hydrological processes (Task 5). This is identified by means of a dashed-line in Figure 

1-1. The applications that are considered in this thesis are not restricted to the oil sands. 

Other relevant real-world applications are included for strengthening the presentation. It 

should be noted that this research may not address all the pertinent issues with regard to 

Task 3 and Task 5 in depth. Nevertheless, this research would serve as a “catalyst” for 

future studies in this direction, by exploring multiple avenues for accomplishing Task 3 

and Task 5. Currently, two other theses are in progress to address Task 4 and Task 6. 

 

1.6  Synopsis of the thesis 

The order of chapters in this thesis is in accordance with the research objectives. 

Chapters Two and Three address the first objective, while Chapters Four and Five 

addresses the second objective. Specifically, the different parts of this thesis are presented 

as follows: 

 

Chapter 2: In this chapter, a modular neural network model is proposed, and compared 

with a traditional neural network model. The ability of the proposed modular neural 
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network models in identifying the patterns in the input-output space is elucidated by 

applying them to streamflow modeling and actual evapotranspiration modeling.  

 

Chapter 3: This chapter highlights the utility of adopting GP as a tool for characterizing 

the hydrological processes. The transparency achieved by adopting the GP paradigm, as 

against other system-theoretic models, is emphasised by applying GP for actual 

evapotranspiration modeling. 

 

Chapter 4: Improvement in the reliability achieved by adopting a local scale model, as 

against a more general global scale model is elucidated in this chapter. Also, this chapter 

underscores the usefulness of adopting a boosting algorithm as against the conventional 

bagging algorithm for addressing the uncertainty in pedotransfer function (PTFs) 

development.  

 

Chapter 5: This chapter emphasizes the advantages of adopting GP for PTFs 

development. A methodology for improving the reliability of the PTFs by accounting for 

the model structure uncertainty is proposed in this study. 

 

Chapter 6: A brief summary of the thesis is given. The different levels of contribution of 

this thesis are highlighted. Also, the scope for further studies and research work and some 

implied limitations of this research are concisely discussed. 
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Figure 1-1 Framework of the research program for developing a sustainable reclamation 
strategy 
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Chapter 2 - Spiking-Modular Neural Networks: A Neural 

Network Modeling Approach for Hydrological 

Processes 

 
A similar version of this chapter has been copyrighted and published in the 

Water Resources Research. 
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neural networks: A neural network modeling approach for hydrological processes.” 
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Contribution of the PhD candidate 
 
Model conceptualization and computer program development were carried out 

by Kamban Parasuraman, with Dr. Amin Elshorbagy and Dr. Sean Carey providing 

advice on various aspects of the work. The text of the published paper was created by 

Kamban Parasuraman with Dr. Amin Elshorbagy and Dr. Sean Carey critically reviewing 

the manuscript. 

Contribution of this chapter to the overall study 
 
This work was aimed at extending the utility of the neural networks beyond 

forecast applications as a tool for scientific investigations. The hypothesis was that 

associating the self-organizing networks with the modular networks would help in 

bringing transparency to the way by which neural networks identify the patterns in the 

input-output space. A modular neural network model called the spiking modular neural 

networks (SMNNs) is proposed in this study, which first identifies the patterns in the 
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input space, before developing individual models to associate the identified patterns in 

the input space with their corresponding patterns in the output space. The performance of 

the proposed models is evaluated using two-distinct case-studies, namely, (i) streamflow 

modeling, and (ii) evapotranspiration modeling. The SMNNs are shown to be effective in 

discretizing the complex mapping space into simpler domains that can be learned with 

relative ease. 
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2.1 Abstract 

Artificial Neural Networks (ANNs) have been widely used for modeling 

hydrological processes that are embedded with high nonlinearity in both spatial and 

temporal scales. The input-output functional relationship does not remain the same over 

the entire modeling domain, varying at different spatial and temporal scales. In this study, 

a novel neural network model called the spiking-modular neural networks (SMNNs) is 

proposed. An SMNN consists of an input layer, a spiking layer, and an associator neural 

network layer. The modular nature of the SMNN helps in finding domain dependent 

relationships. The performance of the model is evaluated using two distinct case studies. 

The first case study is that of streamflow modeling and the second case-study involves 

modeling of eddy-covariance (EC) measured evapotranspiration. Two variants of 

SMNNs were analyzed in this study. The first variant employs a competitive layer as the 

spiking layer and the second variant employs a self-organizing map (SOM) as the spiking 

layer. The performance of SMNNs is compared to that of a regular feed-forward neural 

network (FF-NN) model. Results from the study demonstrate that SMNNs performed 

better than FF-NNs for both the case studies. Results from partitioning analysis reveal 

that, compared to FF-NNs, SMNNs are effective in capturing the dynamics of high flows. 

In modeling evapotranspiration, it is found that net-radiation and ground temperature 

alone can be used to model the evaporation flux effectively. The SMNNs are shown to be 

effective in discretizing the complex mapping space into simpler domains that can be 

learnt with relative ease.  
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2.2 Introduction 

2.2.1 Advances in Neural Network Modeling in Hydrology 

Modeling of hydrological processes is central for efficient planning and 

management of water resources, which is usually achieved either by conceptual models 

or by systems theoretic models. Artificial neural networks (ANNs), a systems theoretic 

method, have been shown to be a promising tool for modeling hydrological processes 

(ASCE Task Committee on the Application of Neural Networks in Hydrology, 2000a; 

Maier and Dandy, 2000). The increasing utility of ANNs in modeling hydrological 

processes is attributed to their ability to capture complex nonlinear relationships between 

inputs and outputs with an incomplete understanding of the physics of the process 

involved.  

 

The presence of discontinuity in rainfall-runoff mapping of a watershed and 

significant variations in input space motivated Zhang and Govindaraju (2000) to develop 

modular neural networks. They attributed the discontinuity to rainfall-runoff functional 

relationships being different for low, medium, and high magnitudes of streamflow. The 

modular neural network developed by Zhang and Govindaraju (2000) consists of a gating 

network and a series of neural networks. Each neural network in this series is termed as 

an expert, mapping the relationship in a subset of input space. The gating network helps 

in identifying the expert for a given input vector. The gating network outputs the 

probability of an input vector association with each of the experts. The output from the 

network is then calculated by multiplying the individual expert’s response by the 

corresponding weights (probability) of the gating network. Zhang and Govindaraju 
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(2000) showed that the performance of modular neural networks is better than that of the 

regular feed-forward neural networks (FF-NNs). Hsu et al. (2002) developed a self-

organizing linear output map (SOLO); an artificial neural network model studying the 

rainfall-runoff modeling problem. SOLO consists of a classification layer and a mapping 

layer. Classification of input space is achieved by means of a self-organizing feature map 

(SOFM) (Kohonen, 1989). The mapping layer helps map the input to its corresponding 

output by means of piecewise linear regression functions. Based on their study, Hsu et al. 

(2002) concluded that the SOLO model resulted in rapid and precise estimation of system 

outputs. Hong et al. (2005) extended SOLO to a SONO (self-organizing nonlinear output) 

model for cloud patch-based rainfall estimation. Similar to SOLO, SONO made use of 

SOFM in its classification layer. However, in SONO, mapping input space to output is 

achieved by means of nonlinear regression. Recently, Bowden et al. (2005) used SOM to 

reduce the dimensionality of the input space and obtain independent outputs, with the 

objective of finding the optimal combination of input parameters for neural networks 

modeling. The input variables are presented to the SOM and only one input is selected 

from each cell based on its proximity to the cluster centers. These selected inputs are then 

used to train the neural networks models. Based on the above studies, it can be concluded 

that input-output functional relationship is quite different in different domains of the 

input space. Hence, cluster-based mapping appears to be a promising alternative to FF-

NNs, particularly in cases of processes where the input-output functional relationship is 

fragmented or discontinuous. Although Zhang and Govindaraju (2000) demonstrated the 

importance of modular neural networks and Hsu et al. (2002) demonstrated the utility of 

self-organizing maps in modeling hydrological processes, little effort has been made to 
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study the usefulness of harnessing both modular learning and self-organizing networks. 

Moreover, to the knowledge of the authors, no work has been reported in literature to 

compare the different ways by which self-organization in networks can be achieved. This 

comparison is of particular interest as it helps in identifying the proper self-organization 

technique suitable for modular learning. 

 

2.2.2 Neuro-Hydrology: Beyond Rainfall-Runoff Modeling 

Compared to other hydrological processes such as rainfall and runoff, 

evaporation (used here to describe latent heat flux from the surface) is more dynamic 

because it involves continuous exchange of water molecules between the land and the 

atmosphere. Hence, the evaporation process is embedded with huge variability in both 

spatial and temporal scales. For this reason, evaporation is the least satisfactorily 

explained component of the global hydrological cycle (Sudheer et al., 2002). An 

improvement in the estimates of evaporation helps in partitioning the available moisture 

into (1) water loss back to the atmosphere, and (2) the water available for runoff. 

Although water-balance components including rainfall, infiltration, and runoff are 

measured directly, evaporation is most commonly estimated by energy balance, mass 

transfer, or water budget methods (Sudheer et al., 2002). Traditionally, pan evaporation is 

used as an index for free water surface (lakes and reservoirs) evaporation, and empirical 

coefficients are applied to correlate pan evaporation to reference crop evapotranspiration 

(ETo). Alternatively, lysimeters are used to directly estimate surface or crop 

evapotranspiration (ETc) by measuring changes in mass of a control volume (Singh, 

1989). Measurements of evaporation by pan-evaporimeter and lysimeter are subject to a 
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large set of assumptions, cumbersome and labor-intensive, and may not be appropriate 

for large-scale studies. In research applications, micrometeorological methods such as 

energy-balance-Bowen-ration (EBBR) and eddy-covariance (EC) are typically used to 

measure actual evaporation (ET) (Drexler et al., 2004). However, these methods are 

expensive and are sufficiently complex to limit their widespread application. In order to 

overcome these problems, numerous studies have been carried out to estimate ETo from 

climatic data. Key examples of such studies include (i) empirical relationships between 

meteorological variables (Holdridge, 1962; Stephens and Stewart, 1963; Blaney-Criddle, 

1950; Linacre, 1977; Thornthwaite, 1948; Priestley and Taylor, 1972; Hargreaves and 

Samani, 1982) and (ii) physically-based equations (Penman, 1948; Monteith, 1965). 

While the former methods estimate ETo based on climatological data, the latter methods 

link evaporation dynamics with the supply of net-radiation and aerodynamics transport 

characteristics of a natural surface, and hence are termed combination methods.  

 

The success of the neural network models in modeling different hydrological 

processes provides an impetus to test the applicability of neural networks in modeling the 

highly dynamic evaporation process. Key examples of such studies include Sudheer et 

al., (2002); Kumar et al., (2002); Sudheer et al., (2003); Trajkovic et al., (2003). Most of 

the above studies on modeling evaporation using neural networks estimated either of PM 

estimates of evaporation (Kumar et al., 2002; Trajkovic et al., 2003), of the pan (Kumar 

et al., 2002 and Sudheer et al., 2002), or of the lysimeter (Sudheer et al., 2003) measured 

values. To the knowledge of the authors, no work has been reported in the literature to 

address the application of neural networks in modeling EC measured evaporation flux.  
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In this study, a novel neural network model is proposed: the spiking-modular 

neural network (SMNN). The SMNN is based on the concepts of both self-organizing 

networks and modular networks. The performance of the model is tested on two diverse 

case studies. The first case study involves modeling of streamflows and the second case 

study involves modeling of actual evaporation measured via eddy-covariance (EC). 

While the first case study represents a single-input-single-output (SISO) process, the 

second case study represents a multiple-input-single-output (MISO) process. Two 

variants of SMNNs; one employing competitive learning in the spiking layer and the 

other employing self-organizing maps in the spiking layer are tested. The specific 

objectives of this research are as follows: (1) to evaluate the performance of regular FF-

NN in modeling streamflows and EC measured evaporation flux; (2) to compare the 

performance of FF-NNs with the proposed SMNNs on both case studies; and (3) to 

provide insight into the performance of the SMNNs.  

 

The remaining part of this chapter is organized as follows. In section 2.3, an 

introduction to neural networks is given. Section 2.4 presents the architecture of the 

spiking-modular neural networks adopted in this study. Streamflow estimation and 

modeling of evaporation flux are discussed in sections 2.5 and 2.6, respectively. Results 

and discussion are presented in section 2.7, and the final section summarizes important 

research conclusions. 
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2.3 Neural Networks 

ANNs are a method of computation and information processing motivated by 

the functional units of the human brain, namely neurons. According to Haykin (1999), a 

neural networks is a massively parallel distributed information processing system that is 

capable of storing the experiential knowledge gained by the process of learning, and of 

making it available for future use. Mathematically, ANNs are universal approximators 

with an ability to solve large-scale complex problems such as time series forecasting, 

pattern recognition, nonlinear modeling, classification, and control. This is achieved by 

identifying the relationships among given patterns.  

 

FF-NNs are the most widely adopted network architecture for the prediction and 

forecasting of water resources variables (Maier and Dandy, 2000). Typically, FF-NNs 

consist of three layers: input layer, hidden layer, and output layer. The number of nodes 

in the input layer corresponds to the number of inputs considered for modeling the 

output. The input layer is connected to the hidden layer with weights that determine the 

strength of the connections. The number of nodes in the hidden layer indicates the 

complexity of the problem being modeled. The hidden layer nodes consist of the 

activation function, which helps in nonlinearly transforming the inputs into an alternative 

space where the training samples are linearly separable (Brown and Harris, 1994). The 

hidden layer is connected to the output layer. An epoch is the presentation of the whole 

training samples to the neural networks model. Detailed review of ANNs and their 

application in hydrology can be found in Maier and Dandy (2000) and in ASCE Task 

Committee on Application of Artificial Neural Networks in Hydrology (2000 a, b). 
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The structure of the three-layered FF-NN used in this study is shown in Figure 

2-1. The neural network model consists of ‘j’ input neurons, ‘k’ hidden neurons, and ‘l’ 

output neurons. Symbolically, the ANN architecture shown in Figure 2-1 can be 

represented as ANN(j,k,l). The FF-NN adopted in this study makes use of the tan-

sigmoidal activation function in the hidden layer and the linear activation function in the 

output layer. In Figure 2-1, Wkj represents the connection weight between the jth input 

neuron and kth hidden neuron. Similarly, Wlk represents the connection weight between the 

kth hidden neuron and lth output neuron. Parameters bk and bl represent the bias of the 

corresponding hidden and output layer neurons. If xj represents the input variables and yl 

represents the output variable, then the inputs are transformed to output by the following 

equations: 
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where f1(.) represents the linear activation function and f2(.) represents the tan-

sigmoidal activation function. While the tan-sigmoidal activation function squashes the 

input between -1 and 1, the linear activation function calculates the neurons output by 

simply returning the value passed to it. One of the important issues in the development of 

neural networks model is the determination of an optimal number of hidden neurons that 

can satisfactorily capture the nonlinear relationship existing between the input variables 

and the output. The number of neurons in the hidden layer is usually determined by trial-
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and-error method with the objective of minimizing the cost function (ASCE Task 

Committee on Application of Artificial Neural Networks in Hydrology, 2000a).  

 

The typical cost function used in training FF-NNs involves minimizing the mean 

sum of squares of the network errors (MSE). However in this study, in order to overcome 

the problem of overfitting, a Bayesian-regularization back propagation algorithm 

(Demuth and Beale, 2001) is used for training the FF-NNs. The Bayesian-regularization 

back propagation algorithm improves the generalization property of the ANN model by 

developing networks with smaller weights and biases, and thus a smoother response that 

is less likely to result in overfitting (Demuth and Beale, 2001). Hence along with 

minimizing MSE, the cost function in Bayesian-regularization back propagation 

algorithm (Equation 2.3) involves minimizing the mean of the sum of squares of the 

network weights and biases (MSW). In Equation 2.3, yi and yi
’ represent the measured 

and computed counterparts; n, and N represents the number of training instances and the 

number of network parameters respectively. The success of the regularization depends on 

the choice of an appropriate value of the regularization parameter, α. In this study, the 

method by MacKay (1992) is adopted, where the optimal α is determined in a Bayesian 

framework using automatic relevance determination. 
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A systematic search of different network configuration and user-adjustable 

parameters was carried out to ascertain the optimal network architecture, with the 

objective of minimizing the cost function. The optimal network architecture is the one 

which results in the least cost function. Although the FF-NNs are capable of 

approximating a continuous well-behaved relationship between the input and output 

variables, they may not be suitable for mapping a fragmented or discontinuous 

representation of the training data that has significant variation over the input space 

(Zhang and Govindaraju, 2000). In SMNNs, explained below, the above problem is 

overcome by decomposing the complex mapping space into simpler sub-domains that can 

be learned with relative ease by the individual FF-NN models. 

 

2.4 Spiking Modular Neural Networks (SMNNs) 

The structure of the SMNNs is shown in Figure 2-2. The input layer consists of j 

input neurons (x1, x2, x3,…, xj) where number of input neurons, j, is equal to the number 

of input variables. The input layer neurons are connected to the spiking layer, which 

serves as the memory of the system, learning and storing different input patterns that can 

be used in classifying future input vectors based on patterns learned during the training 

process. In the spiking layer, clustering of input space is achieved by unsupervised (or 

self organized) learning, which is defined as the learning process that does not involve a 

teacher or critic to oversee the learning. Self-organized learning consists of repeatedly 

modifying the synaptic weights of a neural network in response to activation patterns and 

in accordance with prescribed rules, until a final configuration appears (Haykin, 1999). 
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Furthermore, self-organizing networks can learn to detect regularities and correlations in 

the input space, and accordingly adapt their future responses to that input.  

 

Self-organization in networks can be achieved in two ways: (1) competitive 

learning; and (2) self-organizing maps (SOMs) (Demuth and Beale, 2001). In competitive 

learning, the neurons of the network compete among themselves to be active (spike), the 

winner of which is called a winner-takes-all neuron (Haykin, 1999). The SOMs are a 

special case of self-organizing system as they learn to recognize groups of similar input 

vectors in such a way that neurons physically near each other in the neuron layer respond 

to similar input vectors. A SOM is therefore characterized by the formation of a 

topographic map of the input patterns in which the spatial locations of the neurons in the 

lattice are indicative of intrinsic statistical features contained in the input patterns 

(Haykin, 1999). Hence, the main difference between competitive learning and SOMs is 

that, while the former learns only the distribution, the latter learns both the distribution 

and the topology (neighboring neurons) of the input space. SOMs are either 1-

dimensional or 2-dimensional and the structure of SOMs is usually represented by the 

form 21 nn × , where n1 and n2 represent the number of rows and column of neurons 

respectively. The following paragraph outlines the mechanism involved in learning 

patterns by the self-organizing networks.  

 

The weights of the self-organizing networks are initialized to the center of the 

input ranges. Once initialized, the self-organizing network neurons are trained by the 

Kohonen learning rule (Kohonen, 1989) to identify the clusters in the input space, and 
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allow the connection weights of the neuron to learn an input vector.  Each neuron of the 

self-organizing network competes to respond to an input vector. Proximity of inputs to 

each neuron is determined based on Euclidean distance (dc) as given in Equation (2.4): 
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where m denotes the number of clusters and wcj represents the connection weight 

linking jth input variable and cth neuron of self-organizing networks. In the case of 

competitive learning, the neuron whose weight vector is closest to that of the input vector 

is updated to be even closer. However, in self-organizing maps, along with the closest 

neuron, the neurons in the neighborhood on the closest neuron are also updated to be 

even closer. The result of such training results in a neural network model where the 

winning neuron is more likely to win the competition the next time a similar vector is 

presented, and less likely to win when a very different input vector is presented. Hence 

for a given input vector, the neuron which represents the cluster that is closest to the input 

vector outputs 1 (spikes), while the remaining neurons output 0. More information on 

self-organizing networks can be found in Demuth and Beale (2001) and Kohonen (1989). 

 

Once classification of the input space is achieved, mapping of inputs to the 

corresponding outputs has to be carried out. Mapping inputs to outputs can be achieved 

by either linear-regression or FF-NNs. In the case of highly correlated input variables, 

use of the linear regression model for mapping inputs to outputs may require conversion 
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of input variables to its principal components in order to avoid colinearity problem (Hsu 

et al., 2002).   In this study, mapping of inputs to outputs is achieved by neural networks 

and as these networks associate input patterns to outputs. They are termed associator 

neural networks. The associator neural networks are similar to the neural networks 

detailed in section 2.2. SMNNs belong to a class of modular neural networks as the 

SMNNs works by developing ‘c’ different associator neural networks, each specializing 

in ‘c’ different subsets of the mapping domain. 

 

In this study, the performance of the proposed SMNNs employing the self-

organizing networks (both competitive and SOMs) is tested. The first SMNNs makes use 

of the competitive network as the spiking layer and herein it will be referred as 

SMNN(Competitive). The second variant of the SMNNs makes use of SOM as the 

spiking layer. Herein, the SMNNs with SOM as spiking layer will be referred as 

SMNN(SOM). Since competitive networks learn only the distribution of the input space 

and SOMs learn both the distribution and topology of the input space, comparison of 

SMNN(Competitive) and SMNN(SOM) would help understand the effect of topology 

learning in SMNNs performance. Since there is no theoretical principle to determine the 

optimum size of the Kohonen layer (Cai et al., 1994), the number of nodes in the spiking 

layer of SMNN(Competitive) and SMNN(SOM) is determined by trial-and-error method. 

Starting with two nodes in each of the spiking layer and hidden layer, the optimal 

architecture of the SMNNs is evaluated by performing a systematic search over different 

network configurations with the objective of minimizing the cost function (Equation 2.3). 

Symbolically, the optimal architecture of a SMNN with c spiking neurons can be 
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represented as SMNN[c, ANN(j,k,l)], where ANN(j,k,l) represents the optimal associator 

neural networks configuration. 

 

2.5 Streamflow Prediction 

The monthly streamflow values of the English River, Ontario, Canada, between 

Umfreville (49º 52′ N, 91º 27′ W) and Sioux Lookout (50º 4′ N, 91º 56′ W) is considered in 

this study. Umfreville is located upstream from Sioux Lookout. The streamflow values 

are obtained from Environment Canada’s Hydrometric Database (HYDAT) (Government 

of Canada, available online http://www.msc.ec.gc.ca/wsc/hydat/H2O/index_e.cfm, 2004). 

Flow values at Sioux Lookout are considered missing and are estimated based on the 

flow values at Umfreville. Out of the available data between January 1924 and December 

1981, approximately 70% of the data is used for training and the remaining 30% of the 

data is used for testing the developed model. (i.e., monthly flow values from January 

1924 to August 1965 are used for training the neural networks, and the flow values from 

September 1965 to December 1981 are considered for testing the models.) The statistical 

properties of the entire dataset along with the statistical properties of the datasets used for 

training and testing are presented in Table 2-1. The flow at Sioux Lookout shows slightly 

less variability than the flow at Umfreville. Both training and testing datasets have similar 

statistical properties. 

2.5.1 Predicting Streamflow Using FF-NNs 

A three-layered FF-NN is considered in this study. The input layer consists of a 

single input neuron representing the flow at Umfreville. The output layer has a single 
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output neuron corresponding to the flow at Sioux Lookout. Mapping of inputs to outputs 

is achieved by the hidden layer neurons. The number of hidden layer neurons is 

determined by the trial-and-error method as detailed in section 2.2, and the optimal 

number of hidden neurons is three. Hence, the neural network architecture adopted in this 

study is of the form ANN(1,3,1). For this study, 2000 epochs is found optimal for 

training the networks. 

2.5.2 Predicting Streamflow Using SMNNs 

Similar to the FF-NN, the SMNN model consists of single input and single 

output neurons. The performances of both SMNN(Competitive) and SMNN(SOM) in 

streamflow prediction are evaluated in this study. Similar to the method for determining 

the number of hidden nodes in FF-NNs, the numbers of neurons in the spiking layers of 

both the SMNN(Competitive) and SMNN(SOM) models are determined by the trial-and-

error method as detailed in section 2.3. The optimal number of neurons for both variants 

of SMNNs is two, indicating that there are two different clusters in the input space. As a 

next step, the clustered input space is mapped to the corresponding output space. This is 

achieved by the associator neural networks. Since there are two different clusters, the 

SMNNs consist of two associator neural networks. Each of these associator neural 

networks specializes in mapping the input-output relationship at the respective domain of 

the mapping space.  

 

The spiking layer is trained until the neurons in this layer are able to learn the 

classification of the input space. This is determined by finding the number of epochs 

beyond which there is no further improvement in classification of input vectors. For this 
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study, the optimal number of epochs required for training the spiking layer is found to be 

300. The architecture of all the associator neural networks is similar and is determined in 

a way analogous to the method used to determine the architecture of the regular FF-NNs. 

For both variants of SMNNs, ANN(1,3,1) is the optimal architecture of the associator 

neural networks. Symbolically, the optimal architecture of SMNNs in modeling 

streamflow is given by SMNN[2, ANN(1,3,1)]. 

 

2.6 Modeling Actual Evaporation Using Climatic Data 

2.6.1 Site Description and Data 

South Bison Hill (SBH) (57° 39’ N and 111° 13’ W), a overburden pile located 

north of Fort McMurray, Alberta, Canada, is considered in this study. SBH was 

constructed with waste-rock material from oilsands mining in stages between 1980 and 

1996. The area of SBH is 2 km2, rises 60 m above the surrounding landscape and has a 

large flat top several hundred meters in diameter. To reclaim the overburden so that 

revegetation can occur, the underlying shale is covered by a 0.2 m layer of peat on top of 

a 0.8 m layer of till. The top of SBH is dominated by foxtail barley (Hordeum jubatum); 

also present are other minor species such as fireweed (Epilobium angustifolium). 

Estimation of evaporation from the reconstructed watershed is of vital importance as it 

plays a major role in water-balance of the system, which links directly to ecosystem 

restoration strategies.  
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Micrometeorological techniques were used to directly measure evaporation and 

the surface energy balance. A mast  located in the approximate center of SBH was 

equipped to measure air temperature (AT) and relative humidity (RH) (HMPFC, Vaisala, 

3 m) housed in a Gill radiation shield, ground temperature (GT) (TVAC, Campbell 

Scientific, averaged 0.01-0.05 m depth), all-wave net radiation (Rn) (CNR-1, Kipp and 

Zonen, 3 m), and wind speed (WS) (015A Met One, 3.18 m). All instruments were 

connected to a datalogger (CR23X, Campbell Scientific) sampled at 10 seconds and an 

average or a cumulate record was logged every half-hour. The energy balance of the 

surface is given by: 

 

 ε+++= GHLERn   (2.5) 

 

Where LE is the latent heat flux (evaporation when divided by the latent heat of 

vaporization), H the sensible heat flux, G the ground heat flux and ε the residual flux 

density, all expressed in W m-2. G was measured using a CM3 ground heat flux plate 

(REBS) placed at 0.05 m depth. LE and H were measured directly via the open-path eddy 

covariance (EC) technique (Leuning and Judd, 1996) using a CSAT3 sonic anemometer 

(Campbell Scientific) and an LI-7500 CO2/H2O gas analyzer (Li-Cor) with the midpoint 

of the sonic head located on a boom 2.8 m above the ground surface. Measurements of H 

and LE were taken at 10 Hz and fluxes were calculated using 30 minute block averages 

with 2-D coordinate rotation. Sensible heat fluxes were calculated using the sonic virtual 

temperature (Schotanus et al., 1983) and latent heat fluxes were corrected for changes in 

air density (Webb et al., 1980).  Fluxes were removed when friction velocity was less 
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than 0.1 m/s due to poor energy balance closure at low wind speeds (Twine et al., 2000; 

Baker and Griffis, 2005). Flux measurements were also removed during periods of 

rainfall and during periods of unexpected change in state variables. No gap filling was 

performed. 

 

Variation of evaporation is commonly perceived as highly dependent on climatic 

variables such as temperature, humidity, solar radiation, and wind speed (Brutsart, 1982; 

Sudheer et al., 2003). Hence in this study, the climatic variables AT, GT, Rn, RH, and 

WS, which are commonly measured at weather stations, are used to estimate the 

evaporation flux measured by the EC system. As a common practice, a training set is 

used for model development and an independent validation set is used to test the 

efficiency of the developed model. Hourly data between May 20, 2003, and June 9, 2003, 

comprise the training set and the data between June 18, 2003, and June 28, 2003, 

comprise the testing set. The training set consists of 500 instances while the testing set 

consists of 247 instances. Plots showing the correlation of input variables AT, GT, Rn, 

and RH with LE are presented in Figure 2-3. The correlation plot between WS and LE is 

not shown as there is no significant correlation between them. The correlation plots 

shown in Figure 2-3 are based on the training set alone. As expected, air temperature (R2 

= 0.227), ground temperature (R2 = 0.405), and net radiation (R2 = 0.569) are shown to 

have a positive trend with LE, while relative humidity (R2 = 0.114) has a negative 

relationship with LE.  
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Traditionally, Penman-Monteith is the most widely used method for estimating 

evapotranspiration due to the widespread availability of the input variables. The hourly 

FAO Penman-Monteith (Temesgen et al., 2005) equation is given by Equation (2.6): 
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where, Rn is net radiation at the grass surface (MJ m-2 hr-1), G is soil heat flux 

density (MJ m-2 hr-1), ∆ is the saturation slope vapour pressure curve at AT (K Pa oC-1), γ 

is the psychrometric constant (K Pa oC-1), e0 is saturation vapour pressure at air 

temperature AT (K Pa), ea is the average hourly actual vapour pressure (K Pa), and WS is 

the average hourly wind speed (m/s). It should be noted that the evaporation calculated 

by the Penman-Monteith equation is potential evaporation for a well-watered surface, and 

not actual evaporation. Several methods of converting ET0 to actual evaporation have 

been illustrated by Saxton (1981) and Jensen (1981), which estimate actual evaporation 

based on water balance or by empirical equations. Eddy covariance (EC) offers a 

convenient way to directly measure actual evaporation and hence, in this study, an 

attempt has been made to model EC-measured evaporation flux using neural networks. 

 

2.6.2 Estimation of Evaporation Flux Using FF-NNs 

The FF-NN model considered for modeling evaporation flux consists of five 

input neurons, representing AT, GT, Rn, RH, and WS. The output layer consists of a 

single neuron representing LE. As explained in section 2.2, the optimal number of hidden 
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nodes is found by the trial-and error method, and is found to be four. Hence, the neural 

network architecture adopted in this study is of the form ANN(5,4,1). Bayesian-

regularization algorithm is used for training the networks. For this case-study, 5000 

epochs is found optimal for training the FF-NNs. 

 

2.6.3 Estimation of Evaporation Flux Using SMNNs 

The performances of both variants of SMNNs (SMNN(Competitve) and 

SMNN(SOM)) are tested with regard to estimating the EC-measured evaporation flux. 

The SMNNs considered in this application consist of five input neurons. By trial-and-

error method, as detailed in section 2.3, the optimal number of neurons in the spiking 

layer was found to be eight for both SMNN(Competitive) and SMNN(SOM). The spiking 

layer consists of eight neurons, representing individual clusters in the input space. Eight 

hundred epochs are found optimal for training the spiking layer. Corresponding to each 

cluster, eight different associator neural network models specializing in mapping input-

output relationships at different domains of the mapping space are constructed. The 

associator neural network models employ Bayesian-regularization algorithm for training 

the networks. The optimal network architecture of associator neural networks is 

ANN(5,4,1). Symbolically, the optimal architecture of SMNNs can be represented as 

SMNN[8, ANN(5,4,1)]. 
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2.7 Results and Discussions 

Since RMSE and MRE give different details about the predictive ability of the 

models (Karunanithi et al., 1994), a multi-criterion performance evaluation is carried out. 

For both case studies, the performances of the different models are evaluated based on: 

(i) root mean square error (RMSE), (ii) mean absolute relative error (MRE), and (iii) 

coefficient of correlation (R). RMSE, MRE, and R are calculated using Equations (2.7), 

(2.8), and (2.9) respectively, where n represents the number of instances presented to the 

model; yi and yi
’ represent measured and computed evaporation flux respectively; and y  

represents the mean of the corresponding variable:  
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2.7.1 Streamflow Modeling 

Table 2-2 presents the statistical performances of different neural network 

models in estimating streamflow at Sioux Lookout based on the flow at Umfreville. FF-

NNs resulted in an RMSE of 30.4 m3/s, an MRE of 0.22, and a correlation coefficient of 

0.96. Both SMNN(Competitive) and SMNN(SOM) models performed better than the FF-
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NN model in terms of RMSE during testing,  however all the models performed on par in 

terms of MRE and R. Figure 2-4 indicates that different neural network models were able 

to mimic the trend of measured flows at Sioux Lookout. However, as will be shown later, 

SMNNs resulted in better prediction accuracy in the case of high-flows. The 

SMNN(Competitive) model performed marginally better (lower RMSE) than the 

SMNN(SOM).  

 

To improve the insight into the performance of SMNNs, a plot showing the 

instances at which different spiking layer neurons spiked is shown in Figure 2-5. Both 

SMNN(Competitive) and SMNN(SOM) were successful in delineating high-flows from 

low-flows. The threshold value separating high-flows and low-flows differed between 

SMNN(Competitive) and SMNN(SOM). The solid lines in Figure 2-5 indicate the 

threshold values. For SMNN(Competitive), the threshold value was 185.6 m3/sec, and for 

SMNN(SOM), the threshold value was approximately 145.7 m3/sec. In 

SMNN(Competitive), 48 instances were above the threshold value and the remaining 148 

instances were below the threshold value. The MRE of the instances above the threshold 

is 0.14 and the MRE of the instances below the threshold is 0.25. However, in case of 

SMNN(SOM), 78 instances were above the threshold value and the remaining 118 

instances were below the threshold value. The MRE of the instances above the threshold 

is 0.19 and the MRE of the instances below threshold is 0.25. 

 

Sajikumar and Thandaveswara (1999) and Tokar and Markus (2000) 

experienced problems in learning patterns using a back-propagation algorithm when 
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target flow values were in the neighborhood of zero. However, Minns and Hall (1996) 

reported that the regular FF-NNs were not able to mimic larger peaks in flow data. This 

problem with regard to the performance of SMNNs is analyzed by partitioning analysis. 

Partitioning is carried out by arbitrarily choosing a certain threshold of flow, then finding 

the errors (RMSE and MRE) between the measured and estimated flows, both above and 

below the threshold value. The testing dataset, which consists of 196 instances, is 

considered for this analysis. The mean (µ) and the standard deviation (σ) of the data are 

121.69 m3/s and 86.31 m3/s respectively. A value slightly less than µ+ σ is considered as 

the threshold (200 m3/s). Out of the total 196 instances, 167 instances are below the 

threshold value and the remaining 29 instances are above the threshold value. The 

relative performance of these models above and below the threshold is presented in Table 

2-3. From the table it can be seen that the performance of SMNNs is on par with FF-NNs 

performance below the threshold value (<200 m3/s). However, SMNNs performed better 

than FF-NNs for flows above the threshold value (>200 m3/s). Based on the above 

analysis, it is concluded that the proposed SMNNs are a promising alternative for 

modeling high flows. 

 

2.7.2 Modeling Evaporation  

Jackson et al. (1976) and Salvucci (1997) showed that evaporation is a two-stage 

process, with a climate-control stage followed by a soil-control stage. Different dynamics 

of state variables govern each of these stages. Apart from these two distinct stages, it 

should be noted that different combinations of evaporation, ground and sensible heat flux 

that with net-radiation could satisfy the energy balance (Equation 2.5). Hence the 
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performance of SMNNs in capturing such discontinuous input-output relationship would 

be of particular interest. Performance statistics of different neural network models for 

estimating actual ET during both training and testing are presented in Table 2-4. 

Modeling of evaporation flux using FF-NNs resulted in an RMSE of 73.4 W/m2, an MRE 

of 1.5, and an R of 0.69. Comparing the performance of FF-NN with SMNNs, both 

SMNN(Competitive) and SMNN(SOM) outperformed FF-NN in estimating evaporation 

flux. This reiterates the fact that the input-output relationship is discontinuous over the 

mapping horizon and hence modular neural networks could offer a promising alternative 

to capture such discontinuous input-output mapping.  

 

It can be noted, in general, that the training RMSE of the neural network models 

showed significant variations with the testing RMSE (Table 2-4). Considerable 

variability in RMSE statistics between training and testing can be attributed to the 

following reason. The median of LE dataset during training and testing are 34.1 W/m2 

and 61.2 W/m2 respectively. Since median gives a measure of central tendency, it implies 

that, compared to the training dataset, the testing dataset is dominated more by higher 

values of evapotranspiration. The values of evapotranspiration in the testing dataset are 

roughly twice (61.2/34.1) the values of evapotranspiration in training dataset. Karunanithi 

et al. (1994) demonstrated that MSE and MRE provide different types of information 

about the predictive capability of the model. In their work, it has been shown that MSE is 

more sensitive to errors at high and low values, whereas MRE provides a more balanced 

perspective of the goodness of fit at moderate values. Since squared-error statistics give 

more weighting to high values, the RMSE during testing is approximately twice that 
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during training, preserving the ratio between the medians. This illustrates that the neural 

network models are not over-trained. SMNN(Competitive) resulted in an RMSE of 70.2 

W/m2, an MRE of 1.2, and an R of 0.71. However, SMNN(SOM) resulted in an RMSE of 

73.0 W/m2, an MRE of 1.3, and an R of 0.67. From Table 2-4, it can be concluded that 

SMNN(Competitive) provides a more generalized representation of the evaporation 

process. Analysis of results obtained from SMNNs reveals that different combinations of 

inputs may lead to the same value of evaporation flux. This was evident when similar 

values of evaporation flux were obtained even when different spiking layer neurons 

spiked (i.e., inputs from different clusters). The above effect is of particular interest as it 

illustrates that the SMNN as a data driven model is able to confirm that different 

combination of state variables can satisfy the energy-balance equation. More explanation 

in this regard is presented in the subsequent section of this chapter.  

 

Figure 2-6 compares PM and SMNN(Competitive) estimates of evaporation 

with the EC measured evaporation flux between May 20, 2003, and June 9, 2003. Since 

PM estimates potential evaporation, and in reality water is not always freely available 

(supply limited) to evaporate, PM overestimates evaporation during supply limited 

conditions. Although it is not prudent to directly compare the PM estimates with the 

neural networks models predicting EC measured LE flux, the above comparison is made 

due to the following reason. Abbott et al. (1986) stated that the PM method, which 

accounts for the influence of vegetation on evapotranspiration, has been used frequently 

to model the evapotranspiration flux. The wide spread utility of PM method in 

characterizing evaporation is due to its ability in predicting evaporation based on readily 
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available climatic data like solar radiation, relative humidity, wind speed and air 

temperature. The potential estimates of evaporation given by the PM method can be 

converted to actual evaporation by considering the soil moisture limitations.  However, 

compared to climatic data, the soil moisture data is not always readily available at the 

temporal resolution of other climatic variables. Furthermore, soil moisture shows large 

variability in both spatial and temporal scales (Entekhabi et al., 1996). Hence 

interpolation of the soil moisture data to match the temporal resolution of climatic 

variables is not prudent. Due to the above limitations, conversion of potential evaporation 

to actual evaporation is cumbersome and involves large uncertainty. In this regard, the 

utility of neural networks model in directly predicting actual evaporation from climatic 

data alone is tested and compared with the PM estimates that would be used otherwise. 

The RMSE between the measured and the PM-estimated evaporation flux is 88.2 W/m2, 

which is comparatively higher than the RMSE of 32.2 W/m2 obtained by 

SMNN(Competitive). For the period between June 18, 2003, and June 28, 2003 (testing 

data), the RMSE between measured and PM-estimated evaporation flux is 92.5 W/m2, 

which is again significantly greater than the RMSE of 70.2 W/m2 obtained by 

SMNN(Competitive). This illustrates the better performance of ANNs against PM 

method in modeling EC-measured evaporation flux as a function of climatic data alone. 

 

2.7.2.1 Identification of Optimal Combination of Input Variables 

Since this case study represents a MISO process, the study is further extended to 

find the optimal combination of inputs that can characterize the evaporation process 

effectively. Also, the process of evapotranspiration is controlled by different factors at 
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different scales – vapor pressure deficit and stomatal processes at the scale of single leaf 

or tree, radiation as the driving variable at a regional scale (Jarvis and McNaughton, 

1986). Different combinations of inputs were tested with the objective of minimizing the 

cost function shown in Equation (2.3). The results indicate that the use of net radiation 

and ground temperature alone as inputs to neural network models can result in better 

prediction accuracy. Although most of the evaporation models use a water vapor pressure 

gradient to estimate evaporation, inclusion of RH as one of the inputs to the neural 

networks model does not improve the performance of the model as RH is somewhat a 

redundant variable for the ANN model as the ANN model has already learnt the signal of 

RH which is embedded in the signal of GT, due to strong land-atmosphere interaction. 

This reiterates the findings of Lakshmi and Susskind (2001) and Wang et al. (2004), 

where it is reported that evaporation is not sensitive to atmospheric humidity since the 

land surface states contain the signals of near-surface atmospheric conditions as a result 

of strong land-atmosphere interaction. Inclusion of WS as one of the input variables to 

the neural networks model does not improve the performance of the model. Compared to 

neural network models using AT and NR as inputs, models using GT and NR resulted in 

better performance. As will be discussed later, variations in GT act in part as a surrogate 

variable to soil moisture and also have a longer memory of the feedback process inherent 

in the evaporation process. Also, Figure 2-3 reiterates that the best combination of inputs 

could be GT and NR as they have the greatest correlation with evaporation flux.  

 

Table 2-5 presents the statistical performances of different neural network 

models using only net radiation and ground temperature as inputs. The optimal number of 
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neurons in the spiking layers of both SMNN(Competitive) and SMNN(SOM) is four. The 

architecture of the associator neural networks is ANN(2,4,1). The SMNNs performed 

better than the FF-NNs (Table 2-5), and in general, the use of net radiation and ground 

temperature alone as inputs resulted in an increase in the training error (Table 2-4, Table 

2-5). However, during testing, better performance was obtained, indicating neural 

network models using net radiation and ground temperature alone as inputs have better 

generalization properties than do the neural network models utilizing all five inputs (air 

temperature, ground temperature, net radiation, relative humidity, and wind speed). The 

performance improvement in testing results and deterioration in training results is more 

apparent with regard to SMNNs, which is attributed to better generalization achieved due 

to the parallelization property of SMNNs. 

 

The rate of evaporation is largely controlled by the energy and moisture 

available for evaporation. During “energy-limited” conditions, the energy balance at the 

land-atmosphere boundary layer determines the direction of movement of water vapor. 

Nevertheless, during “supply-limited” conditions, the water balance between the land and 

the atmosphere determines the rate of evaporation. Net radiation is the major factor 

influencing evaporation during energy limited conditions and soil moisture the most 

influential factor in determining evaporation during supply limited condition. Eltahir 

(1998) showed that an increase in soil moisture decreases the Bowen ratio, resulting in a 

decrease of ground temperature. By extension, variation in ground temperature can be 

considered as a surrogate variable for soil moisture due to the strong link between soil 

thermal properties and moisture status. This provides support for the optimal combination 
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of inputs (NR and GT) for the neural networks model. While NR accounts for energy-

limited conditions, GT, as a surrogate, accounts for supply-limited conditions.  

 

In order to demonstrate the modular learning of SMNNs, instances at which 

different spiking layer neurons spiked its corresponding associator neural networks is 

presented in Figure 2-7. The scatter plot on the left shows the variation of latent heat with 

respect to ground temperature and net radiation. The scatter plot on the right shows the 

mapping space associated with each associator neural network module. The mapping 

space of each associator neural network’s module is represented by differently coloured 

points, which show that the SMNNs are effective in discretizing the complex mapping 

space into simpler domains that can be learned better.  As mentioned before, clustering is 

carried out based on unsupervised learning (i.e. based on inputs alone). Points that are 

close to each other in the input space ideally should also be close to each other in the 

output space (i.e. points in one 2D-cluster based on the inputs should be in the same 3D-

cluster based on the inputs and output). Figure 2-7 (3D-space) shows that there are few 

points (points that are in one cluster in the 2D-space and are not in the same cluster in the 

3D-space) in certain regions of the input-output space. Those few points demonstrate that 

different combination of input variables (GT and NR) can result in similar output (LE). 

2.7.2.2 Partitioning Analysis 

Similar to the previous case study, partitioning analysis is carried out to assess 

the relative strengths of different models in predicting the evaporation flux above and 

below a certain threshold value. The testing dataset is considered for this analysis; it 

consists of 247 instances. The µ and the σ of the data are 87.12 W/m2 and 85.36 W/m2 
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respectively. A value slightly less than µ+ σ is considered as the threshold (150 W/m2) 

value. Out of the total 247 instances, 200 instances are below the threshold value and the 

remaining 47 instances are above the threshold value. Initially, partitioning analysis was 

carried out for models using AT, GT, NR, RH, and WS as inputs.  The relative 

performance of these models above and below the threshold indicates that the SMNNs 

performed better than the FF-NNs in modeling values below the threshold (low 

evaporation flux) (Table 2-6). The performances of FF-NNs and SMNNs are comparable 

for the values above the threshold, indicating that SMNNs are more robust in capturing 

the dynamics of low evaporation flux. Partitioning analysis is also carried out for models 

using GT and NR alone as inputs to the models. Table 2-7 gives the performances of the 

models above and below the threshold value. Similar to the previous case, the SMNNs 

performed better than the FF-NNs in modeling the low evaporation flux and on par with 

the FF-NNs in modeling high evaporation flux.  

 

2.8 Summary and Conclusions 

In this study, a novel neural networks model called the spiking-modular neural 

networks (SMNNs) was proposed. Two variants of SMNNs were developed. The first 

variant, SMNN(Competitive), made use of a competitive layer as a spiking layer and the 

second variant, SMNN(SOM), made use of a self-organizing map as a spiking layer. The 

performance of the models was tested on two different case studies. The first case study 

involved modeling of streamflows and the second case study involved modeling of 

evaporation flux measured by a eddy-covariance (EC) system. While the first case study 

represented a single-input-single-output (SISO) process, the second case-study 
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represented a multiple-input-single-output (MISO) process.  The rationale behind 

choosing these two case studies was to evaluate the performance of SMNNs on both 

simple and complex hydrological processes.  

 

For the first case study (streamflow modeling), the SMNNs performed slightly 

better than the regular FF-NNs. Comparing SMNN(Competitive) and SMNN(SOM), the 

performance of the former model was better than that of the latter model. For both the 

SMNNs, the optimal number of neurons in the spiking layer was two, with the first 

neuron learning the dynamics of low flows and the second neuron learning the high 

flows. Partitioning analysis was carried out with respect to the performance of different 

models. It revealed that the performance of SMNNs is on par with that of FF-NNs for 

low flows. However, SMNNs perform better than the regular FF-NNs in modeling high 

flows.  

 

For the second case study, initially the hourly latent heat flux was modeled as a 

function of air temperature (AT), ground temperature (GT), net-radiation (NR), relative 

humidity (RH), and wind speed (WS). The optimal number of clusters in the case of 

SMNNs was eight. The SMNNs were found to perform better than the FF-NNs in 

modeling evaporation flux. Results from the study revealed that different combinations of 

inputs may lead to similar values of evaporation flux, which indicates that the climatic 

variables are highly correlated with each other.  
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Since the second case study is a MISO process, the study was extended to find 

the optimal combination of input variables. Although most evaporation models use water-

vapor pressure gradient to estimate evaporation, inclusion of RH as one of the inputs to 

the neural networks model, did not improve the performance of the neural networks 

model, reiterating the findings of Lakshmi and Susskind (2001) and Wang et al. (2004). 

For modeling EC-measured evaporation, the optimal combination of inputs was GT and 

NR. Partitioning analysis carried out to assess the relative strengths of different models in 

predicting the evaporation flux above and below a certain threshold value showed that 

SMNNs outperformed FF-NNs in modeling low-evaporation flux and on par with FF-

NNs in modeling high-evaporation flux. It should be noted that the performance of the 

neural networks model depends on the data used for training the model. A neural 

networks model with good generalization ability is expected to perform better on sites 

similar to the one used for training the model. Hence, testing the robustness of the 

developed models on a nearby site may help in strengthening the results. Nonetheless, 

testing the robustness of the developed model on a completely different site may require 

re-training the model. 

 

In general, for both case studies, SMNNs were found to perform better than FF-

NNs. In the study, it is shown that SMNNs were successful in breaking down a complex 

mapping space into multiple relatively simpler mapping spaces that can be modeled with 

relative ease. The result from the study supports the findings of Zhang and Govindaraju 

(2000). As mentioned previously, the main difference between SMNN (Competitive) and 

SMNN (SOM) is that the former model makes use of a competitive layer as the spiking 
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layer, while the latter model makes use of SOM as the spiking layer. Functionally, 

SMNN(Competitive) learns the distribution of input space alone and SMNN(SOM) 

learns both the distribution and the topology of the input space. Since 

SMNN(Competitive) performed better than SMNN(SOM), it can be concluded that 

topology learning does not improve the performance of the SMNN model. This is due to 

the fact that, since individual neural network models are constructed for each cluster, the 

topology learned during the classification process does not influence the performances of 

associator neural networks.  

 

The findings reported in this study are preliminary in nature and are based on 

two different case-studies. In order to verify and strengthen the findings of this research, 

the models have to be tested on further different case studies. Global optimization 

techniques such as genetic algorithms (GAs) are reported to be more robust than the 

conventional back-propagation (BP) algorithm in estimating the optimal values of 

weights and biases of neural networks. Hence the performance of SMNNs can further be 

improved by using GAs to train the associator neural networks. The proposed SMNNs 

are computationally intensive since they involve clustering of data and finding the 

optimal weights and biases of each associator neural networks. However, once trained, 

compared to regular FF-NNs, the SMNNs can be used with relative ease to accurately 

predict the hydrological variable of interest. The study reported in this chapter is a step in 

the direction to develop multiple local models rather than a single global model for 

hydrological processes. 

 



Chapter 2 

 51

2.9  Acknowledgements 

The authors acknowledge the financial support of the Natural Sciences and 

Engineering Research Council (NSERC) of Canada through its Discovery Grants 

Program and the University of Saskatchewan through the Departmental Scholarship 

Program. The authors thank the Associate Editor (Dr. Steven Margulis) and three 

anonymous reviewers, whose comments greatly improved the quality of the paper. 

 

2.10 References 

Abbott, M. B., Bathurst, J. C., Cunje, J. A., O’Connell, P. E., and Rasmussen, J. (1986). 

“An introduction to the European hydrological system – System hydrologique 

Europeen, ‘SHE’, 1: History and philosophy of a physically-based, distributed 

modeling system.” J. Hydrol., 87, 45-59. 

Arbib, M. A. (2003). The handbook of brain theory and neural networks, MIT Press, 

Cambridge, Mass. 

ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 

(2000a). “Artificial neural networks in hydrology. I: Preliminary concepts.” J. 

Hydrol. Eng., 5(2), 115-123. 

ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 

(2000b). “Artificial neural networks in hydrology. II: Hydrologic applications.” J. 

Hydrol. Eng., 5(2), 124-137. 



Chapter 2 

 52

Baker, J.M., and Griffis, T.J. (2005). “Examining strategies to improve the carbon 

balance of corn/soybean agriculture using eddy covariance and mass balance 

techniques.” Agric. Forest Meteorol., 128, 163-177. 

Blaney, H. F., and Criddle, W. D. (1950). “Determining water requirements in irrigated 

area from climatological irrigation data.” Soil Conservation Service Technical Paper 

No. 96, U.S. Department of Agriculture, Washington DC, 48. 

Bowden, G. J., Dandy, G. C., and Maier, H. R. (2005). “Input determination for neural 

network models in water resources applications. Part 1 – background and 

methodology.” J. Hydrol., 301, 75-92. 

Brown, M., and Harris, C. (1994). Neurofuzzy adaptive modeling and control, Prentice 

Hall: New York. 

Brutsart, W.H. (1982). Evaporation into the Atmosphere, Reidel Pub. Co., Boston. 

Cai, S., Toral, H., Qiu, J., and Archer, J. S. (1994). “Neural network based objective flow 

regime identification in air-water two phase flow.” The Canadian Journal of 

Chemical Engineering, 72, 440-445. 

Demuth, H., and Beale, M. (2001). Neural network toolbox learning. For use with 

MATLAB. The Math Works Inc, Natick, Mass. 

Drexler, J. Z., Snyder, R. L., Spano, D., and Paw, K. T. (2004). “A review of models and 

micrometeorological methods used to estimate wetland evapotranspiration.” Hydrol. 

Processes, 18, 2071-2101. 

Eltahir, E.A.B. (1998). “A soil moisture-rainfall feedback mechanism, 1: Theory and 

observations.” Water Resour. Res., 34(4), 765-776. 



Chapter 2 

 53

Entekhabi, D., Rodriguez-Iturbe, I., and Castelli, F. (1996). “Mutual interaction of soil 

moisture state and atmospheric processes.” J. Hydrol., 184, 3-17. 

Hargreaves, G. H., and Samani, Z. A. (1982). “Estimating potential evapotranspiration.” 

J. Irrig. Drain. Eng., 108(3): 225-230. 

Haykin, S. (1999). Neural networks: A comprehensive foundation, 2nd ed. MacMillan, 

New York. 

Henderson-Sellers, A., Irannejad, P., McGuffie, K., and Pitman, A. (2003). “Predicting 

land-surface climates: Better skills or moving targets?” Geophys. Res. Lett., 30(14), 

1777. 

Holdridge, L. R. (1962). “The determination of atmospheric water movements.” Ecology, 

43, 1-9. 

Hong, Y., K. Hsu, S. Sorooshian, and X. Gao. (2005). “Self-organizing nonlinear output 

(SONO): A neural network suitable for cloud patch-based rainfall estimation at small 

scales.” Water Resour. Res., 41, W03008, doi:10.1029/2004WR003142. 

Hsu, K., Gupta, H. V., Gao, X., Sorooshian, S., and Imam, B. (2002). “Self-organizing 

linear output (SOLO): An artificial neural network suitable for hydrologic modeling 

and analysis.” Water Resour. Res., 38(12), 1302, doi:10.1029/2001WR000795. 

Jackson, R. D., Idso, S. B., and Reginato, R. J. (1976). “Calculation of evaporation rates 

during the transition from energy-limiting to soil-limiting phases using albedo data.” 

Water Resour. Res., 12(1), 23-26. 

Jarvis, P. G., and McNaughton, K. G. (1986). “Stomatal control of transpiration: Scaling 

up from leaf to region.” Advances in Ecological Research., 15, 1-49. 



Chapter 2 

 54

Jensen, K. H. (1981). Unsaturated flow and evapotranspiration modeling as a component 

of the European hydrologic system (SHE), in Modeling Components of Hydrologic 

Cycle, edited by V. P. Singh, Water Resources Publications, Littleton, Col. 

Karunanithi, N., Grenney, W. J., Whitley, D., and Bovee, K. (1994). “Neural networks 

for river flow prediction.” J. Comp. Civ. Eng., ASCE, 8(2), 201-220. 

Kohonen, T. (1989). Self-organization and associative memory, Springer-Verlag, New 

York. 

Kumar, M., Raghuwanshi, N. S., Singh, R., Wallender, W. W., and Pruitt, W. O. (2002). 

“Estimating evapotranspiration using artificial neural network.” J. Irrig. Drain. Eng., 

128(4), 224-233. 

Lakshmi, V., and Susskind, J. (2001). “Utilization of satellite data in land-surface 

hydrology: Sensitivity and assimilation.” Hydrol. Processes, 15(5), 877-892. 

Leuning, R., and Judd, M.J. (1996). “The relative merits of open- and closed-path 

analysers for measurements of eddy fluxes.” Global Change Biology, 2, 241-253. 

Linacre, E. T. (1977). “A simple formula for estimating evaporation rates in various 

climates, using temperature data alone.” Agric. Meteorol., 18, 409-424. 

MacKay, D. J. C. (1992). “Bayesian methods for adaptive models.” Ph.D. Thesis, 

California Institute of Technology. 

Maier, H., and Dandy, G. (2000). “Neural networks for the prediction and forecasting of 

water resources variables: A review of modeling issues and applications.” Environ. 

Modell. Software, 15(1), 101-124. 

Minns, A. W., and Hall, M. J. (1996). “Artificial neural networks as rainfall runoff 

models.” Hydrol. Sci. J., 41(3), 399-417. 



Chapter 2 

 55

Monteith, J. L. (1965). “Evaporation and environment in the state and movement of water 

in living organisms.” Society of Experimental Biology, Symposium No. 19, 

Cambridge University Press, Cambridge, 205-234. 

Penman, H. L. (1948). “Natural evaporation from open water, bare soil and grass.” 

Proceedings of the Royal Society, London, 193, 120-146. 

Priestley, C. H. B., and Taylor, R. J. (1972). “On the assessment of surface heat flux and 

evaporation using large scale parameters.” Mon. Weather Rev., 100, 81-92. 

Sajikumar, N., and Thandaveswara, B. S. (1999). “A non-linear rainfall-runoff model 

using an artificial neural network.” J. Hydrol., 216, 32-55. 

Salvucci, G. D. (1997). “Soil and moisture independent estimation of stage-two 

evaporation from potential evaporation and albedo or surface temperature.” Water 

Resour. Res., 33(1), 111-122. 

Saxton, K. E. (1981). Mathematical modeling of evapotranspiration on agricultural 

watersheds, Modeling Components of Hydrologic Cycle, edited by V. P. Singh., pp. 

183-204, Water Resources Publications, Littleton, Col. 

Schotanus, P., Niewstadt, F.T.M., and De Bruin, H.A.R. (1983). “Temperature 

measurement with a sonic anemometer and its application to heat and moisture 

fluxes.” Bound. Lay. Meteorol., 26, 81-95. 

Singh, V. P. (1989). Hydrologic systems: Watershed modeling, vol. II, Prentice-Hall, NJ. 

Stephens, J. C., and Stewart, E. H. (1963). A comparison of procedures for computing 

evaporation and evapotranspiration, Publication 62, International Association of 

Scientific Hydrology, International Union of Geodynamics and Geophysics, 

Berkeley, CA, 123-133. 



Chapter 2 

 56

Sudheer, K. P., Gosain, A. K., and Ramasastri, K. P. (2003). “Estimating actual 

evapotranspiration from limited climatic data using neural computing technique.” J. 

Irrig. Drain. Eng., 129(3), 214-218. 

Sudheer, K. P., Gosain, A. K., Rangan, D. M., and Saheb, S. M. (2002). “Modelling 

evaporation using an artificial neural network algorithm.” Hydrol. Processes, 16, 

3189-3202. 

Temesgen, B., Eching, S., Davidoff, B., and Frame, K. (2005). “Comparison of some 

reference evapotranspiration equations for California.” J. Irrig. Drain. Eng., 131(1), 

73-84. 

Thornthwaite, C. W. (1948). “An approach toward a rational classification of climate.” 

Geog. Rev., 33, 55-94. 

Tokar, A. S., and Markus, M. (2000). “Precipitation runoff modeling using artificial 

neural network and conceptual models.” J. Hydrol. Eng., 5(2), 151-161. 

Trajkovic, S., Todorovic, B., and Stankovic, M. (2003). “Forecasting of reference 

evapotranspiration by artificial neural networks.” J. Irrig. Drain. Eng., 129(6), 454-

457. 

Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., 

Prueger, J. H., Starks, P. J., and Wesely, M. L. (2000). “Correcting eddy-covariance 

flux underestimates over a grassland.” Agric. Forest Meteorol., 103, 279-300. 

Wang, J., Salvucci, G. D., Bras, R. L. (2004). “An extremum principle of evaporation.” 

Water Resour. Res., 40, W09303, doi:10.1029/2004WR003087. 



Chapter 2 

 57

Webb, E.K., Pearman, G.I., Leuning, R. (1980). “Correction of flux measurements for 

density effects due to heat and water vapour transfer.” Q. J. R. Meteorol. Soc., 106, 

85-100.  

Zhang, B., and Govindaraju, S. (2000). “Prediction of watershed runoff using Bayesian 

concepts and modular neural networks.” Water Resour. Res., 36(3), 753-762. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

 58

 

 

 

 

Table 2-1 Statistical Properties of Streamflow Data between Umfreville and Sioux 
Lookout 

 
Entire Data Set Training Data Set Testing Data Set 

Statistics 
Umfreville Sioux 

Lookout Umfreville Sioux 
Lookout Umfreville Sioux 

Lookout 
Minimum, 
m3/s 3.2 16.2 3.2 18.5 9.7 16.2 

Maximum, 
m3/s 372.0 634.0 372.0 634.0 274.0 511.0 

Median, 
m3/s 41.3 90.6 39.5 88.4 47.3 93.8 

Average, 
m3/s 57.0 121.0 55.0 120.7 62.1 121.7 

SDa,  
m3/s 45.5 87.3 44.6 87.7 47.4 86.3 

CVb 0.8 0.7 0.8 0.7 0.8 0.7 
aSD is standard deviation 
bCV is coefficient of variation 
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Table 2-2 Statistical Performance of Different Models in Modeling Streamflowsa 

 

Training Testing 
Model 

RMSE, m3/s MRE R RMSE, m3/s MRE R 

FFNN 27.9 0.17 0.95 30.4 0.22 0.96 

SMNN (Competitive) 28.4 0.17 0.95 27.5 0.22 0.96 

SMNN(SOM) 28.8 0.17 0.94 28.4 0.22 0.96 
aRMSE is root-mean-square error; MRE is mean relative error; FFNN is feed 

forward neural network; SMNN is spiking modular neural network; SOM is self-
organizing map. 

 

 

 

Table 2-3 RMSE and MRE Statistics of Different Models Above ans Below the 
Threshold Streamflow Modelinga 

 

Flow Rate < 200 m3/s Flow Rate > 200 m3/s 
Model 

RMSE, m3/s MRE RMSE, m3/s MRE 

FFNN 24.2 0.24 53.5 0.13 

SMNN (Competitive) 24.1 0.24 41.9 0.12 

SMNN (SOM) 25.4 0.25 41.4 0.12 
aAbbrevations as in Table 2-2 
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Table 2-4 Statistical Performance of Different Models in Modeling Evaporationa 

 

Training Testing 
Model 

RMSE, W/m2 MRE R RMSE, W/m2 MRE R 

FFNN 37.0 2.4 0.90 73.4 1.6 0.69 

SMNN (Competitive) 32.2 2.2 0.93 70.2 1.2 0.71 

SMNN(SOM) 33.4 2.0 0.92 73.0 1.3 0.67 
a Abbrevations as in Table 2-2 

 

 

Table 2-5 Statistical Performance of Different Models in Modeling Evaporation With Net 
Radiation and Ground Temperature Alone as Inputsa 

 

Training Testing 
Model 

RMSE, W/m2 MRE R RMSE, W/m2 MRE R 

FFNN 43.7 3.0 0.86 67.2 1.5 0.72 

SMNN (Competitive) 43.9 3.3 0.86 64.4 1.1 0.74 

SMNN(SOM) 43.9 3.5 0.86 65.9 0.9 0.73 
a Abbrevations as in Table 2-2 
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Table 2-6 RMSE and MRE Statistics of Different Models Above and Below the 
Threshold When Air Temperature, Ground Temperature, Net Radiation, Relative 

Humidity, and Wind Speed Are Considered as Inputsa 

 

Evaporation 
Flux  < 150 W/m2 

Evaporation 
Flux  > 150 W/m2 Model 

RMSE, W/m2 MRE RMSE, W/m2 MRE 

FFNN 61.3 1.8 111.1 0.4 

SMNN (Competitive) 57.4 1.4 109.2 0.3 

SMNN (SOM) 61.3 1.6 109.5 0.4 
aAbbrevations as in Table 2-2 

 

 

 

Table 2-7 RMSE and MRE Statistics of Different Models Above and Below the 
Threshold When Ground Temperature and Net Radiation Are Considered as Inputsa 

 
Evaporation  

Flux < 150 W/m2 
Evaporation 

Flux > 150 W/m2 Model 
RMSE, W/m2 MRE RMSE, W/m2 MRE 

FFNN 56.6 1.8 100.4 0.3 

SMNN (Competitive) 53.5 1.2 98.2 0.3 

SMNN (SOM) 55.0 1.0 99.6 0.3 
aAbbrevations as in Table 2-2 
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Figure 2-1 Structure of the three-layered feed forward neural network (FFNN). 
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Figure 2-2 Structure of the Spiking Modular Neural Network (SMNN) 
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Figure 2-3 Correlation plot between latent heat and (a) air temperature, (b) ground 
temperature, (c) net radiation, and (d) relative humidity 
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Figure 2-4 Comparison of measured and estimated flows by (a) FFNNs, (b) 
SMNN(Competitive), and SMNN(SOM) 
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Figure 2-5 Plots showing the instances at which different spiking layer neurons fired: (a) 
SMNN(Competitive) and (b) SMNN(SOM). Solid lines indicate threshold value, stars 
indicate instances at which spiking layer neuron 1 fired, and open rectangles indicate 

instances at which spiking layer neuron 2 fired. 
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Figure 2-6 Comparison of measured evaporation flux with (a) Penman-Monteith and (b) 
SMNN(Competitive) estimates. 
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Figure 2-7 Scatterplots illustrating the performance of SMNN. 
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Chapter 3 - Modelling the Dynamics of the Evapotranspiration 

Process Using Genetic Programming 

 
This chapter has been copyrighted and published as a research paper in the 

Hydrological Sciences Journal. 

 
Citation: Parasuraman, K., Elshorbagy, A., and Carey, S. K. (2007). “Modelling the 
dynamics of the evapotranspiration process using genetic programming.” Hydrol. Sci. J., 
52(3), 563-578. 
 

Contribution of the PhD candidate 
 
Model conceptualization was carried out by Kamban Parasuraman and Dr. Amin 

Elshorbagy. Computer program development and simulations were carried out by 

Kamban Parasuraman. The text of the published paper was created by Kamban 

Parasuraman, with Dr. Amin Elshorbagy critically reviewing the manuscript. Dr. Sean 

Carey carried out the preliminary raw data quality checks, provided the site description 

details, and offered editorial guidance. 

Contribution of this chapter to the overall study 
 
Similar to the previous chapter, this study was also aimed at improving the 

utility of the data-driven models beyond forecast applications as a tool for scientific 

investigations. Nevertheless, the ability of another promising data-driven technique, 

namely, genetic programming (GP), is evaluated in this regard. The hypothesis is that, the 

robustness of GP to evolve its own model structure with relevant parameters could aid in 

understanding and improving our knowledge of the predictand-predictor relationship. The 
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hypothesis was tested by applying GP to model the dynamics of the evapotranspiration 

process from two case-studies with different morphological characteristics. The ability of 

GP to arrive at an explicit model structure for modeling evapotranspiration process is 

demonstrated in this study, and from the insights gained by analyzing the GP-evolved 

equations, it was concluded that the net-radiation and ground-temperature are the most 

important state variables for characterizing the actual evapotranspiration process.  
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3.1 Abstract  

Evapotranspiration constitutes one of the major components of the hydrological 

cycle and hence its accurate estimation is of vital importance to assess water availability 

and requirements. This study explores the utility of genetic programming (GP) to model 

the evapotranspiration process. An important characteristic of GP is that both the model 

structure and coefficients are simultaneously optimized. The method is applied in 

modelling eddy-covariance (EC)-measured latent heat (LE) as a function of net radiation 

(NR), ground temperature (GT), air temperature (AT), wind speed (WS) and relative 

humidity (RH). Two case studies having different climatic and topographic conditions are 

considered. The performance of the GP model is compared with artificial neural network 

(ANN) models and the traditional Penman-Monteith (PM) method. Results from the 

study indicate that both the data-driven models, GP and ANNs, performed better than the 

PM method. However, performance of the GP model is comparable with that of the ANN 

model. The GP-evolved models are dominated by NR and GT, indicating that these two 

inputs can represent most of the variance in LE. The results show that the GP-evolved 

equations are parsimonious and understandable, and are well suited to modelling the 

dynamics of the evapotranspiration process. 

 

3.2 Introduction 

Approximately 75% of the total annual precipitation on land surfaces is returned 

back to the atmosphere in the form of evaporation and transpiration (Singh, 1989), 

illustrating their importance in the global water balance. Due to complex interactions 
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between the land–plant–atmosphere systems, evapotranspiration (the term used to 

collectively describe both evaporation and transpiration) remains poorly characterized for 

many surfaces (Souch et al., 1996). Moreover, the evapotranspiration process is 

embedded with large variability in both spatial and temporal scales. Unlike precipitation 

and river flow, which can be directly measured, evapotranspiration is usually estimated 

based on mass transfer, energy transfer, or water budget methods. Traditional 

measurements of evaporation by pan-evaporimeter and lysimeter are subject to a large set 

of assumptions, cumbersome and labour-intensive, and may not be appropriate for large-

scale studies. More recently, micrometeorological methods such as energy-balance–

Bowen-ratio (EBBR) and eddy-covariance (EC) have found widespread application to 

measure actual evaporation and improved our understanding of the evaporation process 

(Drexler et al., 2004).  

 

Numerous attempts have been made to model evaporation and/or evapotranspir-

ation based on climatological data. Important historical examples include: (a) empirical 

relationships between meteorological variables (Blaney and Criddle, 1950; Stephens and 

Stewart, 1963; Priestley and Taylor, 1972) and (b) physically-based equations (Penman, 

1948; Monteith, 1965). While the former methods estimate evaporation based on climate 

data, the latter methods link evaporation dynamics with the supply of energy and the 

aerodynamics transport characteristics of a natural surface. 

 

Evapotranspiration models are based on different conceptual rates, such as 

potential, actual, wet environment, and reference crop evapotranspiration rates. For 
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systems that are poorly understood, it is difficult to choose an appropriate model to 

estimate actual evapotranspiration as vegetation, climate and water availability vary 

widely in space and time and strongly influence the evapotranspiration process. Almost 

all models of evapotranspiration reflect some measure of meteorological control over the 

evaporative processes (i.e. potential evapotranspiration). The complexity of the model 

varies depending upon the uniformity of the surface, canopy properties, and baseline 

assumptions (see Shuttleworth and Wallace 1985; Choudhury and Monteith 1988; 

Granger and Gray 1989; Flerchinger et al. 1996; Biftu and Gan, 2000). Among the wealth 

of local and global evapotranspiration models, the Penman-Monteith (PM) (Monteith, 

1965) equation is perhaps the most widely adopted evapotranspiration model (Abbott et 

al., 1986). The PM method estimates reference evapotranspiration for a hypothetical 

uniform reference grass surface fulfilling certain requirements. Evapotranspiration rate 

can then be obtained by multiplying the reference evapotranspiration by the crop 

coefficient. The PM method is shown to perform well for dense, closed canopy situations 

and for other wet vegetated surfaces (Shuttleworth, 1991). However, the applicability of 

the PM equation requires surface and aerodynamic resistance data, which are not readily 

available. Also, it should be noted that the evapotranspiration calculated by the PM 

method is potential evapotranspiration (unlimited supply of soil water) for a well-watered 

surface and not actual evapotranspiration (water limited). The potential estimates of 

evapotranspiration given by the PM equation can be converted to actual 

evapotranspiration by considering the soil moisture limitations. However, this conversion 

is cumbersome and involves large uncertainty due to the following reason: compared to 

climatic data, soil moisture data are not always readily available at the temporal 
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resolution of other climatic variables. Hence, in addition to the large variability of soil 

moisture at both spatial and temporal scales, the uncertainties instigated by the 

interpolation of soil moisture data to match the temporal resolution of climatic variables 

also occur.  

 

The complexities inherent in modelling evapotranspiration using conceptual 

models provide impetus to test the utility of data-driven models. Unlike conceptual 

models, data-driven models do not emphasize the nature of the system and the physical 

laws governing the system. For example, to forecast reference crop evaporation, Tracy et 

al. (1992) used simple yearly differencing or monthly average models, Mariño et al. 

(1993) adopted a seasonal autoregressive integrated moving average (SARIMA) model, 

and Hameed et al. (1995) investigated the utility of a transfer-function noise model. 

However, these data-driven models are based on linear systems theory and hence may not 

be well suited for characterizing a nonlinear process such as evapotranspiration. 

Furthermore, the application of these traditional deductive data-driven models to 

represent any process requires a prior definition of model structure. Nevertheless, 

difficulties associated with model structure identification in the case of the complex 

evapotranspiration process impede the utility of these approaches in modelling the above 

process. Recently, artificial neural networks (ANNs) have been adopted as an alternative 

inductive data-driven modelling tool for modelling evapotranspiration. The ability of 

ANNs to identify and learn the input–output patterns without being explicitly 

programmed to do so, makes them a promising tool to model complex hydrological 

processes. Key examples of the application of ANNs in hydrology includes: rainfall–
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runoff modelling (Hsu et al., 1995; Minns and Hall, 1996; Shamseldin, 1997), and 

rainfall forecasting (French et al., 1992; Zhang et al., 1997). More information on the 

application of ANNs in water related studies can be found in the ASCE Task Committee 

on the Application of Artificial Neural Networks in Hydrology (2000) and in Maier and 

Dandy (2000). Buoyed by the success of ANNs in modelling complex hydrological 

processes, a limited number of studies have been undertaken to model the dynamic 

evaporation and/or evapotranspiration process using ANNs. This includes studies by 

Kumar et al. (2002), Sudheer et al. (2003), Trajkovic et al. (2003) and Parasuraman et al. 

(2006). While Kumar et al. (2002) and Trajkovic et al. (2003) modelled the PM estimates 

of evaporation, the study by Sudheer et al. (2003) considered lysimeter-measured actual 

evaporation for modelling purposes. In Parasuraman et al. (2006), the first attempt of 

modelling the EC-measured actual evapotranspiration was made. 

 

Another promising inductive data-driven technique is genetic programming (GP) 

introduced by Koza (1992), is a method for constructing populations of models using 

stochastic search methods, namely evolutionary algorithms. An important characteristic 

of GP is that both the variables and constants of the candidate models are optimized. 

Hence, compared to other regression techniques, it is not required to choose the model 

structure a priori. In water-related studies, GP has been applied to model: flow over a 

flexible bed (Babovic and Abbott, 1997), the rainfall–runoff process (Whigham and 

Crapper, 2001; Savic et al., 1999), runoff forecasting (Khu et al., 2001), urban fractured-

rock aquifer dynamics (Hong and Rosen, 2002), temperature downscaling (Coulibaly, 

2004), and the rainfall-recharge process (Hong et al., 2005).  
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Although GP and ANNs can be seen as alternative techniques for the same task, 

such as, e.g. classification and approximation problems, in contrast to ANNs, GP has not 

been used extensively for modelling hydrological processes. The robustness of GP in 

modelling complex nonlinear processes warrants its application in modelling the actual 

evapotranspiration process, which is embedded with nonlinearity in both spatial and 

temporal scales. To the knowledge of the authors, no work has been reported in the 

literature on modelling actual evapotranspiration using GP. Hence in this study, an 

attempt has been made to evaluate the ability of GP in modelling EC-measured actual 

evapotranspiration. Specific objectives of the study include modelling the EC-measured 

latent heat flux (LE) (the product of the latent heat of vaporization and 

evapotranspiration) using GP for two distinct case studies, and comparing its 

performance with the PM estimates and the ANN model. The resulting GP-evolved 

models are analysed to understand and improve our knowledge of the predictand–

predictor relationship.   

 

3.3 Materials and Methods 

3.3.1 Artificial Neural Networks 

Artificial neural networks (ANNs) are essentially a semi-parametric regression 

technique with the ability to approximate any measurable function up to an arbitrary 

degree of accuracy. According to Haykin (1999), ANNs are a massively parallel 

distributed information processing system that is capable of storing the experiential 
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knowledge gained by the process of learning, and of making it available for future use. 

Feed-forward neural networks (FF-NNs) are the most widely adopted network 

architecture for the prediction and forecasting of water resource variables (Maier and 

Dandy, 2000). Typically, FF-NNs consist of an input layer, hidden layer(s) and an output 

layer. The input layer is connected to the hidden layer and in turn the hidden layer is 

connected to the output layer by means of connection weights. The hidden layer neurons 

consist of activation functions which help in translating the input variables to the required 

output variables.  

 

In this study, a regular three layered FF-NN with J input neurons, K hidden 

neurons, and L output neurons is considered. Symbolically, the above ANN architecture 

can be represented as ANN(J,K,L). Let j, k, and l be the indices representing the input, 

hidden, and output layers respectively. The FF-NN makes use of the tan-sigmoidal 

activation function in the hidden layer and the linear activation function in the output 

layer. The transformation of inputs (x1,…, xj) to output (yl) is achieved by Equations (3.1) 

and (3.2): 
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where wkj represents the connection weight between the jth input neuron and kth 

hidden neuron, and wlk represents the connection weight between the kth hidden neuron 
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and lth output neuron. Parameters bk and bl represent the bias of the corresponding hidden 

and output layer neurons. Function f1(⋅) represents the linear activation function and f2(⋅) 

represents the tan-sigmoidal activation function. While the tan-sigmoidal activation 

function squashes the input between –1 and +1, the linear activation function calculates 

the neuron’s output by simply returning the value passed to it.  

 

ANN modelling of a process demands two operations: training and testing. 

Training involves optimizing the connection weights through minimization of a certain 

cost function. In order to make the training process more efficient, both the inputs and 

output variables were normalized between the interval –1 and +1. Once the weights of the 

ANN model have been determined, it can be tested by evaluating its performance on a 

data set other than the training set, which is the testing set. The typical cost function used 

in training FF-NNs involves minimizing the mean sum of squares of the network errors 

(MSE). However in this study, in order to overcome the problem of over-fitting, the 

Bayesian-regularization back-propagation algorithm (Demuth and Beale, 2001) is used 

for training the FF-NNs. This algorithm improves the generalization property of the ANN 

model by developing networks with smaller weights and biases, and thus a smoother 

response that is less likely to result in over-fitting (Demuth and Beale, 2001). Hence, 

along with MSE, the cost function (Equation (3.3)) involves minimizing the mean of the 

sum of squares of the network bias and connection weights (MSW): 
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where yi and yi′ represent the measured and computed counterparts; α represents 

the regularization parameter; n and N represents the number of training instances and the 

number of network parameters, respectively. The regularization parameter α is deter-

mined in a Bayesian framework using automatic relevance determination, where different 

weight decays for each input and layer are set automatically. More information on 

automatic relevance determination can be found in (MacKay, 1992). 

 

One of the important issues in the development of a neural network model is the 

determination of the optimal configuration of the neural network model. The optimal 

number of hidden neurons is usually determined by a trial and error method. However, 

the significant input variables for characterizing a process is usually determined by linear 

cross-correlation (Bowden et al., 2005). Linear cross-correlation can only detect linear 

dependence between two variables, and is not suited for capturing the nonlinear 

dependence between the inputs and the output. A review of different methods of input 

selection adopted in water resources literature can be found in Bowden et al. (2005). In 

this study, the optimal network architecture is determined by performing a systematic 

search of different network configuration and user-adjustable parameters, with the 

objective of minimizing the cost function.  

 

3.3.2 Genetic Programming 

Genetic programming (GP), introduced by Koza (1992), belongs to a class of 

evolutionary algorithms (EA), which are based on the concepts of natural selection and 

genetics. Genetic programming is a relatively new addition to a pool of other EA such as 
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evolutionary programming (Fogel et al., 1966), genetic algorithms (Holland, 1975) and 

evolution strategies (Schwefel, 1981). Genetic symbolic regression (GSR) (Koza, 1992) 

is a special application of GP in the area of symbolic regression, where the objective is to 

find a mathematical expression that fits the given pairs of values; GSR can be considered 

as an extension of numerical regression problems where, for a given set of values of 

various independent variables and the corresponding values of dependent variables, one 

predetermines the functional form (linear, quadratic, or polynomial) of the model. The 

objective is to find the set of numerical coefficients that best fits the model. However, 

GSR involves finding the mathematical expression in symbolic form (both the discovery 

of the optimal functional form and the appropriate numerical coefficients), which 

provides the optimal fit between a finite sample of independent variables and dependent 

variables. Hence, the purpose of GSR is to develop mathematical models between the 

predictand and the predictor variables. 

 

Genetic symbolic regression works with two sets of variables, namely the func-

tional set and terminal set (Koza, 1992). The terminal set consists of independent 

variables and constants, and the functional set consists of basic mathematical operators 

{+, –, ∗, /, sin, cosh, log, power …} that may be used to form the model. The choice of 

operators depends upon the degree of complexity of the problem to be modelled. Genetic 

symbolic regression works by constructing a population of mathematical models from 

different combinations of the functional and terminal sets. Each model (individual) in the 

population can be considered as a potential solution to the problem. The mathematical 

models are usually coded in a parse tree form. For example, Figure 3-1 shows the parse 
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tree notation of a mathematical model f(x,y,z) = (5 + x)×(y – z). In Figure 3-1, the 

connection points are called nodes, and it can be seen that the inner nodes of the parse 

tree are made up of functions and the terminal nodes are made up of variables and 

constants.  

 

This section outlines the GP algorithm adopted in this study. For a detailed des-

cription of the GP method, the readers are referred to Koza (1992) and Babovic and 

Keijzer (2000). The first step in implementing GP is to generate the initial population for 

a given population size. This study adopts the ramped half-and-half method to initialize 

the population as it generates parse trees of various sizes and shapes and also provides a 

good coverage of the search space (Koza, 1992). Once initialized, the fitness of each 

individual (mathematical model) in the population is evaluated based on some objective 

function. Fitness is a numerical value attached to each individual based on their 

performance. The higher the fitness of an individual, the greater the chance of that 

individual being carried over to the next generation. At each generation, new sets of 

models are evolved by applying the genetic operators: selection, crossover and mutation 

(Koza, 1992; Babovic and Keijzer, 2000). These new models are called offspring and 

they form the basis for the next generation. In this study, the fitness measure is evaluated 

based on the root mean squared error (RMSE).  

 

Once the fitness of individual models in the population is evaluated, the next 

step is to carry out selection. Selection can be carried out by several methods, such as 

truncation selection, tournament selection, fitness proportional selection and roulette 
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wheel selection (Koza, 1992). The latter method has been adopted in this study as it is 

straightforward to implement. The roulette wheel is constructed by proportioning the 

space in the roulette wheel based on the fitness of each model in the population. The 

selection process ensures that the models with higher fitness have more chance of being 

carried over to the next generation. The process of selection leads to the creation of a 

temporary population, called the mating pool. The models in the mating pool are acted 

upon by the genetic operators, crossover and mutation.  

 

The role of the crossover operator is to generate new models, which did not exist 

in the old population, so that the problem space is sampled thoroughly. Crossover is 

carried out by choosing two parent models from the mating pool and swapping corres-

ponding sub-tree structures across a randomly chosen point to produce two different 

offspring with different characteristics. The number of models undergoing crossover 

depends upon the chosen probability of crossover, Pc. Mutation involves random 

alteration of the parse tree at the branch or node level. This alteration is done based on a 

chosen probability of mutation, Pm. Mutation introduces new offspring into the 

population and thereby guards against premature convergence. Figure 3-2 demonstrates 

the crossover and mutation operators. The crossover point between Parent 1 and Parent 2 

is shown by the dashed line and the corresponding sub-tree structures are swapped, 

resulting in Offspring 1 and Offspring 2. In Offspring 1, the terminal node has undergone 

mutation (2 replaced by Z). Thus, it can be seen that the genetic operators, crossover and 

mutation are able to produce new models (offspring) that are structurally different from 

their parent models. The various GP parameters adopted in this study are given in Table 
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3-1. In this study, the GP system used is an adaptation of GPLAB (Silva, 2005), a GP 

toolbox for MATLAB. 

 

The basic steps involved in GP can be summarised as follows: 

1. Identify the functional and terminal sets, along with the fitness measure. 

2. Generate the initial population randomly from functional and terminal sets. 

3. Based on the fitness measure, evaluate the fitness of each individual. 

4. Apply the selection operator. The higher the fitness of an individual, the greater 

the chance of that individual being selected and carried over to the next 

generation (survival of the fittest). This temporary population is termed the 

mating pool.   

5. Based on the probability of crossover (Pc), pairs of individuals from the mating 

pool are chosen and a crossover function is performed.  

6. The next step is to apply a mutation operator based on the probability of mutation 

(Pm). Mutation helps in ensuring that no point in the individual search space 

remains unexplored.  

7. Copy the resultant individuals to a new population. 

8. Repeat steps 3 to 7 for a predetermined number of iterations or until a specified 

value of the cost function is reached. 

 

3.3.3 Performance Evaluation 

The performance of different models is evaluated based on multi-criteria 

analysis. The root mean squared error (RMSE), the mean absolute relative error (MARE), 
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and correlation coefficient (R) have been considered to carry out this analysis. Each of 

the above performance statistics provides different information about the predictive 

ability of the model. The RMSE statistic indicates only the model’s ability to predict 

away from the mean (Hsu et al., 1995). The RMSE gives more weight to high values 

because it involves squaring the difference between observed and predicted values. The 

MARE provides an unbiased error estimate because it gives appropriate weight to all 

magnitudes of the predicted variable. The correlation statistic, R, evaluates the linear 

correlation between the measured and the computed values. RMSE, MARE and R are 

calculated using Equations (3.4), (3.5), and (3.6) respectively, where N represents the 

number of instances presented to the model; yi and yi′ represent measured and computed 

counterparts; and y  represents the mean of the corresponding variable.  

 

 
5.0

1

2' )(1
⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

N

i
ii yy

N
RMSE   (3.4) 

∑
=

−
=

N

i i

ii

y
yy

N
MARE

1

'1
  (3.5) 

( )( )
( ) ( )∑ ∑

∑

= =

=

−−

−−
=

N

i

N

i
iiii

N

i
iiii

yyyy

yyyy
R

1 1

2
''2

1

''

  (3.6) 

 



Chapter 3 

 85

3.3.4 Case Studies 

3.3.4.1 Case study I  

For the first case study, EC-measured evapotranspiration from the South Bison 

Hill (SBH) (57°39′N; 111°13′W), a waste-rock overburden pile located at the Syncrude 

Canada Ltd, Mildred Lake mine north of Fort McMurray, Alberta, Canada, is considered. 

The SBH was constructed with waste-rock material from oil sands mining in stages 

between 1980 and 1996. The area of SBH is 2 km2; it rises 60 m above the surrounding 

landscape and has a large flat top several hundred metres in diameter. To reclaim the 

overburden so that revegetation can occur, the underlying shale is covered by a 0.2 m 

layer of peat mineral mix on top of a 0.8 m layer of glacial till. The top of the SBH is 

dominated by foxtail barley (Hordeum jubatum); also present are other minor species 

such as fireweed (Epilobium angustifolium). In this case study, the hourly EC-measured 

LE flux between 20 May and 25 August 2003 is considered. However, for modelling 

purposes, the day-time (08:00–20:00) evapotranspiration alone is considered. 

Disregarding the missing values, the number of instances considered for training and 

testing are 658 and 381, respectively. The coefficient of variation of NR, AT, GT, RH, 

WS and LE is 0.64, 0.29, 0.28, 0.39, 0.49 and 0.72, during training, and 0.65, 0.24, 0.22, 

0.34, 0.50 and 0.67 during testing, respectively. 

 

3.3.4.2 Case study II  

The evapotranspiration data from the South West Sand Storage (SWSS) facility, 

which is located several kilometres from SBH at the Mildred Lake mine, is considered in 
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the second case study. The SWSS is currently the largest operational tailings dam in the 

world, holding approximately 435 × 106 m3 of material, covering 25 km2, and standing 

approximately 40 m high with a 20H:1V side-slope ratio. Side-slopes are constructed as 

100 m wide berms connected by 10% slopes to form an overall slope of 5%. Soils consist 

of mine tailings sand overlain with 0.4 to 0.8 m of topsoil that is a mixture of peat and 

mineral soil with a clay loam texture. Both vegetation species and composition vary 

across the SWSS, with dominant groundcover including horsetail (Equisetum arvense), 

fireweed (Epilobium angustifolia), sow thistle (Sonchus arvense), and white and yellow 

sweet clover (Melilotus alba, Melilotus officinalis). Tree and shrub species include 

Siberian larch (Larix siberica), hybrid poplar (Populus sp. hybrid), trembling aspen 

(Populus tremuloides), white spruce (Picea glauca) and willow (Salix sp.). The EC-

measured LE flux at this site from 15 May to 10 September 2005 is considered. Similar 

to the previous case study, the day time evapotranspiration alone is considered for 

modelling purposes. Disregarding the missing values, the number of instances considered 

for training and testing purposes are 787 and 408 respectively. The coefficient of 

variation of NR, AT, GT, RH, WS and LE, during training is 0.60, 0.28, 0.20, 0.34, 0.46 

and 0.49, respectively. The corresponding values during testing are 0.73, 0.27, 0.14, 0.27, 

0.47 and 0.55. 

 

Estimation of evaporation from these reconstructed watersheds is of vital 

importance as it plays a major role in the water-balance of the system, which links 

directly to ecosystem restoration strategies. Air temperature (AT; ºC), ground 

temperature (GT; ºC), net radiation (NR; W m-2), relative humidity (RH), and wind speed 
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(WS; m s-1) were measured by the weather station located on top of both the sites. 

Turbulent fluxes of heat and water vapour were measured using a CSAT3 sonic 

anemometer and thermometer (Campbell Scientific) and an LI-7500 CO2/H2O gas 

analyser (Li-Cor). Ground heat flux was measured using a CM3 radiation and energy 

balance (REBS) ground heat flux plate placed at 0.05 m depth. In the EC technique, the 

covariance of vertical wind speed with temperature and water vapour is used to estimate 

the sensible heat (H) and LE fluxes. More information on EC technique can be found in 

Drexler et al. (2004). Estimates of H and LE were taken at 10 Hz and fluxes were 

calculated using 30 minute block averages with 2-D coordinate rotation. Since variation 

of evaporation is commonly perceived as highly dependent on climatic variables, EC 

measured LE flux is modelled as a function of AT, GT, NR, RH and WS, using both 

ANNs and GP. The performances of both the data-driven models are also compared with 

the widely adopted Penman-Monteith (PM) method. The hourly FAO-PM (Temesgen et 

al., 2005) equation is given by Equation (3.7):  
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where Rn is net radiation at the grass surface (MJ m-2 h-1), G is soil heat flux 

density (MJ m-2 h-1), Δ is the saturation slope vapour pressure curve at AT (kPa °C-1), γ is 

the psychrometric constant (kPa °C-1), e0 is saturation vapour pressure at air temperature 

AT (kPa), ea is the average hourly actual vapour pressure (kPa), and WS is the average 

hourly wind speed (m s-1). 
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3.4 Results and Analysis 

For both case studies, the functional and terminal set adopted by the GP system 

in modelling the LE flux are { + ,– , ∗, / } and {NR, GT, AT, RH, WS}, respectively. 

Prior to modelling the LE flux using GP, the climatic variables were normalized by 

dividing each variable by their corresponding maximum value. This was done in order to 

overcome the problem of dimensional inconsistency. These standardized values herein 

are simply referred to as NR, GT, AT, RH and WS. The performance of the GP model is 

compared with that of the widely adopted, physically-based PM method and also with the 

ANN models.  

 

3.4.1 Case Study I 

Table 3-2 presents the performance of different models in estimating LE flux for 

the first case study in terms of RMSE, MARE and R statistics. Both data-driven models 

(ANNs and GP) performed better than the PM estimates for both the training and testing 

ranges. During training, the ANN(NR,GT,AT,RH,WS) model performed better than 

other ANN models in terms of RMSE and R statistics. Nevertheless during testing, the 

ANN(NR,GT) model performed better than other neural networks models in terms of 

RMSE and MARE (Table 3-2). This indicates that the ANN(NR,GT) model has a better 

generalization ability (performed better with unseen data) when compared to other ANN 

models. The optimal equation evolved by the GP system in characterizing the LE flux for 

Case study I is given by Equation (3.8). Although the terminal set consisted of all five 
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climatic variables, the GP-evolved equation is a function of NR and GT alone. This 

demonstrates the ability of GP to identify its own model structure, along with the relevant 

variables, to characterize the evapotranspiration process. During training, the 

performance of the GP model was slightly worse than the ANN models. However, during 

testing, the GP-evolved model performed better than the ANN models in terms of RMSE 

and MARE (Table 3-2), illustrating the better generalization property of the GP model. In 

general, the difference in performance statistics between the ANN and GP models is 

modest (Table 3-2) and, hence, the performance of both techniques is comparable. Figure 

3-3 shows the scatter plot between the observed and computed LE by different models. 

 

 ( ) ( ) ( )43.0*94.0**20.045.0 −++−= GTNRNRNRLE   (3.8) 

 

3.4.2 Case Study II 

Table 3-3 presents the performance of different models in estimating EC-

measured LE flux for Case study II in terms of RMSE, MARE and R, during both 

training and testing. Similar to the previous case study, both data-driven models 

performed better than the PM model in estimating the LE flux (Table 3-3). During 

training, the model ANN(NR,GT,AT,RH,WS) with all five inputs performed better than 

the other neural network models in terms of RMSE, MARE and R. However during 

testing, the ANN(NR,GT,AT,RH,WS) model performed better than the other ANN 

models in terms of MARE statistics alone (Table 3-3). Nevertheless, the ANN(NR,GT) 

model performed relatively better than the other ANN models in terms of RMSE and R 

(Table 3-3). While RMSE gives more weight to high values as it involves the square of 
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the difference between observed and predicted values, the MARE provides an unbiased 

error estimate because it gives appropriate weight to all magnitudes of the predicted 

variable (Karunanithi et al., 1994). Hence, comparing the testing RMSE and MARE 

statistics of ANN(NR,GT,AT,RH,WS) and ANN(NR,GT) models, the RMSE statistics of 

both models were similar, while the former model performed better than the latter model 

in terms of MARE statistics (Table 3-3). This indicates that, while NR and GT alone can 

explain most of the variance in the LE flux, addition of other climatic variables AT, RH 

and WS as inputs to the ANN model can help improve the predictive ability of the model 

for low LE flux values.  

 

The optimal equation found by the GP system reads: 

 

 ( )[ ]{ }( )NRGTGTWSATLE +×××+××= 278.078.06.0475.0   (3.9) 

 

From a terminal set with all five climatic variables, the GP system was robust in 

evolving the optimal model for characterizing LE as a function of AT, WS, GT and NR 

alone. Comparing the performance of the GP model with the ANN models (Table 3-3), 

similar to the previous case study (Table 3-2), during training the performance of the GP 

model is slightly worse than the ANN models with respect to RMSE (Table 3-3). 

However, during testing, the GP-evolved model resulted in the smallest MARE and the 

highest R statistics (Table 3-3). The better performance of the GP model during testing 

signifies its better generalization property. Analysing Equation (3.9), it can be seen that, 

although AT, WS, GT and NR appear in the GP-evolved model, the equation is 
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dominated by GT and NR. Figure 3-4 shows the scatter plots between the observed and 

predicted LE by different models for this case study.  

 

The PM method, which accounts for the influence of vegetation on evapotrans-

piration, has been used frequently to model the evapotranspiration flux (Abbott et al., 

1986). However, the PM method estimates potential reference evaporation, and in reality 

water is not always freely available (supply limited) to evaporate. Hence, the PM method 

typically overestimates evapotranspiration (Figure 3-3 (a) and Figure 3-4 (a)) during 

supply limited conditions and consequently is not directly comparable to their EC-

measured actual evapotranspiration counterparts. Nevertheless, the initiative of 

comparing PM estimates with EC-measured LE flux is to demonstrate the ability of data-

driven models in directly modelling the above flux as a function of climatic variables, 

against the PM method, which would have been used in the absence of such models. The 

performance of the PM method in the second case study is better than its performance in 

the first case study. The probable cause of the enhanced model performance is the 

increased wetness in 2005. Between 1 May and 30 August, rainfall was 227 mm in 2005 

compared with 147 mm in 2003. The reduction in water stress as a result of increased 

precipitation would allow actual evapotranspiration rates to approach potential 

evapotranspiration estimates using the PM method.  

 

3.5 Discussion 

For both case studies, the performance of the GP-evolved model is comparable 

with the performance of ANN models. However, the problem of identifying the optimal 
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input combination by the trial-and-error method innate in ANN modelling, can be 

overcome by the ability of GP in evolving its own model structure with relevant inputs. 

Also, in the case of the ANN model trained to learn the evapotranspiration process, the 

knowledge of the process learned by it is represented in the form of a weight matrix, 

which is difficult to comprehend. However, for the same problem, GP provided an 

explicit model structure that can help improve our knowledge of the system being 

modelled. Although many evaporation models use vapour pressure deficit to estimate 

evaporation, it is of interest to observe that both the GP-evolved models (Equations (3.8) 

and (3.9)) are not a function of RH. This may be because the land surface states contain 

the signals of near-surface atmospheric conditions as a result of strong land–atmosphere 

interaction (Lakshmi and Susskind, 2001; Wang et al., 2004). Hence, the RH would have 

been a redundant variable for the GP model as it would have learnt the signal of RH 

embedded in other variables. It can be observed that for both case studies, the GP-

evolved models are dominated by NR and GT (Equations (3.8) and (3.9)). This indicates 

that NR and GT alone can effectively characterize most of the variation in the LE flux. 

This finding is of particular importance as it considerably reduces the number of climatic 

variables that need to be measured for modelling EC-measured LE flux. 

 

The rate of evapotranspiration is largely controlled by the available energy and 

moisture where NR is the driving variable during energy limited conditions and soil 

moisture is the influential variable during supply limited conditions. Hence, ideally, 

evapotranspiration should be modelled as a function of climatic variables and soil 

moisture. However, as indicated earlier, interpolation of soil moisture data to match the 
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required spatial and temporal resolution of other climatic variables involves large 

uncertainty. Hence, in this study, evapotranspiration is modelled as a function of readily 

available climatic variables only. Nevertheless, ground temperature (GT) can be 

considered as a surrogate variable for soil moisture due to the strong link between soil 

thermal properties and moisture status. The water content of the top soil layer controls the 

heat capacity of the soil and, in part, the partitioning of latent and sensible heat. When 

soils are wet, a slower thermal response is associated with increased evaporation. 

Conversely, as soils dry, temperature changes are more rapid and latent heat flux 

declines. The importance of water content in the top layer and its influence on turbulent 

fluxes and ground temperature has been previously noted (Eltahir, 1998; Wang et al., 

2004). It should be noted that the data sets used in deriving the GP-based 

evapotranspiration equation (Equations (3.8) and (3.9)) are from the spring and summer 

months only, when the evapotranspiration rate is far greater than during the reminder of 

the year. Hence the results from this study are of particular importance as they illustrate 

the major share of annual evapotranspiration.  

 

3.6 Summary and Conclusions 

In this study, the utility of genetic programming in modelling the eddy-

covariance (EC) measured evapotranspiration flux is investigated. The performance of 

the GP technique is compared with artificial neural network and Penman-Monteith model 

estimates. EC measured evapotranspiration fluxes from two distinct case-studies with 

different topographic conditions were considered for the analysis, and latent heat is 

modelled as a function of net radiation, ground temperature, air temperature, wind speed 
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and relative humidity. Results from the study indicate that both data-driven models (ANN 

and GP) performed better than the Penman-Monteith method. However, the performance 

of the GP model is comparable with that of ANN models. One of the important 

advantages of employing GP to model evapotranspiration process is that, unlike the ANN 

model, GP resulted in an explicit model structure that can be easily comprehended and 

adopted. From the GP-evolved models, it was found that ground temperature and net 

radiation dominate the equation for modelling evapotranspiration. This indicates that net 

radiation and ground temperature alone can represent most of the variation in LE. This 

finding may help in reducing the number of climatic variables that need to be measured 

to build parsimonious models and predict LE. In general, it has been found that GP 

appears to be a promising tool for modelling the evapotranspiration process. The study 

can be further extended by trying different combinations of mathematical operators in the 

functional set and by applying the GP to model evapotranspiration from different sites 

with diverse morphological characteristics.  
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 Table 3-1 Genetic Programming Parameters 
 

GP parameter Value 
Population size 50 
Initialization method Ramped half-and-half 
Sampling method Roulette 
Probability of crossover, Pc 0.6 
Probability of mutation, Pm 0.3 
Cost function  RMSE 
Number of generations 400 
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Table 3-2 Performance Statistics of Different Models – Case StudyI 
 

Training Testing 
Model 

RMSE MARE R RMSE MARE R 
PM 104.6 1.26 0.71 125.3 1.53 0.73 
ANN(NR,GT,AT,RH,WS) 50.4 0.50 0.86 69.8 1.02 0.72 
ANN(NR,GT,AT,RH) 52.3 0.49 0.85 67.6 0.94 0.71 
ANN(NR,GT,AT) 55.0 0.51 0.84 68.5 0.98 0.77 
ANN(NR,GT) 56.7 0.53 0.82 66.1 0.93 0.77 
GP 57.8 0.54 0.82 65.5 0.92 0.77 
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Table 3-3 Performance Statistics of Different Models – Case Study II 
 

Training Testing 
Model 

RMSE MARE R RMSE MARE R 
PM 83.2 0.50 0.78 53.1 0.38 0.83 
ANN(NR,GT,AT,RH,WS) 39.0 0.26 0.87 39.3 0.34 0.84 
ANN(NR,GT,AT,RH) 40.1 0.28 0.86 40.0 0.41 0.84 
ANN(NR,GT,AT) 39.8 0.28 0.86 42.1 0.38 0.82 
ANN(NR,GT) 41.7 0.29 0.85 38.8 0.37 0.85 
GP 42.2 0.27 0.84 39.0 0.32 0.86 
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Figure 3-1 Parse Tree Notation 
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Figure 3-2 Crossover Coupled with Mutation. The dashed line indicates the crossover 
point and the shaded region represents the mutated node. 
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Figure 3-3 Scatter Plots of Observed and Computed LE by (a) PM, (b) 
ANN(NR,GT,AT,RH,WS), (c) ANN(NR,GT,AT,RH), (d) ANN(NR,GT,AT), (e) 

ANN(NR,GT), and (f) GP, for Case Study I. 
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Figure 3-4 Scatter Plots of Observed and Computed LE by (a) PM, (b) 
ANN(NR,GT,AT,RH,WS), (c) ANN(NR,GT,AT,RH), (d) ANN(NR,GT,AT), (e) 

ANN(NR,GT), and (f) GP, for Case Study II. 
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Chapter 4 - Estimating Saturated Hydraulic Conductivity In 

Spatially-Variable Fields Using Neural Network 

Ensembles 

 
This chapter has been copyrighted and published as a research paper in the Soil 

Science Society of America Journal. 

 
Citation: Parasuraman, K., Elshorbagy, A., and Si, B. C. (2006). “Estimating saturated 
hydraulic conductivity in spatially variable fields using neural network ensembles.” Soil 
Sci. Soc. Am. J., 70, 1851-1859. 
 

Contribution of the PhD candidate 
 
Model conceptualization was instigated by Kamban Parasuraman, Dr. Amin 

Elshorbagy, and Dr. Bing Cheng Si. Kamban Parasuraman carried out computer program 

development and simulation, with Dr. Amin Elshorbagy and Dr. Bing Cheng Si 

providing guidance on various aspects of the study. The dataset used in this study was 

provided by Dr. Bing Cheng Si. The text of the published paper was created by Kamban 

Parasuraman, with Dr. Amin Elshorbagy and Dr. Bing Cheng Si critically reviewing the 

manuscript. 

Contribution of this chapter to the overall study 
 
The previous two chapters’ highlight some of the possible methods and tools 

that can be adopted to promote transparency in the way data-driven models arrive at a 

decision in modeling the hydrological processes. Nevertheless, this chapter and the 

subsequent one identify ways for improving the reliability of the data-driven models. In 
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this chapter, the improvement in the reliability that can be achieved by adopting a local-

scale model, as against a global-scale model, is evaluated by developing pedotransfer 

functions (PTFs) to characterize the saturated hydraulic conductivity of soils. Local-scale 

neural network-based pedotransfer functions were developed and compared with a 

published global neural network model, ROSETTA. The local-scale models are shown to 

be more reliable than the global-scale models. Also, an algorithm for reducing both the 

bias and variance of the neural networks-based PTFs is identified in this study. 
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4.1 Abstract 

Modeling contaminant and water flow through soil requires accurate estimates 

of soil hydraulic properties in field scale. Although artificial neural networks (ANNs) 

based pedotransfer functions (PTFs) have been successfully adopted in modeling soil 

hydraulic properties at larger scales (national, continental, and intercontinental), the 

utility of ANNs in modeling saturated hydraulic conductivity (Ks) at a smaller (field) 

scale has rarely been reported. Hence, the objectives of this study are (i) to investigate the 

applicability of neural networks in estimating Ks at field scales, (ii) to compare the 

performance of the field-scale PTFs with the published neural networks program Rosetta, 

and (iii) to compare the performance of two different ensemble methods, namely Bagging 

and Boosting in estimating Ks. Datasets from two distinct sites are considered in the 

study. The performances of the models were evaluated when only sand, silt, and clay 

content (SSC) were used as inputs, and when SSC and bulk density ρb (SSC+ ρb) were 

used as inputs. For both datasets, the field scale models performed better than Rosetta. 

The comparison of field-scale ANN models employing bagging and boosting algorithms 

indicates that the neural network model employing the boosting algorithm results in 

better generalization by reducing both the bias and variance of the neural network 

models. 

 

4.2 Introduction 

Estimation of the hydraulic properties of soils is of paramount importance for 

modeling contaminant and water flow through the vadose zone. Hydraulic properties also 
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play an important role in partitioning the rainfall into runoff and soil moisture 

components. Soil hydraulic properties are usually measured in a laboratory using 

representative soil samples from the study area. Since the hydraulic properties exhibit 

large variations within a spatial domain, large numbers of soil samples are required to 

characterize the hydraulic properties of the study area. Laboratory estimates of hydraulic 

properties are complex and time consuming; therefore, the interest in using PTFs to 

estimate the hydraulic property of the soil is increasing (Rawls and Brakensiek, 1983; 

Cosby et al., 1984; Saxton et al., 1986; Vereecken et al., 1990; van Genuchten et al., 

1992; Leij et al., 2002). 

 

Pedotransfer functions relate hydraulic properties to easily measurable or more 

widely available soil parameters (Bouma, 1989). A detailed review of different 

pedotransfer functions is given by Wösten et al. (2001). PTFs models include traditional 

regression models (Wösten et al., 1995; Rawls et al., 1991) and ANNs (Schaap et al., 

1998; Schaap and Bouten, 1996; Pachepsky et al., 1996; Minasny et al., 1999). A detailed 

review of ANNs and their application in predicting soil hydraulic properties can be found 

in Tamarai and Wösten (1999).  

 

Schaap et al. (1998) showed that ANNs performed better than four published 

pedotransfer functions in estimating water retention data and six published pedotransfer 

functions in estimating the saturated hydraulic conductivity (Ks). The dataset used by 

Schaap et al. (1998) is derived from 4515 laboratory samples taken from 30 sources in 

the USA. Pachepsky et al. (1996) showed that the neural networks and regression models 
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performed similarly in predicting the water retention parameters based on a dataset of 

230 soil samples. Minasny and McBratney (2002) proposed a new objective function for 

neural network training, which predicted the parameters of the parametric model and 

optimized the PTF to match the observed and measured water contents. The study made 

use of 862 soil samples collected across Australia. Minasny and McBratney (2002) 

showed that their new objective function improved the performance of the neural network 

model when compared to the models employing traditional objective functions, in which 

the networks were optimized to fit the model parameters. Schaap et al. (2001) proposed a 

computer program, Rosetta, which implemented five hierarchical pedotransfer functions 

for the estimation of water retention and the saturated and unsaturated hydraulic 

conductivity. Rosetta is based on neural network analyses combined with the bootstrap 

method. The dataset used for constructing Rosetta was derived from soils in temperate to 

subtropical climates of North America and Europe. Most of the above discussed studies 

include a large number of samples obtained from a national scale, and it has been 

demonstrated that the ANNs are robust in predicting the hydraulic properties. 

 

Traditionally, hydraulic properties are estimated from PTFs that were developed 

elsewhere (Tietje and Hennings, 1996; Tietje and Tapkenhinrichs, 1993). Hence, PTFs 

have been developed at various scales, including national (Nemes et al., 2003), 

continental (Wösten et al., 1999; Nemes et al., 2003), and intercontinental scales (Nemes 

et al., 2003). Nemes et al. (2003) showed that the PTFs developed at one scale were not 

suited for other scales. Moreover, they suggested that deriving PTFs from a small set of 

relevant data, when available, was more appropriate than using PTFs derived from a large 
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but more general dataset. Also, according to Bastet et al. (1999), a particular PTF cannot 

be applied to the entire soil horizon; therefore, researchers should establish the validity of 

a PTF before adopting it. PTFs developed at a large scale are best suited for global 

climate modeling, but might be of little use for modeling chemical transport and soil 

water balance on a farm field. The importance of the above considerations can be seen in 

the following example. Romano and Palladino (2002) examined the prediction of soil 

hydraulic properties along two linear transects based on soil physical properties and 

terrain information. Although efforts have been made to develop PTFs at large scales, 

little research has been conducted to evaluate the performance of ANNs in estimating 

saturated hydraulic conductivity (Ks) at field scale. Moreover, although the utility of the 

bagging algorithm in improving the generalization ability of ANNs models has been 

reported in various studies (Schaap et al., 1998; Schaap et al., 2001; Nemes et al., 2003; 

Minasny et al., 2004), the ability of more versatile boosting algorithms (Schapire, 1990; 

Freund and Schapire, 1996) in improving the generalization ability of ANNs models in 

predicting Ks has not been investigated. Compared to bagging algorithm, boosting 

algorithm improves performance by producing a series of neural networks trained with a 

different distribution of the original training data.  

 

The general objective of this study is to investigate the applicability of ANN-

based pedotransfer functions at a field scale. The specific objectives include (1) 

determining the best combination of inputs in predicting Ks at field-scale, (2) comparing 

the performance of the field-scale PTF with the published neural networks program 
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Rosetta, and (3) evaluating the relative performance of field-scale ANNs models 

employing bagging and boosting algorithms. 

 

4.3 Materials and Methods 

4.3.1 Artificial Neural Networks 

Feed-forward neural networks (FF-NNs) are the most widely adopted network 

architecture for the prediction and forecasting of geophysical variables (Maier and 

Dandy, 2000). Typically, FF-NNs consist of three layers: the input layer, hidden layer, 

and output layer. The number of nodes in the input layer corresponds to the number of 

inputs considered for modeling the output. The input layer is connected to the hidden 

layer with weights that determine the strength of the connections. The number of nodes in 

the hidden layer indicates the complexity of the problem being modeled. The hidden 

layer nodes consist of the activation function, which helps in nonlinearly transforming the 

inputs into an alternative space where the training samples are linearly separable (Brown 

and Harris, 1994). The most commonly used activation function is the sigmoidal transfer 

function as it is a bounded, monotonic, nondecreasing function that provides a graded, 

nonlinear response. The hidden layer is connected to the output layer. Detailed review of 

ANNs and their application in water sciences can be found in Maier and Dandy (2000) 

and in ASCE Task Committee on Application of Artificial Neural Networks in 

Hydrology (2000 a, b). 

 



Chapter 4 

 115

The structure of the three-layered FF-NN used in this study is shown in Figure 

4-1. The neural network model consists of ‘j’ input neurons, ‘k’ hidden neurons, and ‘l’ 

output neurons. Symbolically, the ANN architecture shown in Figure 4-1 can be 

represented as ANN(j,k,l). The FF-NN adopted in this study makes use of the log-

sigmoidal activation function in both the hidden layer and the output layer. In Figure 4-1, 

Wkj represents the connection weight between the jth input neuron and kth hidden neuron. 

Similarly, Wlk represents the connection weight between the kth hidden neuron and lth 

output neuron. Parameters bk and bl represent the bias of the corresponding hidden and 

output layer neurons. The role of bias in a neuron is to displace the original functional 

domain by a magnitude equal to that of the bias and thereby translate the area of 

influence to its activation state. If xj represents the input variables and yl represents the 

output variables, then the inputs are transformed to output by the following equations 

(Haykin, 1999): 
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where f1(.) represents the log-sigmoidal activation function. The log-sigmoidal 

activation function helps in squashing the inputs between 0 and 1. One of the important 

issues in the development of a neural network model is the determination of optimal 

number of hidden neurons that can satisfactorily capture the nonlinear relationship 

existing between the input and the output variables. The number of neurons in the hidden 
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layer is usually determined by the trial-and-error method with the objective of 

minimizing the cost function (ASCE Task Committee on Application of Artificial Neural 

Networks in Hydrology, 2000a). The typical cost function used in training FF-NNs 

involves minimizing the mean sum of squares of the network errors (MSE). In Equation 

(4.3), yi and yi
’ represent the measured and computed counterparts, and n represents the 

number of training instances.  A systematic search of different network configurations 

and user-adjustable parameters is carried out to ascertain the optimal network 

architecture, with the objective of minimizing the cost function. The optimal network 

architecture is the one which results in the least cost function.  
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The development of a neural network model demands two operations, namely, 

(i) training and (ii) testing. Training is a process by which the connection weights 

between different layers and the bias values of the neural networks are optimized by 

minimizing the cost function. Since Rosetta uses Levenberg-Marquardt algorithm 

(Demuth and Beale, 2001), for a rational comparison of the proposed field-scale models 

with Rosetta, the same algorithm is adopted in this study to determine the optimal 

combination of connection weights and biases of the field-scale models. Once trained, the 

neural network model can be tested on an independent dataset that has not been used 

during the training process. More information on the Levenberg-Marquardt algorithm can 

be found elsewhere (Haykin, 1999).  
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One of the important properties of any neural network model is its generalization 

ability; i.e., the ability of the neural network model to accurately predict the data that are 

not used for training the model. Recent theoretical and empirical studies have shown that 

the generalization ability of the neural network model can be improved by combining 

several neural network models in redundant ensembles. Hence in this study, the ANNs 

model is coupled with “bagging” (Breiman, 1996) and “boosting” (Schapire, 1990) 

algorithms, where several redundant ensembles of ANNs, created based on a statistical 

resampling technique (Efron and Tibshirani, 1993), are combined together to generate a 

unique output.  

 

4.3.2 Bagging 

Bagging (Breiman, 1996) is an acronym for “bootstrap aggregation.” Using 

bagging, various datasets are generated from multiple realizations of the training dataset 

and these datasets are trained using different neural network models. The outputs from 

each of the neural network models are combined together to give a unique output. 

Moreover, bootstrapping allows the generation of an uncertainty estimate for each 

predicted value, which in turn aids the evaluation of the reliability of the model. The 

following paragraph outlines the methodology for carrying out bagging. 

 

Suppose the training dataset T consists of N instances (x1, y1),…,(xN, yN), where x 

and y are input and output variables respectively. It is desired to obtain B bootstrap 

datasets. As a first step, each instance in T is assigned a probability of 1/N, and the 

training set for each of the bootstrap member TB is generated by sampling with 
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replacement N times from the original dataset T using the above probabilities. Hence each 

bootstrap dataset TB may have many instances in T repeated several times, while other 

instances may be left out. Individual neural network models are then trained on each of 

TB. Therefore for any given input vector, the bootstrap algorithm provides B different 

outputs. The bagging estimate is then calculated by finding the mean of B different model 

predictions and the bagging uncertainty is estimated by finding the standard deviation of 

the B different model predictions.  

 

4.3.3 Boosting 

Compared to bagging, boosting algorithms (Schapire, 1990; Freund and 

Schapire, 1996) achieve improved performance by producing a series of neural networks 

trained with a different distribution of the original training data. The algorithm trains the 

initial neural networks with the original dataset and the training datasets for successive 

neural network models are assembled based on the performance of the current neural 

network model. If predicted values obtained from the current neural network model differ 

significantly from their observed values, the observed values will have higher probability 

of being selected in successive neural network models. In this way, the network is 

focused on learning hard patterns, thereby improving the performance of the neural 

network model. In this study, the boosting algorithm ADABoost.R2 proposed by Drucker 

(1999) is adopted. ADABoost.R2 is a variation of the adaptive boosting algorithm, 

ADABoost.R proposed by Freund and Schapire (1996). Drucker (1999) showed that, in 

most cases, the ADABoost.R2 algorithm performed better than bagging in terms of 
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prediction error when applied to ANNs. The ADABoost.R2 algorithm (Drucker, 1999) is 

detailed below. 

 

Assume that the training dataset T consists of N instances (x1, y1),…,(xN, yN), 

where x and y are input and output variables respectively. Initially each value in the 

dataset is assigned the same probability value so that each instance in the initial dataset 

has an equal chance of being sampled in the first training set; i.e., sampling distribution, 

Dt(i) at step t=1, is equal to 1/N, over all i, where i=1 to N. Iterate the following, while 

the average loss 
−

L , defined below, is less than 0.5 or a preset number of networks (t) are 

constructed. 

 

1. Populate the new training set NewTt from the original training dataset T using the 

distribution Dt. 

2. Construct a new network kt, and train it using NewTt. 

3. Calculate the maximum loss, Lmax, between the actual value and the network 

output kt(xi, y), over the initial training set T where: 

 ( )( )iit yyxkL −= ,supmax , over all i  (4.4) 

Where sup() represents the maximum value of a set. 

4. Calculate the individual Li, loss for each element in the training set: 

 
( )

⎥
⎦

⎤
⎢
⎣

⎡ −
−−=

max

,
exp1

L
yyxk

L iit
i   (4.5) 

5. Calculate the weighted average loss, 
−

L : 
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6. Set βt 

 
L

L
t −
=

1
β   (4.7) 

7. Update the distribution Dt: 
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β

  (4.8)  

Where Zt is a normalization factor chosen such that Dt+1 is a distribution.  

8. Increment t by 1  

 

For any given input vector, the boosting algorithm provides B different outputs, 

similar to bagging. Hence the boosting estimate and boosting uncertainty are estimated 

by finding the mean and standard deviation of the B different model predictions. The 

main difference between the neural network models employing the bagging and boosting 

algorithm is as follows: in the boosting algorithm, the distribution of the training set 

changes adaptively based on the performance of the previously created network, while 

the bagging algorithm changes the distribution of the training set stochastically. Although 

the boosting algorithms have better generalization ability than the bagging algorithms, the 

latter algorithm has the advantage of training the ensembles independently, hence in 

parallel. In this study, in-house codes for bagging and boosting algorithms were 

developed using MatLab (the Mathworks, Lowell, MA). The performances of the models 

were evaluated when only sand, silt, and clay contents (SSC) were used as inputs, and 

when SSC and bulk density ρb (SSC+ ρb) were used as inputs. Using bagging and 
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boosting algorithms, several redundant ensembles of ANNs, were created based on a 

statistical resampling of inputs (SSC and SSC+ ρb), and are combined together to 

generate a unique output (Ks). For both bagging and boosting algorithms, the optimal 

ensemble size, B, was found to be 30, using the trial-and-error method. Also, the number 

of hidden neurons in the networks employing bagging and boosting algorithms was 

determined using the trial-and-error method. Results from trial-and-error analysis 

indicated that the predictability of neural networks did not improve significantly with use 

of more than two hidden neurons. Hence the optimal number of hidden neurons for 

neural network models employing both bagging and boosting algorithms was two. 

Herein, the neural network model using the bagging algorithm will be referred to as 

Field(Bagging) and that using boosting algorithm will be referred to as Field(Boosting). 

 

4.3.4 Performance Evaluation 

The performances of the different models are evaluated based on (i) root mean 

square error (RMSE), (ii) mean absolute relative error (MRE), and (iii) mean residual 

(MR). RMSE, MRE, and MR statistics are calculated using Equations. (4.9), (4.10), and 

(4.11) respectively, where n represents the number of instances presented to the model 

and yi and yi
’ represent measured and computed Ks respectively.  

 

∑
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Since logarithmic values of Ks are considered, the corresponding RMSE, MRE, 

and MR statistics are dimensionless. Each of the above performance statistics provides 

different information about the predictive ability of the models. The RMSE statistic 

indicates only the model’s ability to predict away from the mean (Hsu et al., 1995). 

RMSE gives more weight to high Ks values because it involves square of the difference 

between observed and predicted values. The MRE provides an unbiased error estimate 

because it gives appropriate weight to all magnitudes of the predicted variable. The closer 

to one is the ratio of predicted to measured, the smaller the MRE. This aspect of relative 

error is found to give a more appropriate assessment and comparison of different models 

(Legates and McCabe, 1999). The MR is a measure of prediction bias, with a negative 

and positive value of MR indicating underprediction and overprediction, respectively.  

 

The best model should be unbiased (MR=0), have the smallest MRE and have 

smallest overall dispersion (RMSE). In addition, the uncertainty or standard deviation 

among realizations of predicted values using Bagging or Boosting should be small. The 

uncertainty estimate, unlike the RMSE, MRE, and MR statistics, indicates the reliability 

of the Ks estimates. When no independent hydraulic data are available, calculation of 

RMSE, MRE, and MR statistics is not possible because it requires the measured Ks value. 

However, uncertainty estimates can still provide the measure of reliability for the Ks, 

predicted by model. In this study, we consider these criteria equally important. Hence, in 

order to access the overall performance of each model, a rank score technique (Pandey 
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and Nguyen, 1999; Shu and Burn, 2004) is adopted. To calculate the rank score, the 

models are ranked from best to worst according to the performance indices. Supposing 

that there are p models under consideration, a score of 1 is assigned to the best model and 

p for the worst model. For each model, the scores for the different performance indices 

are summed to obtain the overall performance score Ro for the model. Supposing that 

there are q indices, then the overall rank scores are in the range [q, pq]. Ro is then 

normalized to obtain the normalized rank score Rn, using the following equation, where 

the normalized rank scores are in the range [0, 1], and an Rn close to 1 represents a model 

with good performance. 

 

 
qpq
Rpq

R o
n −

−
=   (4.12) 

 

4.3.5 Site Description and Sampling 

4.3.5.1 Case study I: Smeaton 

The Smeaton research site is located at Smeaton, SK, Canada (53° 40' N and 

104° 58' W). The soil at the site is classified as Gleyic Luvisol with texture dominated by 

sandy loam developed from glacio-fluvial and fluvial-lacustrine sands and gravels. The 

topography of the site is gently undulating and the climate is classified as cold and sub-

humid. The long-term annual temperature, rainfall, and potential evapotranspiration are 

0.1 °C, 393 mm, and 530 mm, respectively (Anderson and Ellis, 1976).   

 



Chapter 4 

 124

A north-south transect of 384-m length was established on a gently sloping land 

with a variable texture and organic carbon content (Si and Zeleke, 2005; Zeleke and Si, 

2005). After preliminary observations, a 3-m sampling interval was marked along the 

transect and core samples were collected in September, 2003 using 54-mm-diameter by 

60-mm-long aluminium rings. All the 128 cores were used to determine the sand, silt, and 

clay content; and the bulk density (ρb) of the soil. Hydrometer method (Gee and Bauder, 

1986) was used to determine the particle size distribution. Saturated hydraulic 

conductivity (Ks) of the undisturbed core samples was determined using the constant 

head method (Klute and Dirksen, 1986). Of the 128 samples, two were considered 

outliers and the remaining dataset (126 samples) is split into training and testing datasets.  

 

The dataset is split in such a way that every third instance appears in the testing 

set and the remaining instances make up the training set. This data segregation is carried 

out in order to account for the spatial variability of the soil properties within both the 

training and testing datasets. The statistics of the entire dataset, along with the dataset 

used for training and testing are given in Table 4-1. Prior to modeling Ks using neural 

networks, the values of Ks are logarithmically transformed to avoid bias towards high 

conductivities. While sand content and ρb showed the least variation, clay content 

showed the highest variation. Moreover the training and testing datasets have similar 

statistical properties (Table 4-1). 
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4.3.5.2 Case study II: Alvena 

The Alvena research site is located at Alvena, SK, Canada (52° 31' N and 106° 

01' W). The dominant soil type is an Aridic Ustoll and the landscape is classified as 

hummocky. The long-term annual temperature, rainfall, and potential evapotranspiration 

are 2.2 °C, 350 mm, and 624 mm, respectively (Si and Farrell, 2004). Undisturbed soil 

samples are collected along transect of 612 m length with a variable texture. The sand, 

silt, and clay content, along with the bulk density, were determined from these soil 

samples. Similar to the previous case study, particle size distribution was determined 

based on the hydrometer method, and Ks was determined using the constant head method. 

Of the 78 samples, the training and testing datasets were selected similarly to the 

previous case-study. The training and testing sets consists of 52 and 26 samples 

respectively.  

 

The statistics of the entire dataset, along with the dataset used for training and 

testing, are given in Table 4-2. While silt content ranged from 46 to 63%, clay content 

ranged from 20 to 41%. Compared to the previous case study, the log10(Ks) for the 

Alvena site showed higher variability. The coefficient of variation (CV) of log10(Ks) for 

Smeaton and Alvena dataset is 0.14 log10(cm d-1) and 0.24 log10(cm d-1), respectively. 

The statistics of training and testing dataset are similar (Table 4-2). 

 

4.4 Results and Discussion 

For the Smeaton case-study, the performance statistics of different models, when 

only three (SSC) inputs were used and when four (SSC+ ρb) inputs were used in 
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predicting Ks, are presented in Table 4-3. Since Wösten (1990) recommended that the use 

of indirect methods for estimating hydraulic properties should be accompanied by the 

uncertainty of the estimations, the average uncertainty of the predicted Ks during both 

training and testing is also reported in Table 4-3. Along with RMSE, MRE, and MR 

statistics, the uncertainty statistics are also considered in calculating the rank score. The 

rank score presented in Table 4-3 is evaluated based on the performance of different 

models during testing.  

 

When SSC was used as inputs for training, the field-scale models performed 

better than Rosetta (Table 4-3). This is expected because Rosetta is trained outside the 

field-scale dataset. However, the field-scale models also outperformed Rosetta in the 

testing set. The RMSE, MRE, and MR statistics achieved by Rosetta model were 0.26, 

0.11, and 0.15 respectively, with an uncertainty value of 0.16 log10(cm d-1). The field-

scale models resulted in relatively smaller MR values than that of the Rosetta, indicating 

that the field-scale models were less biased. Also, the field-scale models resulted in 

smaller uncertainty values, thereby imparting more confidence to the predicted values. 

The field-scale models using different algorithms, the Field(Bagging) and 

Field(Boosting), resulted in similar MREs. Nevertheless the Field(Boosting) model 

performed relatively better in terms of RMSE and MR. This is consistent with the 

findings of Drucker (1999), who reported that the ADABoost.R2 algorithm had better 

generalization property than the bagging algorithm. The Field(Boosting) algorithm 

resulted in an RMSE, MRE, and MR of 0.22, 0.09, and 0.07 respectively. Also, a least 
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uncertainty value of 0.04 log10(cm d-1) was achieved by both Field(Boosting) and 

Field(Bagging) models.  

 

Along with SSC, when ρb was also used as one of the inputs (SSC+ ρb) in 

predicting Ks, in general the performance of all the models improved considerably in 

terms of RMSE, MRE, and MR. With RMSE, MRE, and MR statistics of 0.19, 0.08, and 

-0.07, Rosetta showed the maximum improvement when ρb was added as input (Table 

4-3). The Rosetta model, which overpredicted (positive MR) Ks when SSC was used as 

inputs, resulted in underprediction (negative MR) when SSC+ ρb were used as inputs. 

Also the uncertainty in Rosetta model estimates dropped from 0.16 log10(cm d-1) to 0.12 

log10(cm d-1) when ρb was added. However, opposite results were obtained in the case of 

field-scale models. When ρb was added to the inputs, the estimated uncertainty increased 

from 0.04 log10(cm d-1) to 0.11 log10(cm d-1) in the case of Field(Bagging) and from 0.04 

log10(cm d-1) to 0.10 log10(cm d-1) in the case of Field(Boosting). Comparing the 

performance of Rosetta with the field-scale models, Rosetta resulted in the least RMSE 

statistics. However, the uncertainty estimates are larger than the field-scale models. The 

Field(Boosting) model resulted in the least MR and uncertainty statistics of 0.04 and 0.10 

log10(cm d-1). In general the overall performance of different models, as measured by 

their rank scores, indicated that the Field(Boosting) model performed better than other 

models, when either SSC or SSC+ρb was used as inputs. Figure 4-2 and Figure 4-3 show 

the scatter plots between the measured and computed Ks using different models when 

SSC and SSC+ ρb were used as inputs. In general, Rosetta under-predicted Ks when SSC 

were used as inputs and over-predicted Ks when SSC+ ρb were used as inputs. However, 
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the prediction trends of both the field-scale models were similar for both the input 

conditions (Figure 4-2 and Figure 4-3). 

 

For the Alvena case-study the performances of different models as measured by 

RMSE, MRE, MR, along with uncertainty estimates, when SSC or SSC+ ρb are used as 

inputs, are presented in Table 4-4. As with the previous case study, the rank score 

calculated based on the performance of different models during testing is also presented 

in Table 4-4. When SSC alone was used as inputs, the field-scale models outperformed 

Rosetta during both training and testing (Table 4-4). MR statistics indicated that the field-

scale models were less biased than Rosetta. Rosetta overpredicted Ks, and the field-scale 

models underpredicted Ks. The uncertainty estimate was 0.10 log10(cm d-1) for Rosetta, 

0.09 log10(cm d-1) for Field(Bagging) and 0.10 log10(cm d-1) for Field(Boosting). The 

Field(Boosting) model performed better than the Field(Bagging) model in terms of MR. 

However, the Field(Bagging) model resulted in smaller uncertainty value than 

Field(Boosting) model. Based on the rank score, the performances of both the field-scale 

models are similar. 

 

When SSC+ ρb were used in estimating Ks, the field-scale models again 

outperformed Rosetta (Table 4-4). Rosetta resulted in RMSE, MRE, and MR estimates of 

0.86, 0.42, and 0.60 respectively. An uncertainty of 0.12 log10(cm d-1) was achieved by 

the Rosetta model. The Field(Boosting) model performed better than the Field(Bagging) 

model and the Field(Boosting) model resulted in the maximum rank score (Table 4-4). 

This illustrates the superior performance of the Field(Boosting) model in predicting Ks. 
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Moreover it should be noted that the addition of ρb as one of the inputs resulted in 

deterioration of the field-scale models performance during testing, although there was 

significant improvement during training (Table 4-4). This illustrates that the 

generalization property of the field-scale models is affected when ρb is considered as one 

of the inputs. Nevertheless, the addition of ρb as one of the inputs to the Rosetta model 

improved its performance during testing in terms of RMSE and MR, but deteriorated its 

performance in terms of MRE and the uncertainty estimate. The reason for the poor 

performances in the field-scale and Rosetta models is that ρb is poorly correlated to Ks at 

the Alvena site (R2=0.01). Figure 4-4 and Figure 4-5 show the scatter plots between the 

measured and computed Ks using different models when SSC and SSC+ ρb were used as 

inputs. From Figure 4-4 and Figure 4-5, it can be seen that the Rosetta model performed 

poorly in predicting Ks.  Nevertheless, the performance of the local models was relatively 

better.  

 

In general, it is observed that the performance of the neural network models in 

estimating Ks for the Smeaton dataset was better (less prediction errors) than that of the 

Alvena dataset.  This is because soil hydraulic property depends on soil texture and soil 

structure. Soil structure in a sandy soil is dominantly single grained (or sometimes 

referred to as structureless). Hence substantial difference in Ks, due to soil structure, is 

unlikely in sandy soils. Nevertheless, soil structure in clay loam soil can be blocky, which 

in addition to soil texture, can introduce substantial difference in Ks. Since the neural 

network models consider only the soil texture, the better performance of the neural 

network models in sandy soils is expected. 
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Although the field-scale models outperformed Rosetta in both cases of the 

Smeaton (Table 4-3) and the Alvena (Table 4-4), the better performance of the field-scale 

models against Rosetta was more pronounced in the case of Alvena than in Smeaton. At 

the Smeaton site, the field-scale models had around 11 % reduction in RMSE, 20% 

reduction in MRE, and 47% reduction in MR and 75% reduction in uncertainty when 

SSC were used as input. At the Alvena site, field-scale models had about 45% reduction 

in RMSE, 26% reduction in MRE, 74% reduction in MR, and 10% reduction in 

uncertainty when SSC were used as inputs.  This may be attributed to the following 

reason. The soil type is sandy loam in Smeaton and silty-clay-loam in Alvena. Compared 

to the silty clay-loam soils, sandy soils are better represented in the training dataset of 

Rosetta (Schaap et al., 2001). Hence the performance of Rosetta was relatively better in 

the Smeaton case-study. The above finding is of particular significance because it 

reiterates the importance of the choice of proper training dataset. It can be concluded that 

the neural network model trained even on a small set of relevant data, when available, is 

better than training the neural network model with large but more general dataset. This 

finding is supported by Nemes et al. (2003). Moreover, the field-scale models are more 

parsimonious than Rosetta as the number of hidden neurons is six in Rosetta, and is two 

in the field-scale models. For both the case studies, the inclusion of ρb as one of the input 

parameters to the field-scale models, improved the performance of the models in terms of 

error estimates. However the uncertainty of the model predictions increased. Hence for 

the field-scale models, SSC is found to be the optimal combination of inputs. 

 



Chapter 4 

 131

As hypothesized, the boosting algorithm performs better than the bagging 

algorithm, which has been conventionally adopted in neural network modeling of soil 

hydraulic parameters. For both the case studies, the Field(Boosting) model resulted in a 

considerably less MR value than the Field(Bagging) model. This illustrates that the 

neural network model using boosting algorithm is less biased. This can be attributed to 

the ability of the boosting algorithm to focus and learn hard patterns, which in turn 

improves the performance of the neural network models. Unlike the bagging algorithm, 

which is largely a variance reduction method, the boosting algorithm is shown to reduce 

both bias and variance of the model. After each network in the ensemble is trained, the 

training samples with large errors have their weights increased while the training samples 

with small errors have their weights reduced for the purpose of training the next network 

in the ensemble. In this way, the boosting algorithm attempts to reduce the bias of the 

most recent network in the ensemble by focusing more on the training samples that have 

larger prediction errors.  

 

In this study, we evaluated the performance of Rosetta, Field(Bagging), and 

Field(Boosting) models based on their ability in predicting the saturated hydraulic 

conductivity at field scales. More uncertainty analysis regarding the applicability of the 

neural networks predicted values in modeling the hydrological processes is beyond the 

scope of this study. Global models have wide applicability, but are found to perform 

poorly in field scale studies. Nevertheless, the most practical environmental and 

agricultural applications are at field scales. In this regard, the study is unique in that the 

performance of the ANNs models in predicting Ks at field scale is explored. While one 
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cannot extrapolate field-scale models to drastically different fields, field-scale models 

reduce the number of measurements required for that field. Also, in this study we 

illustrated the robustness of boosting algorithms in improving the generalization property 

of neural network models. Compared to the networks implementing the bagging 

algorithm, the neural network models implementing the boosting algorithm were shown 

to produce networks with less bias.  

 

4.5 Conclusions 

The study investigated the utility of neural network models in predicting the 

saturated hydraulic conductivity at field scale. Two different case-studies with different 

soil types were considered for the analysis. Two different ensemble neural network 

models, one using bagging algorithm and the other using boosting algorithm were 

developed and tested on the two case-studies. The performance of the field-scale artificial 

neural network models were compared with the published neural network program, 

Rosetta. 

 

For both the case-studies, the field-scale neural network models performed 

better than the Rosetta model. This emphasizes that a neural network model trained even 

on a small set of relevant data, when available, is better than training a neural network 

model with a large but more general data set. For both the field-scale models, the 

inclusion of ρb as one of the inputs to the neural networks increased the uncertainty in the 

model predictions.  
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In contrast to most of the earlier studies that employed bagging algorithm to 

improve the performance of the neural network models in predicting the soil hydraulic 

properties, the study demonstrated the superior performance of the boosting algorithm 

based ensemble networks in modeling the saturated hydraulic conductivity at field scale. 

The Field(Boosting) model consistently resulted in less mean residual values than the 

Field(Bagging) model indicating the lower bias associated with the latter model. 

Compared to the bagging algorithm, the boosting algorithm reduced both the bias and 

variance of the neural network models. The utility of the boosting algorithm in improving 

the performance of the neural network models with regards to modeling soil hydraulic 

parameters needs to be further explored on large scale databases.  
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Table 4-1 Statistics of the entire dataset along with the dataset used for training and 
testing (Smeaton) 

 

 

Table 4-2 Statistics of the entire dataset along with the dataset used for training and 
testing (Alvena) 
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Table 4-3 Performance statistics of different models on the Smeaton dataset 
 

Training Testing 
Model 

RMSE MRE MR Uncertainty RMSE MRE MR Uncertainty
Rank 
Score

SSC 
Rosetta 0.27 0.12 0.06 0.15 0.26 0.11 0.15 0.16 0.00 
Field(Bagging) 0.23 0.10 -0.02 0.04 0.23 0.09 0.08 0.04 0.75 
Field(Boosting) 0.23 0.11 -0.03 0.04 0.22 0.09 0.07 0.04 1.00 

SSC+ρb 
Rosetta 0.29 0.14 -0.17 0.12 0.19 0.08 -0.07 0.12 0.63 
Field(Bagging) 0.21 0.10 -0.01 0.11 0.20 0.08 0.07 0.11 0.63 
Field(Boosting) 0.22 0.10 -0.05 0.10 0.20 0.08 0.04 0.10 0.88 
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Table 4-4 Performance statistics of different models on the Alvena dataset 
 

Training Testing 
Model 

RMSE MRE MR Uncertainty RMSE MRE MR Uncertainty
Rank 
Score

SSC 
Rosetta 0.92 0.40 0.81 0.11 0.87 0.38 0.72 0.10 0.13 
Field(Bagging) 0.38 0.20 -0.09 0.10 0.48 0.28 -0.19 0.09 0.88 
Field(Boosting) 0.38 0.20 -0.08 0.12 0.48 0.28 -0.17 0.10 0.88 

SSC+ρb 
Rosetta 0.96 0.38 0.70 0.13 0.86 0.42 0.60 0.12 0.00 
Field(Bagging) 0.37 0.19 -0.13 0.12 0.50 0.29 -0.23 0.11 0.63 
Field(Boosting) 0.36 0.18 -0.09 0.11 0.48 0.28 -0.19 0.11 1.00 
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Figure 4-1. Structure of the three-layered feed-forward neural network (FF-NN). 
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Figure 4-2 Scatter plots between the measured and the computed log10(Ks) by (a) Rosetta; 
(b) Field(Bagging); and (c) Field(Boosting) for Smeaton with SSC as inputs. The ‘solid’ 

points represent the training instances and the ‘open’ points represent the testing 
instances. 
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Figure 4-3 Scatter plots between the measured and the computed log10(Ks) by (a) Rosetta; 
(b) Field(Bagging); and (c) Field(Boosting) for Smeaton with SSC and ρb as inputs. The 
‘solid’ points represent the training instances and the ‘open’ points represent the testing 

instances. 
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Figure 4-4 Scatter plots between the measured and the computed log10(Ks) by (a) Rosetta; 
(b) Field(Bagging); and (c) Field(Boosting) for Alvena with SSC as inputs. The ‘solid’ 

points represent the training instances and the ‘open’ points represent the testing 
instances. 
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Figure 4-5 Scatter plots between the measured and the computed log10(Ks) by (a) Rosetta; 
(b) Field(Bagging); and (c) Field(Boosting) for Alvena with SSC and ρb as inputs. The 
‘solid’ points represent the training instances and the ‘open’ points represent the testing 

instances. 
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Chapter 5 - Estimating Saturated Hydraulic Conductivity 
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Contribution of this chapter to the overall study 
 
This chapter is a continuation of the previous chapter, where the objective was to 

improve the reliability of the system-theoretic models. In this chapter, a methodology for 

improving the reliability of geophysical models by accounting for the influence of model-

structure uncertainty is proposed. The methodology was applied to develop pedotransfer 

functions for estimating saturated hydraulic conductivity of soils. The uncertainty due to 

model structure is shown to be more than the uncertainty due to model parameters. `An 
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increase in the model complexity is shown to increase the predictive ability of the model, 

but at an increasing level of uncertainty. 
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5.1 Abstract 

Saturated hydraulic conductivity (Ks) is one of the key parameters in modeling 

the solute and water movement in the vadose zone. Field and laboratory measurement of 

Ks is time consuming, and hence is not practical for characterizing the large spatial and 

temporal variability of Ks. As an alternative to direct measurements, pedotransfer 

functions (PTFs), which estimate Ks from readily available soil data are being widely 

adopted. This study explores the utility of a promising data-driven method, namely, 

genetic programming (GP), to develop PTFs, for estimating Ks from sand, silt, clay 

contents, and bulk density (BD). A dataset from the UNsaturated SOil hydraulic 

DAtabase (UNSODA) has been considered in this study. The performances of the GP 

models are compared with the neural networks (NNs) model, as it is the most widely 

adopted method for developing PTFs. The uncertainty of the PTFs is evaluated by 

combining the GP and the NN models, with the non-parametric bootstrap method. 

Results from the study indicate that GP appears to be a promising tool for developing 

PTFs for estimating Ks. The better performance of the GP model may be attributed to the 

ability of GP to optimize both the model structure and its parameters in unison.  For the 

PTFs developed using GP, the uncertainty due to model structure is shown to be more 

than the uncertainty due to model parameters. An increase in the model complexity is 

shown to increase the predictive ability of the model, but at an increasing level of 

uncertainty.  
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5.2 Introduction 

Over the past few decades, vadose zone modeling has received significant 

impetus due to the advancement in computing power and technology. Hence, focus on 

vadose zone models has shifted from coarse lumped models to more realistic spatially 

distributed models. These spatially distributed models have drastically increased the need 

for soil hydraulic data on finer resolution. Direct (field and laboratory) measurement of 

soil hydraulic data is labour intensive, time consuming and expensive as these methods 

require restrictive initial and boundary conditions. For a detailed review of different 

laboratory and field measurement of soil hydraulic data, readers are referred to Klute 

(1986). The problems (labor intensive, time consuming, expensive) associated with direct 

measurement of soil hydraulic properties make it quite impractical to amass a dataset at a 

resolution required for implementing such a spatially distributed model. Alternatively, 

these soil hydraulic properties can be estimated from more easily available soil data by 

the use of pedotransfer functions (PTFs) (Bouma, 1989). 

 

 PTFs are predictive functions that can translate basic soil data like particle-size 

distributions, bulk density, and organic matter content, into soil hydraulic properties. Due 

to this reason, interest in developing PTFs is ever increasing (Rawls and Brakensiek, 

1983; Cosby et al., 1984; Saxton et al., 1986; Vereecken et al., 1990; Van Genuchten et 

al., 1992; and Leij et al., 2002). A detailed review of different PTFs is given by Wösten et 

al. (2001). Several methods have been adopted in the literature to develop PTFs. These 

methods range from simple lookup tables to more complex data-driven methods like 

regression analysis, neural networks (NN), group method of data handling, and regression 
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trees. Gupta and Larson (1979) used linear regression to estimate soil water 

characteristic. Rawls et al. (1991) and Minasny et al. (1999) used nonlinear regression to 

develop PTFs. The regression models are being gradually replaced by the NN models in 

developing PTFs. Key examples of such studies include Pachepsky et al. (1996), Schaap 

and Bouten (1996), Minasny et al. (1999), and Tamarai et al. (1998). Another data-driven 

technique, called the group method of data handling has been used by Pachepsky et al. 

(1998), Nemes et al. (2005) and Ungaro et al. (2005) for developing PTFs. The technique 

of regression trees has been used by McKenzie and Jacquier (1997) for developing PTFs. 

As evident from a plethora of studies in literature on NN based PTFs, NN appears to be 

the most widely adopted method for developing PTFs. 

 

Recently, another promising inductive data-driven technique called Genetic 

programming (GP) was proposed by Koza (1992). GP is a method for constructing 

populations of models using stochastic search methods namely evolutionary algorithms. 

An important characteristic of GP is that, both the variables and constants of the 

candidate models are optimized. Hence, compared to other regression techniques, it is not 

required to choose the model structure a priori. In water related studies, GP has been 

applied to model: flow over a flexible bed (Babovic and Abbott, 1997); rainfall-runoff 

process (Whigham and Crapper, 2001; Savic et al., 1999); runoff forecasting (Khu et al., 

2001; urban fractured-rock aquifer dynamics (Hong and Rosen, 2002); temperature 

downscaling (Coulibaly, 2004); rainfall-recharge process (Hong et al., 2005); soil 

moisture (Makkeasorn et al., 2006); and evapotranspiration (Parasuraman et al., 2007).  
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Although GP and the most widely used method for developing PTFs, namely 

NN, can be seen as alternative techniques for the same task, like, e.g., classification and 

approximation problems, in contrast to NN, studies to determine the utility of GP in 

developing PTFs has not been attempted yet. Hence in this study, an attempt has been 

made to explore the efficacy of GP in developing PTFs for estimating the saturated 

hydraulic conductivity (Ks). Specific objectives of this study include (i) developing PTFs 

for estimating Ks using GP; (ii) comparing the performance of the GP-based PTFs with 

the performance of the NN-based model, as it is the most widely used method for 

developing PTFs; and (iii) highlighting the potential as well as the shortcomings of the 

use of GP for geophysical applications. 

 

5.3 Materials and Methods 

5.3.1 Dataset Used 

The dataset used in this study is derived from the UNsaturated SOil hydraulic 

DAtabase (UNSODA) database (Leij et al., 1996). The UNSODA database was 

developed to provide a source of hydraulic data and other soil properties for practitioners 

and researchers, and the database was derived from soil samples from Europe and North 

America. Compared to soils with finer texture, coarse textured soils are in a majority in 

the UNSODA database (Leij et al., 1996). The UNSODA database has been widely used 

for developing PTFs (e.g., Schaap and Leij, 1998; Schaap et al., 2001; Ungaro et al., 

2005). Sand, silt, clay content (SSC), bulk density (BD) and Ks values of 314 samples are 

extracted from the UNSODA database. Out of the 314 samples, 200 and 114 samples 
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were selected for model calibration and validation, respectively. The Ks values are log-

transformed to account for their log-normal distribution. One of the samples in the 

calibration dataset had Ks=1 cm/day, which when log-transformed results in log10(Ks)=0. 

As detailed in later section, mean absolute relative error (MARE) is used as one of the 

measures for evaluating the models performance. Hence, the above mentioned value is 

discarded from the calibration set, as it is not possible to calculate the relative error for 

that particular sample. As the UNSODA database is created by assembling different 

sources of data that came different parts of the world, the dataset as such is stratified 

randomly. Hence, no special consideration was given to specifically sample the dataset 

between the training and the testing set. From the available 313 data instances, the first 

199 instances were selected for training, and the remaining 114 data instances were used 

for testing. The descriptive statistics, along with the correlation matrix, of the dataset 

used for calibration and validation are presented in Table 5-1 and Table 5-2, respectively. 

The coefficient of variation (CV) of different variables during training and testing are 

comparable (Table 5-1 and Table 5-2). 

 

5.3.2 Genetic Programming 

Genetic Programming (GP), introduced by Koza (1992), is a new addition to a 

class of evolutionary algorithms like Evolutionary Programming (Fogel et al., 1966), 

Genetic Algorithms (Holland, 1975), and Evolution Strategies (Schwefel, 1981). In GP, a 

population of solution candidates evolves through many generations towards an optimal 

solution, using the concepts of natural selection and genetics. Genetic symbolic 

regression (GSR) is a special application of GP in the area of symbolic regression, where 
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the objective is to find a mathematical expression in symbolic form, that provides an 

optimal fit between a finite sampling of values of the independent variable and its 

associated values of the dependent variable (Koza, 1992). 

 

GSR can be considered as an extension of numerical regression problems. In 

numerical regression problems, one predetermines the functional form (linear, quadratic, 

or polynomial), and the objective is to find the set of numerical coefficients that best fits 

the chosen model structure. However, GSR does not require the functional form to be 

defined a priori, as GSR involves finding the optimal mathematical expression in 

symbolic form (both the discovery of the correct functional form and the appropriate 

numerical coefficients) that defines the predictand-predictor relationship. More 

information on GP can be found in Koza (1992) and Babovic and Keijzer (2000). 

 

Figure 5-1 shows the flowchart of the GSR paradigm. For a given problem, the 

first step is to define the functional and terminal set, along with the objective function and 

the genetic operators. Functional set and terminal set are the main building blocks of the 

GSR, and hence their appropriate identification is central in developing a robust GSR 

model. The functional set consists of basic mathematical operators { +, -, *, /, sin, exp, 

…} that may be used to form the model. The choice of operators depends upon the 

degree of complexity of the problem to be modeled. The terminal set consists of 

independent variables and constants. The constants can either be physical constants (e.g. 

Earth’s gravitational acceleration, specific gravity of fluid) or randomly generated 

constants. Different combinations of functional and terminal sets are used to construct a 



Chapter 5 

 155

population of mathematical models. Each model (individual) in the population can be 

considered as a potential solution to the problem. The mathematical models are usually 

coded in a parse tree form. For example, Figure 5-2 shows the parse tree notation of a 

mathematical model ( ) ( ) ( )zyxzyxf 6*,, += . In Figure 5-2, the connection points are 

called as nodes, and it can be seen that the inner nodes of the parse tree are made up of 

functions, and the terminal nodes are made up of variables and constants. Hence in GP 

terminology, the variables and constants are referred as terminals, and the functions are 

referred as non-terminals. The depth of the sparse tree shown in Figure 5-2 is three. 

Objective or fitness or cost function is used to evaluate the value or fitness of each 

individual in the population. Usually squared error statistics or its variant (mean squared 

error and root mean squared error) is used as the objective function. Genetic operators 

include selection, crossover, and mutation, and they are discussed in detail later in this 

section. 

 

Once the functional and terminal sets are defined, the next step is to generate the 

initial population for a given population size. The initial population can be generated in a 

multitude of ways, including, the full method, grow method, and ramped half-and-half 

method. In the full method, the new trees are generated by assigning non-terminal nodes 

until a pre-described initial maximum tree depth is reached, and the last depth level is 

limited to the terminal node. The full method usually results in perfectly balanced trees 

with branches of same length. In the grow method, each new node is randomly chosen 

between the terminals and the non-terminals, with the terminals making up the node at 

the initial maximum tree depth. As a consequence, the grow method usually results in 
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highly unbalanced trees. The ramped half-and-half method is a combination of the full 

and the grow methods. For each depth level considered, half of the individuals are 

initialized using the full method and the other half using the grow method. The ramped 

half-and-half method is shown to produce highly diverse trees, both in terms of size and 

shape (Koza, 1992), and thereby provides a good coverage of the search space. More 

information on the different methods of generating the initial population can be found in 

Koza (1992).  Once initialized, the fitness of each individual (mathematical model) in the 

population is evaluated based on the selected objective function. The higher the fitness of 

an individual, the greater is the chance of the individual being carried over to the next 

generation. At each generation, new sets of models are evolved by applying the genetic 

operators: selection, crossover and mutation (Koza, 1992; Babovic and Keijzer, 2000). 

These new models are termed offspring, and they form the basis for the next generation. 

 

After the fitness of the individual models in the population is evaluated, the next 

step is to carry out selection. The objective of the selection process is to create a 

temporary population called the mating pool, which can be acted upon by genetic 

operators, crossover and mutation. Selection can be carried out by several methods like 

truncation selection, tournament selection, and roulette wheel selection (Koza, 1992). As 

roulette wheel selection is the most widely used method including Koza (1992), it has 

been adopted in this study. Roulette wheel is constructed by proportioning the space in 

the roulette wheel based on the fitness of each model in the population. The selection 

process ensures that the models with higher fitness have more chance of being carried 

over to the next generation. 
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Crossover is carried out by choosing two parent models from the mating pool 

and swapping corresponding sub-tree structures across a randomly chosen point to 

produce two different offspring with different characteristics. The number of models 

undergoing crossover depends upon the chosen probability of crossover, Pc. Mutation 

involves random alteration of the parse tree at the branch or node level. This alteration is 

done based on the probability of mutation, Pm.  For an overview of different types of 

computational mutations, readers are referred to Babovic and Keijzer (2000). While the 

role of crossover operator is to generate new models, which did not exist in the old 

population, the mutation operator guards against premature convergence by constantly 

introducing new offspring into the population. Figure 5-3 demonstrates the crossover and 

mutation operators. The crossover point between Parent 1 and Parent 2 is shown by the 

dashed line, and the corresponding sub-tree structures are swapped, resulting in Offspring 

1 and Offspring 2. In Offspring 1, the terminal node has undergone mutation (2 replaced 

by z). The genetic operators, crossover and mutation, are shown to produce new models 

(Offspring), which are structurally different from their parent models (Figure 5-3). These 

operators ensure that the model space is sampled thoroughly to arrive at the optimal 

model. After the initial population has been acted upon by the genetic operators, the 

resultant individuals form the new population for the next generation. This iterative 

process is carried out for a predetermined number of iterations or until a specified value 

of cost function is reached. 
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In this study, the GP system used is an adaptation of GPLAB (Silva, 2005), a GP 

toolbox for MATLAB. Since the values of the GP system parameters (e.g. crossover rate, 

mutation rate, population size) are problem dependent, the usual practice is to determine 

them using trial-and-error process with the objective of minimizing the cost function 

during the training process. This study adopted a similar approach in arriving at the GP 

parameters, and the resulting parameter values are shown in Table 5-3. One of the main 

issues that need to be addressed in developing a GP system is that of “bloating”. Bloating 

refers to the exponential growth of redundant and functionally useless trees. This is 

caused by the genetic operators (crossover and mutation) in their quest to arrive at better 

solutions.  Several bloat control techniques have been proposed in the literature, and a 

review of these methods can be found in Soule and Foster (1999), Poli (2003), and Silva 

and Costa (2004). This study adopted the Heavy Dynamic Limit method proposed by 

Silva and Costa (2004), which is based on attaching a dynamic limit on the depth of the 

trees allowed in the population, initially set with a low value, and only raised and lowered 

when needed to accommodate an individual with better performance that would 

otherwise break the limit. More information on the heavy dynamic limit method can be 

found in Silva and Costa (2004). 

 

Two GP models, GP(1) and GP(2), are developed to estimate Ks. While the 

functional set of GP(1) and GP(2) models are { + ,- } and { + ,-, /, * } respectively, the 

terminal set of both the models remains the same. Along with randomly generated 

constants, {Sand, Silt, Clay, Bulk density} constitute the terminal set of both GP(1) and 

GP(2) models. This exercise is carried out to evaluate the performance of the GP models 
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with varying level of mathematical operators (complexity) that can be used to define the 

predictand-predictor relationship. Prior to developing PTFs for estimating Ks using GP, 

both the independent (Sand, Silt, Clay, BD) and the dependent variables (log10(Ks)) are 

normalized by dividing each variable by their corresponding maximum value. This is 

done in order to overcome the problem of dimensional inconsistency and to achieve 

better generalization. These standardized values, herein are simply referred as Sand, Silt, 

Clay, BD and Ks. 

 

5.3.3 Performance Evaluation 

The performances of the GP-based models are compared with the NN model, as 

it is the most widely used method for developing PTFs. A detailed description of NN is 

beyond the scope of this paper. For a detailed understanding of NNs, readers are referred 

to Haykin (1999). The NN model adopted in this study employs Bayesian-Regularization 

(BR) algorithm for training the networks. The BR algorithm has the advantage of 

producing networks with good generalization property as the cost function (Equation 5.1) 

involves minimizing both the mean sum of squares of the network errors (MSE) and the 

mean of the sum of squares of the network weights and bias (MSW). In Equation (5.1), yi 

and yi
’ represent the measured and computed log10(Ks) values; α represents the 

regularization parameter; wj represents the connection weights and bias values; n, and N 

represents the number of training instances and the number of network parameters 

respectively. More information on BR algorithms can be found in Demuth and Beale 

(2001). By trial-and-error method, the optimal number of hidden neurons was found to be 

six. The hidden layer neurons uses tan-sigmoidal activation function and the output layer 
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neurons use a linear activation function. Herein, the NN model will be referred as 

NN(BR). The performances of the different models are evaluated based on (i) root mean 

squared error (RMSE), (ii) mean absolute relative error (MARE), and (iii) mean residual 

(MR). RMSE, MARE, and MR statistics are calculated using Equations (5.2), (5.3), and 

(5.4) respectively. In Equations (5.2), (5.3), and (5.4), similar to Equation (5.1), yi and yi
’ 

represents the measured and computed log10(Ks) values, and n represents the number of 

data instances. 
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5.3.4 PTF Uncertainty 

Wösten (1990) and McBratney et al. (2002) underscore the need for uncertainty 

estimates as part of the PTF performance evaluation. The uncertainty estimate, unlike the 

RMSE, MARE, and MR statistics, indicates the reliability of Ks estimated by the model. 

Calculation of RMSE, MARE, and MR is possible only when measured Ks values are 

available. In such instances, uncertainty estimate can still provide the measure of 

reliability of Ks estimated by the model. Usually, PTF uncertainty is calculated using the 
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non-parametric bootstrap method (Efron and Tibshirani, 1993). The bootstrap method 

presumes that the training dataset is a good representation of the original population, and 

that this dataset is only one particular realization of that population. Hence, training the 

model on a different realization of the population would result in a slightly different 

prediction of Ks. In order to account for such uncertainty in prediction, B independent 

datasets (TB), of size N, can be generated by repeated random resampling with 

replacement of the training dataset (T), of size N. Hence each bootstrap dataset TB may 

have many instances of T repeated several times, while other instances may be left out. 

Since TB contains a different realization of T, models trained on each of TB may be 

slightly different. It should be noted that the different realization produced by the 

bootstrap method are different not in terms of relative values, but only in the order and 

occurrence of the data instances. For this study, bootstrap size, B, is assumed to be 50. 

For a rational comparison, initially the resampled datasets (TB) are generated and 

predetermined so that the NN and GP models can be trained on the same resampled 

datasets. The model accuracy and its related uncertainty is calculated in the following 

manner: (i) since a bootstrap size of 50 is used in this study, for each input vector in the 

dataset, the NN- and GP- PTFs results in 50 different model predictions, based on models 

trained on the 50 resampled datasets (i.e. for each input vector the PTF results in 50 

different model predictions); (ii) for that particular input vector, the estimated PTF value 

and its related uncertainty is determined by calculating the mean and standard deviations 

of the 50 different model predictions. The mean represents the model estimated value, 

and the standard deviation represents the uncertainty associated with that particular 

model estimate; (iii) similarly, the model estimates and their related uncertainty are 



Chapter 5 

 162

evaluated for all the input vectors in the training and the testing datasets; (iv) for a 

particular PTF, the performance in terms of RMSE, MARE, and MR statistics is then 

calculated by comparing the model estimates with their measured counterparts over the 

entire training and testing ranges; (v) the overall uncertainty associated with that 

particular PTF is calculated by averaging the standard deviations of the ensemble model 

predictions over the entire training and testing ranges. 

 

Adopting ensemble technique in PTFs development not only assists in 

evaluating the uncertainty of the developed PTFs, but also helps in addressing one of the 

pertinent issues in any machine learning (e.g. ANNs, GP) algorithms, namely 

generalization. Iba (1999) applied the ensemble method of bagging and boosting within 

the framework of GP and obtained encouraging results. Keijzer and Babovic (2000) and 

Folino et al. (2006) demonstrated that ensemble methods like bagging and boosting can 

reduce the generalization error in GP. Hence, the models developed in this study by 

combining self-organizing algorithm with statistical resampling techniques are expected 

to reduce, if not fully overcome, the generalization error. It should be noted that in the 

case of the GP models (GP(1) and GP(2)), for each TB, both the model structure and the 

model parameters are evolved simultaneously by the self-organizing nature of the GP 

algorithm.  Nevertheless in NN(BR) model, for each of TB, the model structure is 

assumed to be deterministic, with the model parameters alone optimized based on TB. 

Although, the framework of the GP and NN(BR) models are not functionally identical, 

the comparison of the above models is effected in order to illustrate the value of self-
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organizing ability of the GP-based PTFs, proposed in this study, against the conventional 

way by which NN-based PTFs were developed in literature. 

 

5.4 Results and Analysis 

The performance statistics of different models in estimating Ks, during both 

training and testing, are presented in Table 5-4. During training, NN(BR) resulted in an 

RMSE of 0.61, MARE of 0.55, MR of -0.01, and an uncertainty of 0.26 (Table 5-4). 

However, during testing, the corresponding values were 1.04, 2.23, -0.09, and 0.27, 

respectively (Table 5-4). It can be observed that, compared to training, the testing RMSE 

and MARE estimates increased significantly in the case of NN(BR) model as compared 

to the GP models (Table 5-4). This demonstrates that although the NN(BR) model was 

robust in learning the input-output patterns in the training dataset, it was not able to 

generalize the relationship. 

 

During training, GP(2) (more complex) model performed better than the GP(1) 

(less complex) model in terms of RMSE and MARE; and equally in terms of MR and 

uncertainty estimate (Table 5-4). During testing, the GP(2) model performed better than 

the GP(1) model in terms of RMSE, MARE, and MR. However, compared to the GP(1) 

model, the GP(2) model resulted in a higher value of uncertainty estimate (Table 5-4). 

This indicates that increasing the number of mathematical operators, which can be used 

to define the predictand-predictor relationship, would lead to a better fit (less error) of the 

function, but at an increasing level of uncertainty instigated by the complex relationships 

that may exist between the parameters of the model.  
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In general during training, the NN(BR) model performed better than both the 

GP(1) and GP(2) models in terms of RMSE, MARE, MR and uncertainty estimates 

(Table 5-4). While both the GP models were slightly over-predicting (positive MR) Ks, 

the NN(BR) model was slightly under-predicting (negative MR) Ks (Table 5-4). Because 

of the very small MR values, both the NN(BR) and the GP models can be considered 

unbiased. However, during testing, all the models resulted in a negative MR, which 

indicates that the models are under-predicting the Ks values. Nevertheless, the least 

RMSE and MARE values of 0.89 and 1.98 were achieved by the GP(2) model. Overall 

during testing, the GP(1) model resulted in the least uncertainty estimate of 0.26, and the 

NN(BR) model resulted in the least MR estimate of -0.09. One of the main differences 

between the NN(BR) model and the GP models adopted in this study is that, in the case 

of the NN(BR) model, we predefined the initial structure of the network (network inputs, 

number of hidden layers and hidden neurons). Hence, the structure of the neural networks 

remains static for each of the resampled datasets, with the values of connections weights 

of the network optimised every time to fit the corresponding resampled dataset. On the 

other hand, the GP models are self-organizing in nature, i.e. the model structure and its 

parameters are evolved simultaneously during the estimation process, learning from the 

features of the dataset. Therefore, each of the resampled dataset would result in a GP 

model with different structure and parameters, which would near optimally, fit the 

corresponding resampled dataset. Figure 5-4 shows the correlation plots between the 

measured and estimated Ks values by different models during training and testing. 

Although the regressions (Figure 5-4) are not substantial and account for only a moderate 
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proportion of the variance, the results are encouraging considering the presence of large 

scatter between the independent and the dependent variables, and typical in the 

applications of PTFs (Pachepsky and Rawls, 1999). 

 

One of the important issues in the development of neural network models is the 

determination of the optimal configuration of the model. The optimal number of hidden 

neurons and the most significant inputs are usually determined by trial and error method. 

However, this innate problem in NN modeling can be overcome by the ability of GP in 

evolving its own model structure with relevant inputs. Table 5-5 shows the most relevant 

inputs identified by the GP models for the 50 realizations of the training dataset. The 

values in Table 5-5 represent the percentage of occurrence of each of the variables of the 

terminal set, in the 50 optimum models. As in the case of GP(1) model, when only 

additive operators like ‘+’ and ‘-’ are included as part of the functional set, the 

corresponding percentage of occurrence of sand, silt, clay, and BD, among the optimal 

models identified for each bootstrapped datasets are 20.6%, 20.6%, 26.5%, and 32.4%, 

respectively. However, when multiplicative operators, ‘*’ and ‘/’ are added as part of the 

functional set, as in the case of GP(2) model, the percentage of occurrence of sand 

content, silt content, and BD increased to 21.7%, 21.4%, and 38.5%, respectively. 

Nevertheless, the percentage of occurrence of clay content decreased to 18.4%. It can be 

observed that, both GP(1) and GP(2) identified BD as the most significant input variable 

(Table 5-5), followed by clay, silt, and sand content in the case of GP(1) model, and by 

sand, silt, and clay content in the case of GP(2) model.  These results indicate that the 

most relevant input variables (model structure) for estimating Ks using GP is not unique, 
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rather depends on the kind of mathematical operators (model complexity) that are 

considered part of the functional set of the GP paradigm to find the predictand-predictor 

relationship. 

 

5.5 Discussion 

Although neural networks have been successfully adopted in developing PTFs 

for estimating different hydraulic characteristic of soils, their interpretation is often 

difficult. In neural networks-based PTFs, the knowledge of the predictand-predictor 

relationships is represented in the form of a weight matrix, which is difficult to 

comprehend. However, for the same problem, a GP-based PTF gives an explicit equation 

which can be elucidated with relative ease, depending upon the complexity of the evolved 

equations. As described in the previous section, in this study, the GP models are 

combined with the parametric bootstrap method, which generated 50 realizations of the 

training dataset. Hence, for the 50 realizations of the training dataset, GP-based on self-

organizing learning would have arrived at 50 different PTFs. Therefore, for each of the 

GP models, it is not feasible to present all the 50 different PTFs. Nevertheless, in order to 

enunciate the transparency of the GP models, both GP(1) and GP(2) models were applied 

to the actual training data to arrive at corresponding representative PTFs. The GP 

parameters used in the previous simulation runs (Table 5-3) were retained for this 

analysis. Equations (5.5) and (5.6) show the representative PTFs obtained by the GP(1) 

and the GP(2) models, respectively based on the original training dataset. Also, it should 

be noted that the relationships shown in Equations (5.5) and (5.6) are based on 

normalized values of Sand, Silt, Clay, BD, and log10(Ks). From the equations, it can be 
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observed that the structure of PTFs found by the GP(1) and GP(2) models were different 

as they are influenced by the kind of mathematical operators used as part of the 

functional set. Applying Equation (5.5) on the actual training dataset (without 

resampling), resulted in an RMSE of 1.39; MARE of 0.79; and MR of -0.07. The 

corresponding values for the testing dataset are 0.94, 2.4, and -0.31, respectively. 

Similarly Equation (5.6) on the actual training dataset resulted in an RMSE of 1.34; 

MARE of 0.84; and MR of 0.09. The corresponding values during testing are 0.84, 1.86, 

and 0.02, respectively. 

 

clayBDK s −−= 36.1   (5.5) 

siltBDsandK s ×−+×= )1()59.0(  (5.6) 

 

Uncertainty in the PTF can result from data, model parameters, and model 

structure. Data uncertainty stems from natural uncertainty and variability. For calibrated 

models, the model parameter uncertainty also incorporates the effects of data 

uncertainties because of the curve-fitting property of the calibration process. Model-

structure uncertainty arises from the inability to truly represent the predictand-predictor 

relationship. These aspects of uncertainty have lead to the concept of equifinality (Beven 

and Freer, 2001), which argues that there are many different model structures and many 

different parameter sets within a chosen model structure that may be behavioural or 

acceptable in reproducing the observed behaviour of a complex environmental system. In 

most of the PTFs literature, NNs-based PTFs usually account for the model parameter 

uncertainty by including parametric bootstrap method. In this case, the configuration of 
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the NN models remains the same for each of the bootstrapped dataset, with the 

connection weights and bias alone varying depending on the samples present in each of 

the resampled dataset. However, in this paper, both the model parameter uncertainty and 

model structure uncertainty are accounted for by combining the GP and parametric 

bootstrap method. In this case, for each of the bootstrapped dataset, both the model 

structure and the model parameters are optimized in unison by GP. Hence, the value of 

uncertainty of the NN(BR) model (Table 5-4), indicates the model parameter uncertainty 

only, while the GP models uncertainty (Table 5-4) indicates both the model parameter 

and model structure uncertainty. 

 

For the GP models, the relative contribution of the model parameter uncertainty 

and the model structure uncertainty to the total uncertainty, reported in Table 5-4 is also 

examined in this study. In order to accomplish this, instead of simultaneously evolving 

both the model structure and the model parameters using the self-organizing nature of 

GP, by pre-defining the model structure and optimizing its corresponding model 

parameters alone, the uncertainty due to model parameters can be determined. By 

comparing this uncertainty with the total uncertainty (model parameter and model 

structure) reported in Table 5-4, it is possible to determine the relative contribution of the 

model parameter uncertainty and model structure uncertainty to the total uncertainty. The 

model structures based on Equations (5.5) and (5.6), which represent the PTFs obtained 

by the GP(1) and the GP(2) models, respectively for the original training dataset, were 

chosen to be the representative model structures for all the 50 resampled datasets. 

Keeping the model structure static, their respective model parameters alone were 
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optimized for each of the 50 resampled datasets. Equation (5.5) and Equation (5.6) have 

three and four parameters respectively, which need to be optimized. The uncertainty 

estimate and the performance statistics were calculated as outlined earlier. When 

Equation (5.5) (based on GP(1)) was used as the representative model structure, during 

training, it resulted in an uncertainty of 0.11, RMSE of 0.85, MARE of 0.78, and MR of 

0. The corresponding values during testing were 0.09, 0.93, 2.31, and -0.26, respectively. 

Comparing these statistics with that of the GP(1) model statistics (Table 5-4), it can be 

concluded in general that, keeping the model structure static and optimizing the model 

parameters alone, both during training and testing resulted in less uncertainty but at the 

expense of higher error statistics. The uncertainty estimates of 0.11 during training, and 

0.09 during testing are relatively small when compared to that of the uncertainty 

estimates of the GP(1) model (Table 5-4), which resulted in uncertainty estimates of 0.27 

and 0.26, during training and testing, respectively. When Equation (5.6) (based on GP(2)) 

is used as the representative model structure, during training, it resulted in an uncertainty 

of 0.09, RMSE of 0.77, MARE of 0.76, and MR of -0.01. The corresponding values 

during testing were 0.10, 0.87, 1.89, and -0.01, respectively. Comparing these statistics 

with that of the GP(2) model statistics (Table 5-4),  keeping the model structure static and 

optimizing the model parameters alone, during training resulted in less uncertainty but 

with higher error statistics. Nevertheless during testing, compared to the GP(2) model, 

the performance of the model with static model structure and optimized model 

parameters, resulted in considerably less uncertainty estimate and also relatively better 

error statistics. Hence in general, it can be stated that, compared to the models with 

optimized model structure and model parameters (GP(1) and GP(2)), the models with 
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static model structure and optimized model parameters, resulted in markedly lower 

uncertainty estimates. As argued earlier, since the former models accounts for both the 

model parameter and model structure uncertainty, and the latter models accounts for the 

model parameter uncertainty alone, it can be concluded that, compared to the model 

parameter uncertainty, the contribution of model structure uncertainty to the actual 

uncertainty is more significant. Based on the above analysis, it can be stated that for 

ensemble modeling of Ks using GP, for each of the resampled datasets, the choice 

between (i) keeping the model structure static and optimizing the model parameters 

alone, and (ii) self-organizing both the model structure and model parameters, should be 

made considering the kind of uncertainty (model parameter and/or model structure) that 

needs to be accounted for in the ensemble modeling of Ks. 

 

5.6 Summary and Conclusions 

In this study, the utility of GP as a model induction engine for deriving PTFs for 

estimating Ks as a function of sand, silt, clay contents, and bulk density is explored. Out 

of the 314 samples derived from the UNsaturated SOil hydraulic DAtabase (UNSODA) 

database, 199 samples are used for the calibration purpose and the remaining 114 samples 

are used for validating the developed models. Two different GP models, GP(1) and 

GP(2), with different combination of mathematical operators in the functional set are 

developed. The GP(1) model uses only additive (+,-) operators  as part of the functional 

set, and the GP(2) model uses both additive (+,-) and multiplicative (*, /) operators as 

part of the functional set. This exercise was carried out to evaluate the performance of the 

GP models with varying levels of mathematical operators (complexity) that can be used 
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to define the predictand-predictor relationship. The performance of the GP(1) and GP(2) 

models are compared with a neural networks model employing Bayesian-regularization 

(BR) algorithm for training the networks. The BR algorithm has better generalization 

property as it minimizes both the mean sum of squares of the network errors and the 

mean of the sum of squares of the network weights and bias. 

 

The performances of the models are evaluated in terms of root mean squared 

error (RMSE), mean absolute relative error (MARE), mean residual (MR), and model 

uncertainty. The uncertainty of the models is evaluated by combining the models with the 

non-parametric bootstrap method. Fifty different bootstrapped datasets are created by 

statistical resampling of the training dataset, and the NN and GP models are applied on 

these bootstrapped datasets, from which the average error estimates and uncertainty of 

the model predictions are evaluated. Results from the study indicate that the GP(2) model 

resulted in the least MRE and MR estimates, signifying the less bias attached to the 

model. The relatively better performance of the GP models, compared to the NNs model, 

may be attributed to the self-organizing nature of the model, in which both the model 

structure and parameters are evolved simultaneously during the estimation process, 

learning the features of the dataset.  Increasing the number of mathematical operators in 

the functional set of the GP models has been found to lead to a better fit of the function, 

but at an increasing level of uncertainty. This indicates, if not unfeasible, it is difficult to 

achieve both higher prediction accuracy and less uncertainty in tandem. The results 

presented in this study, in general indicate that the GP is a promising tool for developing 

PTFs for estimating Ks. 
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Analyzing the optimal equations identified by the GP models for each of the 

bootstrapped dataset, BD is the most significant input in characterizing the Ks for both the 

GP(1) and GP(2) models. In the case of GP(1) model, in the order of importance, BD is 

followed by clay, sand, and silt contents. However for the GP(2) model, in the order of 

importance, BD is followed by sand, silt, and clay contents. These results indicate that the 

most relevant input variables for estimating Ks is not unique, rather depends on the 

mathematical operators that are used as part of the functional set of the GP paradigm. 

Also, it has been shown that the uncertainty reported by the NN(BR) model is only the 

model parameter uncertainty, whereas the uncertainty reported by the GP models include 

both the model parameter and model structure uncertainty. Examining the relative 

contribution of model structure uncertainty and model parameter uncertainty to the total 

uncertainty estimated by the GP models, it is been shown that, compared to the model 

parameter uncertainty, the uncertainty due to the model structure dominates the total 

uncertainty of the GP models. The study reported in this paper is a first step to evaluate 

the utility of GP in developing PTFs. The results of the study need to be further explored 

by extending the GP models to different datasets with different functional and terminal 

sets. In this regard, analyzing the performance of grammar-guided GP in developing 

PTFs would be of particular interest. 
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Table 5-1 Descriptive statistics and correlation matrix of the training dataset 
 

 Sand  
(%) 

Silt          
(%) 

Clay        
(%) 

BD         
(gm cm-3) log10Ks 

Minimum 1.80 0.20 0.00 0.59 -1.19
Maximum 99.10 81.40 63.00 1.97 4.44 
Median 52.80 25.55 14.95 1.52 1.94 
Mean 54.33 27.96 17.71 1.47 1.87 
SD 30.53 20.73 15.46 0.25 1.08 
CV 0.56 0.74 0.87 0.17 0.58 
      
Correlations      
Sand (%) 1.00     
Silt (%) -0.89 1.00    
Clay (%) -0.79 0.41 1.00   
BD (gm cm-3) 0.47 -0.38 -0.42 1.00  
log10Ks 0.52 -0.39 -0.50 -0.11 1.00 
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Table 5-2 Descriptive statistics and correlation matrix of the testing dataset 
 

 Sand  
(%) 

Silt          
(%) 

Clay        
(%) 

BD         
(gm cm-3) log10Ks 

Minimum 0.10 0.30 0.10 0.49 -0.84
Maximum 99.60 80.70 54.40 1.76 3.58 
Median 54.75 27.30 11.25 1.49 1.91 
Mean 51.77 34.58 13.65 1.48 1.78 
SD 33.21 26.83 11.74 0.16 0.89 
CV 0.64 0.78 0.86 0.11 0.50 
      
Correlations      
Sand (%) 1.00     
Silt (%) -0.95 1.00    
Clay (%) -0.67 0.39 1.00   
BD (gm cm-3) 0.34 -0.24 -0.41 1.00  
log10Ks 0.39 -0.40 -0.20 -0.07 1.00 
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Table 5-3 GP Parameters  
 

GP Parameter Value 
Population Size 20 

Initialization Method Ramped half-and-half 

Sampling Method Roulette 

Maximum Initial Tree Depth 8 

Probability of Crossover, Pc 0.6 

Probability of Mutation, Pm 0.3 

Cost Function RMSE 

Number of Generations 1000 
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Table 5-4 Performance statistics of different models in estimating Ks 
 

Training Testing 
Model 

Uncertainty RMSE MARE MR Uncertainty RMSE MARE MR 

NN(BR) 0.26 0.61 0.55 -0.01  0.27 1.04 2.23  -0.09

GP(1) 0.27 0.83 0.76 0.02  0.26 0.90 2.24 -0.22 

GP(2) 0.27 0.70 0.68 0.02  0.30 0.89 1.98 -0.13 
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Table 5-5 Percentage of different input variable selection in the GP models 
 

 Sand Silt Clay BD 

GP(1) 20.6 20.6 26.5 32.4 

GP(2) 21.7 21.4 18.4 38.5 
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Figure 5-1 Flowchart of the GSR paradigm 
 

 

 

 

 



Chapter 5 

 185

 

 

 

 

Figure 5-2 Sparse tree notation 
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Figure 5-3 Crossover coupled with mutation. The dashed line indicates the Crossover 
point and the shaded region represents the mutated node. 
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Figure 5-4 Comparison of measured and estimated Ks by different models during training 
[(a) NN(BR), (b) GP(1), and (c) GP(2)]; and testing [(d) NN(BR), (e) GP(1), and (f) 

GP(2)] 
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Chapter 6 Conclusions 

6.1  Summary of the Thesis 

In general, this thesis comprises of two parts; the first part, which covers chapter 

2 and chapter 3, is motivated by the idea of extending the usefulness of data-driven 

models beyond forecast applications as a tool for scientific investigations. Chapters 2 and 

3 identify some of the possible methods and tools that can be adopted to bring 

transparency to the way by which the data-driven models arrive at a solution. The second 

part, which covers chapters 4 and 5, is motivated by the idea of improving the reliability 

of the data-driven models by identifying ways for incorporating uncertainty estimates as 

part of the data-driven model building exercise. 

 

In chapter 2, a novel artificial neural network (ANN) model, named “spiking 

modular neural networks (SMNNs)” has been proposed. The SMNNs are based on the 

concepts of both self-organizing networks and modular networks. Two variants of 

SMNNs, employing (i) competitive learning, and (ii) self-organizing maps, have been 

developed and tested. Contrary to the traditional neural network models, that does not 

consider the presence of discontinuity in the input-output mapping space, the modular 

nature of the proposed SMNNs is shown to account for this discontinuity by developing 

domain dependent input-output relationships. The performances of the SMNNs are 

evaluated on two distinctly different case-studies, namely, (i) streamflow modeling, and 

(ii) actual evapotranspiration modeling. The performance of the SMNNs is compared to 

that of the regular feed forward neural network (FFNN) model as it is the most widely 



Chapter 6 

 189

adopted neural network model in water resources applications. For both case-studies, the 

SMNNs are shown to perform better than the conventional FFNN model. Also, the 

SMNNs are shown to be effective in discretizing the complex mapping space into simpler 

domains that can be learnt with relative ease. The study demonstrated how the usefulness 

of SMNNs can be extended beyond forecast applications as a tool for scientific 

investigation by demonstrating the way SMNNs, as a data-driven model, was able to 

reiterate the fact that different combination of state variables can satisfy the energy 

balance equation. The study reported in chapter 2 is a step in the direction towards 

developing multiple local models rather than a single global model for hydrological 

processes.  

 

In chapter 3, the ability of another promising data-driven modeling technique, 

namely genetic programming (GP), has been evaluated with regards to its ability to 

promote transparency in data-driven models. This study was founded on the hypothesis 

that the robustness of GP to evolve its own model structure with relevant parameters 

could aid in understanding and improving our knowledge of the predictand-predictor 

relationship. The hypothesis was tested by applying GP to model the dynamics of the 

actual evapotranspiration process from two case-studies with different topographic 

conditions. The performances of the GP models were compared with ANN models and 

the traditional Penman-Monteith (PM) method. Results from the study indicated that both 

data-driven models, GP and ANNs, performed better than the PM method. However, the 

performance of the GP model is comparable with the ANNs model. The ability of GP to 

arrive at an explicit model structure for modeling the site-specific actual 
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evapotranspiration process has been demonstrated in this study. From the insights gained 

by analyzing the GP-evolved equations, it was found that the GP-evolved equations are 

dominated by net-radiation (NR) and ground temperature (GT), indicating that NR and 

GT are the most important state variables for characterizing the evapotranspiration 

process. This is consistent with the findings from the previous study (chapter 2); where 

NR and GT alone were shown to explain most of the variance in latent heat (LE) flux 

using SMNNs. It is argued in this thesis that NR is the driving variable during energy-

limited conditions, and GT, as a surrogate for soil moisture, is the driving variable during 

supply-limited conditions. The rationale for this argument is based on the strong link 

between the soil thermal properties and moisture status. 

 

Chapter 4 has demonstrated the improvement in the reliability that can be 

achieved by adopting a field scale model as against a global scale model. For estimating 

the saturated hydraulic conductivity at two distinct sites, field scale models were 

developed using neural network ensembles. Two variants of the field scale models, one 

employing bagging algorithm, and the other employing boosting algorithm, were 

developed and tested with the objective of identifying the relative merits and demerits of 

adopting these resampling algorithms for constructing neural network ensembles. The 

performance of the field scale models were compared with a published global neural 

network model, ROSETTA. For the field scale models, compared to the model 

employing conventional bagging algorithm, the model employing boosting algorithm has 

been shown to produce networks with less bias. In general, the local-scale models have 

been shown to be more reliable than the global-scale models. Bearing in mind the 
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presence of several large (global) scale models, the findings from this study reiterate that 

such models may be best suited for providing trends at global scale, but may be of little 

use for more practical applications (salt balance and water balance) at field-scales.  

 

It has been widely acknowledged in the literature that the uncertainty in 

geophysical modeling can manifest in terms of natural randomness, data, model 

parameters, and model structure. In chapter 5, a methodology for improving the 

reliability of geophysical models by accounting for the influence of model-structure 

uncertainty has been proposed. In this case, contrary to the traditional approaches, both 

the model structure and its parameters were assumed to be imperfectly known, and self-

organizing algorithms were used to search from a pool of model structures and model 

parameters to arrive at an ensemble of possible combinations of model structure and 

parameters, from which the actual uncertainty was calculated. The proposed methodology 

was evaluated in developing pedotransfer functions for estimating the saturated hydraulic 

conductivity of soils. A dataset from the UNsaturated SOil hydraulic DAtabase 

(UNSODA) has been considered in this study. ROSETTA, a neural network based 

pedotransfer function, was used for comparison purposes because of their previously 

established utility in geophysical literature. The uncertainty due to model structure has 

been shown to be larger than the uncertainty due to model parameters. Also, it has been 

demonstrated that increasing the model complexity may lead to a better fit of the 

function, but at the cost of an increasing level of uncertainty.  
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In summary, this thesis identifies some of the possible methods and tools that 

can be adopted to accomplish Tasks 3 and 5, outlined in chapter 1. The methods and tools 

proposed in this thesis are not claimed to be exhaustive, and hence may not in depth 

address all the pertinent issues with regard to the above tasks. Nevertheless, this study 

would serve as a catalyst for future studies in this direction, by exploring multiple 

avenues for accomplishing the above tasks. The applications that were adopted in this 

thesis to test the validity and the utility of the proposed tools and methods were not 

restricted to the oil sands reclamation areas. Other relevant case studies were also 

considered with the purpose of strengthening the presentations, as the overriding 

objective of this thesis is to explore different methods and tools that can be adopted to: (i) 

extend the usefulness of the system-theoretic models beyond forecast applications as a 

tool for scientific investigation; and (ii) improve the reliability of the system-theoretic 

models by identifying ways for incorporating uncertainty estimates as part of the data-

driven model building exercise. Nevertheless, it is expected that the methods and tools 

identified in this thesis can be extended to characterize diversified geophysical processes 

pertaining to the oil sands reclamation.   

 

6.2  Research Contribution 

The contribution of this thesis to the field of hydrology can be categorized under 

two levels of contribution scale, not regarding their significance but rather their 

conceptual level: level-1 contribution and level-2 contribution. 
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6.2.1 Level-1 contribution 

At the conceptual level, the first major contribution of this thesis is the spiking 

modular neural networks (SMNNs) proposed in chapter 2. The SMNNs is shown to be 

conceptually different from the traditional neural network models. The SMNNs have the 

ability to break down a complex mapping space into simpler domains that can be learnt 

with relative ease. The SMNNs develop domain dependent input-output relationships to 

account for the discontinuity in the input-output mapping space. In this thesis, it was also 

shown that, for a given input space, topology learning may not be of significant help in 

improving the performance of the modular neural networks. The thesis also highlighted 

how the SMNNs can be used beyond forecast applications as a tool for scientific 

investigations by identifying the patterns in the mapping space. The SMNNs proposed in 

this thesis can be considered a step in the direction to develop multiple local models 

rather than a single global model for geophysical processes. 

 

The second major contribution of this thesis is the methodology, proposed in 

chapter 5, to evaluate the effect of model structure uncertainty in geophysical modeling. 

Although model structure uncertainty is acknowledged to be an important factor in 

geophysical modeling, the traditional approach to geophysical model uncertainty has 

been to hypothesize a deterministic model structure and treat its parameters as being 

imperfectly known. The uncertainty estimated by these traditional approaches is just a 

small portion of the actual uncertainty; they neglect the uncertainty associated with model 

structure by assuming it to be deterministic. This thesis offers one possible solution to the 

above problem by developing a framework based on self-organizing algorithms and 
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statistical resampling technique to account for the model structure uncertainty in 

geophysical modeling. In this thesis, it was established that the uncertainty due to model 

structure is larger than the uncertainty due to model parameters, and an increase in the 

model complexity is shown to increase the predictive ability of the model, but at an 

increasing level of uncertainty. 

6.2.2 Level-2 contribution 

This level of contribution also adds to the field of hydrology at the conceptual 

level with less generality than the level-1 contribution. The following are the Level-2 

contribution of this thesis: (1) this thesis highlighted that net-radiation and ground 

temperature are the most important state variables for characterizing the eddy covariance-

measured evapotranspiration flux; (2) in this thesis it is argued, and subsequently 

validated using literature, that ground temperature can be considered as a surrogate 

variable of soil moisture due to the strong link between the soil thermal properties and 

moisture status; (3) underscored the utility of genetic programming to promote 

transparency in data-driven hydrological modeling, and thereby improving our 

knowledge of the predictand-predictor relationship; and (4) highlighted the advantages of 

adopting  local models compared to global models for characterizing geophysical 

processes (chapter 2) and properties (chapter 4). 
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6.3  Possible Research Extension 

Improvements in the approaches, methodologies, and models developed in this 

thesis are possible at various levels and in different parts of this research. Some of the 

opportunities for possible future research directions are briefed below: 

 

In the modular neural networks proposed in this thesis, other methods and 

techniques from pattern recognition such as the fuzzy c- means clustering can be 

investigated to enhance the clustering process. Also, the use of global optimization 

methods like genetic algorithms can be evaluated to optimize the network weights and 

bias. In this thesis, the optimal number of clusters and network parameters are identified 

by the trail-and-error. It might be of interest in future studies to investigate alternative 

methods to identify the above parameters more objectively. Also, more research on 

providing physical interpretation to the patterns identified by the SMNNs is warranted in 

future studies. Evaluating the effect of modularization on the predictive uncertainty of the 

model would also be of interest. 

 

In this thesis, conversion of Penman-Monteith estimates of potential 

evapotranspiration to their actual evapotranspiration counterparts was not attempted due 

to the inherent limitations and uncertainty (outlined in chapters 2 and 3) associated with 

such conversions. It might be worth investigating how the actual estimates of 

evapotranspiration estimated considering the soil moisture limitations, would compare 

with the actual evapotranspiration estimates provided by the system-theoretic models 

proposed in this study.  
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In developing the neural network ensembles, this thesis employed simple 

averaging to combine the outputs from different networks. The relative merits and 

demerits of adopting alternative method of combining networks, like the weighted 

averaging and stacking, needs to be explored. Also, more analysis regarding uncertainty 

propagation through a hydrological system, as a function of the uncertainty in the system-

theoretic model predicted values, needs to be ascertained. i.e. evaluating the applicability 

of the system-theoretic model predicted values in modeling hydrological processes.  

 

The methodology to account for the effect of the model structure uncertainty in 

geophysical modeling needs to be further expanded to identify the tradeoffs, if any, 

between models’ structural complexity, accuracy, and uncertainty. Also, the usefulness of 

more versatile self-organizing algorithms like evolutionary polynomial regression, and 

grammar-guided genetic programming should be sought with regards to their ability in 

identifying the patterns in the input-output space.  

 

6.4  Study Limitations 

Several limitations can be noted with regards to the methods and analysis 

adopted in this thesis. In this thesis, a unique application with a unique dataset was not 

benchmarked to evaluate the relative performance of the different methods and tools 

proposed in this thesis. Nevertheless, this study adopted diverse real-world applications 

to strengthen the presentation, as the overriding objective of this thesis was not to pit one 

method against the other, rather to explore different methods and tools that can be 
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adopted to promote transparency and reliability in data-driven model building exercise. 

However, the methods and tools proposed in this thesis can be easily extended to evaluate 

their relative performance on a wide range of geophysical applications. 

 


