75 research outputs found

    A novel seed plants gene regulates oxidative stress tolerance in arabidopsis thaliana

    Get PDF
    Oxidative stress can lead to plant growth retardation, yield loss, and death. The atr7 mutant of Arabidopsis thaliana exhibits pronounced tolerance to oxidative stress. Using positional cloning, confirmed by knockout and RNA interference (RNAi) lines, we identified the atr7 mutation and revealed that ATR7 is a previously uncharacterized gene with orthologs in other seed plants but with no homology to genes in lower plants, fungi or animals. Expression of ATR7-GFP fusion shows that ATR7 is a nuclear-localized protein. RNA-seq analysis reveals that transcript levels of genes encoding abiotic- and oxidative stress-related transcription factors (DREB19, HSFA2, ZAT10), chromatin remodelers (CHR34), and unknown or uncharacterized proteins (AT5G59390, AT1G30170, AT1G21520) are elevated in atr7. This indicates that atr7 is primed for an upcoming oxidative stress via pathways involving genes of unknown functions. Collectively, the data reveal ATR7 as a novel seed plants-specific nuclear regulator of oxidative stress response

    A novel seed plants gene regulates oxidative stress tolerance in arabidopsis thaliana

    Get PDF
    Oxidative stress can lead to plant growth retardation, yield loss, and death. The atr7 mutant of Arabidopsis thaliana exhibits pronounced tolerance to oxidative stress. Using positional cloning, confirmed by knockout and RNA interference (RNAi) lines, we identified the atr7 mutation and revealed that ATR7 is a previously uncharacterized gene with orthologs in other seed plants but with no homology to genes in lower plants, fungi or animals. Expression of ATR7-GFP fusion shows that ATR7 is a nuclear-localized protein. RNA-seq analysis reveals that transcript levels of genes encoding abiotic- and oxidative stress-related transcription factors (DREB19, HSFA2, ZAT10), chromatin remodelers (CHR34), and unknown or uncharacterized proteins (AT5G59390, AT1G30170, AT1G21520) are elevated in atr7. This indicates that atr7 is primed for an upcoming oxidative stress via pathways involving genes of unknown functions. Collectively, the data reveal ATR7 as a novel seed plants-specific nuclear regulator of oxidative stress response

    Maize Field Study Reveals Covaried Microbiota and Metabolic Changes in Roots over Plant Growth

    Get PDF
    Plant roots are colonized by microorganisms from the surrounding soil that belong to different kingdoms and form a multikingdom microbial community called the root microbiota. Despite their importance for plant growth, the relationship between soil management, the root microbiota, and plant performance remains unknown. Here, we characterize the maize root-associated bacterial, fungal, and oomycetal communities during the vegetative and reproductive growth stages of four maize inbred lines and the pht1;6 phosphate transporter mutant. These plants were grown in two long-term experimental fields under four contrasting soil managements, including phosphate-deficient and -sufficient conditions. We showed that the maize root-associated microbiota is influenced by soil management and changes during host growth stages. We identified stable bacterial and fungal root-associated taxa that persist throughout the host life cycle. These taxa were accompanied by dynamic members that covary with changes in root metabolites. We observed an inverse stable-to-dynamic ratio between root-associated bacterial and fungal communities. We also found a host footprint on the soil biota, characterized by a convergence between soil, rhizosphere, and root bacterial communities during reproductive maize growth. Our study reveals the spatiotemporal dynamics of the maize root-associated microbiota and suggests that the fungal assemblage is less responsive to changes in root metabolites than the bacterial community

    A novel seed plants gene regulates oxidative stress tolerance in arabidopsis thaliana

    Get PDF
    Oxidative stress can lead to plant growth retardation, yield loss, and death. The atr7 mutant of Arabidopsis thaliana exhibits pronounced tolerance to oxidative stress. Using positional cloning, confirmed by knockout and RNA interference (RNAi) lines, we identified the atr7 mutation and revealed that ATR7 is a previously uncharacterized gene with orthologs in other seed plants but with no homology to genes in lower plants, fungi or animals. Expression of ATR7-GFP fusion shows that ATR7 is a nuclear-localized protein. RNA-seq analysis reveals that transcript levels of genes encoding abiotic- and oxidative stress-related transcription factors (DREB19, HSFA2, ZAT10), chromatin remodelers (CHR34), and unknown or uncharacterized proteins (AT5G59390, AT1G30170, AT1G21520) are elevated in atr7. This indicates that atr7 is primed for an upcoming oxidative stress via pathways involving genes of unknown functions. Collectively, the data reveal ATR7 as a novel seed plants-specific nuclear regulator of oxidative stress response

    Effect of salt stress on genes encoding translation-associated proteins in Arabidopsis thaliana

    No full text
    Salinity negatively affects plant growth and disturbs chloroplast integrity. Here, we aimed at identifying salt-responsive translation-related genes in Arabidopsis thaliana with an emphasis on those encoding plastid-located proteins. We used quantitative real-time PCR to test the expression of 170 genes after short-term salt stress (up to 24 h) and identified several genes affected by the stress including: PRPL11, encoding plastid ribosomal protein L11, ATAB2, encoding a chloroplast-located RNA-binding protein presumably functioning as an activator of translation, and PDF1B, encoding a peptide deformylase involved in N-formyl group removal from nascent proteins synthesized in chloroplasts. These genes were previously shown to have important functions in chloroplast biology and may therefore represent new targets for biotechnological optimization of salinity tolerance

    Multi-omics analysis of early leaf development in Arabidopsis thaliana

    No full text
    Summary The growth of plant organs is driven by cell division and subsequent cell expansion. The transition from proliferation to expansion is critical for the final organ size and plant yield. Exit from proliferation and onset of expansion is accompanied by major metabolic reprogramming, and in leaves with the establishment of photosynthesis. To learn more about the molecular mechanisms underlying the developmental and metabolic transitions important for plant growth, we used untargeted proteomics and metabolomics analyses to profile young leaves of a model plant Arabidopsis thaliana representing proliferation, transition, and expansion stages. The dataset presented represents a unique resource comprising approximately 4,000 proteins and 300 annotated small-molecular compounds measured across 6 consecutive days of leaf growth. These can now be mined for novel developmental and metabolic regulators of plant growth and can act as a blueprint for studies aimed at better defining the interface of development and metabolism in other species

    GROWTH-REGULATING FACTOR 9 negatively regulates arabidopsis leaf growth by controlling <i>ORG3</i> and restricting cell proliferation in leaf primordia

    No full text
    <div><p>Leaf growth is a complex process that involves the action of diverse transcription factors (TFs) and their downstream gene regulatory networks. In this study, we focus on the functional characterization of the <i>Arabidopsis thaliana</i> TF GROWTH-REGULATING FACTOR9 (GRF9) and demonstrate that it exerts its negative effect on leaf growth by activating expression of the bZIP TF <i>OBP3-RESPONSIVE GENE 3</i> (<i>ORG3</i>). While <i>grf9</i> knockout mutants produce bigger incipient leaf primordia at the shoot apex, rosette leaves and petals than the wild type, the sizes of those organs are reduced in plants overexpressing <i>GRF9</i> (<i>GRF9ox</i>). Cell measurements demonstrate that changes in leaf size result from alterations in cell numbers rather than cell sizes. Kinematic analysis and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay revealed that <i>GRF9</i> restricts cell proliferation in the early developing leaf. Performing <i>in vitro</i> binding site selection, we identified the 6-base motif 5'-CTGACA-3' as the core binding site of GRF9. By global transcriptome profiling, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) we identified <i>ORG3</i> as a direct downstream, and positively regulated target of GRF9. Genetic analysis of <i>grf9 org3</i> and <i>GRF9ox org3</i> double mutants reveals that both transcription factors act in a regulatory cascade to control the final leaf dimensions by restricting cell number in the developing leaf.</p></div
    corecore