199 research outputs found

    Características clínicas, complicaciones secundarias y apoyos en personas con lesión medular traumática en Asturias

    Get PDF
    Background and objective: Traumatic spinal cord injury is a supervening and often devastating event due to functional loss, secondary complications and lack of curative treatment. It is posed as a personal, health and social challenge. The objective of the study is to describe the epidemiological, clinical and support characteristics of people with traumatic spinal cord injury in the Principality of Asturias.Materials and method: Observational, descriptive and cross-sectional study. The population comprised people with traumatic spinal cord injury admitted for any reason at the Central University Hospital of Asturias from January 1, 2005 to January 31, 2015.Results: The number of cases was 92. 76.9% were men. The average age was 48.5 years old and the average age when the injury occurred was 40.2 years old. The most frequent causes were accidents: traffic, labor and fortuitous. The most frequent type of injury: according to limb involvement, paraplegia with 38.5%; according to the extension, the incomplete lesion with 52.6%; according to the neurological level, the dorsal lesion with 45.4% and according to the classification scale of the American Spinal Injury Association (ASIA), the ASIA A lesion with 50.7%. As most frequent secondary complications: 68.7% have neurogenic bladder, 60.2% neurogenic bowel, 46.5% pressure ulcers, 46.4% spasticity and 30.1% neuropathic pain.Conclusions: There is a high prevalence of secondary complications in spinal cord injury, being necessary to join efforts in the prevention and treatment of them.Introducción: La lesión medular traumática es un acontecimiento sobrevenido y frecuentemente devastador debido a la pérdida funcional, a las complicaciones secundarias y a la inexistencia de tratamiento curativo. Se plantea como un reto personal, sanitario y social. El objetivo del estudio es describir las características epidemiológicas, clínicas y los apoyos utilizados de las personas con lesión medular traumática del Principado de Asturias.Materiales y método: Estudio observacional, descriptivo y transversal. La población estuvo conformada por personas con lesión medular traumática ingresadas por cualquier causa en el Hospital Universitario Central de Asturias del 1 de enero de 2005 al 31 de enero de 2015.Resultados: El número de casos fue 92. Un 76,9% eran hombres. La edad media fue 48,5 años y la edad media cuando se produjo la lesión 40,2 años. Las causas más frecuentes fueron los accidentes: de tráfico, laborales y fortuitos. El tipo de lesión más frecuente: según afectación de miembros, la paraplejia con un 38,5%; según la extensión, la lesión incompleta con un 52,6%; según el nivel neurológico, la lesión dorsal con un 45,4% y según la escala de clasificación de la American Spinal Injury Association (ASIA), la lesión ASIA A con un 50,7%. Como complicaciones secundarias más frecuentes: el 68,7% presenta vejiga neurógena, el 60,2% intestino neurógeno, el 46,5 úlceras por presión, 46,4% espasticidad y el 30,1% dolor neuropático. Conclusiones: Existe una alta prevalencia de complicaciones secundarias en la lesión medular, siendo necesario aunar esfuerzos en la prevención y tratamiento de las mismas

    General aspects in the use of graphenes in catalysis

    Full text link
    [EN] This perspective is aimed at presenting some issues that, in our opinion, have still to be better addressed in the field of graphenes as catalysts. After an introductory section, the article comments on how the number of layers present on the catalyst, termed frequently as graphene, could be in some cases in contradiction with good practices about what should be or not considered as graphene. It will also be commented that some of the characterization tools that are employed in some cases for graphenes as catalysts, like specific surface area measurements based on isothermal gas adsorption on powders or XRD patterns are not well suited to characterizing graphenes. The potential role of impurities and structural defects in graphene catalysis has been highlighted showing the importance of providing exhaustive analysis of the materials. This perspective includes a final section with our view on future progress and wider consensus in the use of graphene in catalysis.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2014-53292-R) is gratefully acknowledged. Generalidad Valenciana is also thanked for funding (Prometeo 2013/014). SN is thankful for financial support by the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016). Financial support by Fundacion Ramon Areces (XVII Concurso Nacional para la adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia).Navalón Oltra, S.; Herance, JR.; Alvaro Rodríguez, MM.; García Gómez, H. (2018). General aspects in the use of graphenes in catalysis. Materials Horizons (Online). 5(3):363-378. https://doi.org/10.1039/c8mh00066bS3633785

    Generating and optimizing the catalytic activity in UiO-66 for aerobic oxidation of alkenes by post-synthetic exchange Ti atoms combined with ligand substitution

    Full text link
    [EN] The catalytic activity for the aerobic epoxidation of cyclooctene of UiO-66 has been introduced by post synthetic ion exchange of Zr4+ by Ti4+ at the nodes and the performance optimized by nitro substitution in the terephthalate ligand. In this way a TON value of 16,600 (1660 considering Zr + Ti content) was achieved, comparing favorably with the highest catalytic activity reported in homogeneous for the same reaction (10,000 for gamma-SiW10{(Fe3+(OH2)}(O-38(6-)). Kinetic studies have shown that the most likely reactive oxygen species involved in the oxidation is superoxide, with hydroxyl radicals also contributing to the reaction. UiO-66(Zr-5.4 Ti-0.6)-NO2 is stable under catalytic conditions, being used six times without any change in the conversion temporal profile and in the X-ray diffractogram. The scope of UiO-66(Zr-5.4 Ti-0.6)-NO2 promoted aerobic oxidation of alkenes was expanded by including smaller rings cycloalkenes, as well as acyclic and aryl conjugated alkenes. (C) 2018 Elsevier Inc. All rights reserved.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2014-53292-R and CTQ2015-69563-CO2-14) is gratefully acknowledged. Generalidad Valenciana is also thanked for funding (Prometeo 2017/018). SN thanks financial support by the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016).Santiago-Portillo, A.; Navalón Oltra, S.; Alvaro Rodríguez, MM.; García Gómez, H. (2018). Generating and optimizing the catalytic activity in UiO-66 for aerobic oxidation of alkenes by post-synthetic exchange Ti atoms combined with ligand substitution. Journal of Catalysis. 365:450-463. https://doi.org/10.1016/j.jcat.2018.07.032S45046336

    A model to enable indirect manufacturing options transactions between organisations: An application to the ceramic industry

    Full text link
    En los contextos actuales de competitividad es ampliamente aceptado y probado que la colaboración entre empresas conduce muchas veces a mejores resultados. Además, la industria cerámica española debe mejorar y reducir los costes de sus procesos de fabricación para así poder competir con los productos de menor coste que provienen principalmente de países asiáticos. En este sentido, este trabajo presenta los resultados de aplicar un modelo innovador para facilitar el trasvase indirecto de opciones de fabricación entre dos empresas fabricantes cerámicas competidoras que comparten un mismo proveedor de productos, cuando una de ellas necesita más capacidad de fabricación de la que reservó en base a sus previsiones de demanda y la otra tiene un excedente. Así, se desarrollan una serie de mecanismos decisionales los cuales proporcionan los valores que deben tomar ciertos parámetros para aumentar el beneficio de todos los participantes en el proceso. Dichos parámetros están gobernados por el proveedor común de esmaltes, quien juega el rol de intermediario entre los fabricantes cerámicos y quien determina hasta qué punto es beneficioso el trasvase y bajo qué condiciones debe realizarse el mismo. Con la aplicación de este modelo se alcanzan mejores resultados empresariales tanto económicos como de nivel de servicio.In the current competitive contexts, it is widely accepted and proved that inter-enterprise collaboration lead in many occasions to better results. The Spanish ceramic industry must improve, dropping its manufacturing costs in order to be able to compete with low cost products coming from Asia. In this sense, this work presents the main results obtained from applying an innovative model, which facilitates the transfer of manufacturing options between two ceramic enterprises that share a common supplier in the scenario where one of them needs more manufacturing capacity than the one booked according to its demand forecast and the another need less. Then, some decisional mechanisms are applied, which output the values for certain parameters in order to augment the benefit of all the three participants. With the application of this model better organisational results both economic and of service level are achievedRodríguez Rodríguez, R.; Gómez-Gasquet, P.; Oltra Badenes, RF. (2014). Modelo de trasvase indirecto de opciones de fabricación entre organizaciones: Una aplicación a la industria cerámica. Boletín de la Sociedad Española de Cerámica y Vidrio. 53(6):275-278. doi:10.3989/cyv.2014S27527853

    Influence of the organic linker substituent on the catalytic activity of MIL-101(Cr) for the oxidative coupling of benzylamines to imines

    Full text link
    [EN] MIL-101(Cr) having substituents at the terephthalate linker (X = H, NO2, SO3H, Cl, CH3 and NH2) promotes the aerobic oxidation of benzylamines to the corresponding N-benzylidene benzylamines at different rates. MIL-101(Cr)¿NO2 was the most active catalyst, about 6-fold more active than the parent MIL-101(Cr). MIL-101(Cr)¿NO2 does not deactivate significantly upon five consecutive reuses, does not leach the metal to the solution and maintains its crystallinity. MIL-101(Cr)¿NO2 is active for a wide range of benzylamines including para-substituted, heterocyclic benzylamines and di- and tribenzylamines.Financial support by the Spanish Ministry of Economy and Competitiveness (CTQ 2015-69153-CO2-1, CTQ2014-53292-R, Severo Ochoa) and Generalitat Valenciana (Prometeo 2013014) is gratefully acknowledged.Santiago-Portillo, A.; Blandez, JF.; Navalón Oltra, S.; Alvaro Rodríguez, MM.; García Gómez, H. (2017). Influence of the organic linker substituent on the catalytic activity of MIL-101(Cr) for the oxidative coupling of benzylamines to imines. Catalysis Science & Technology. 7(6):1351-1362. https://doi.org/10.1039/c6cy02577cS135113627

    MIL-101(Cr)-NO2 as efficient catalyst for the aerobic oxidation of thiophenols and the oxidative desulfurization of dibenzothiophenes

    Full text link
    [EN] A series of MIL-101(Cr)-X functionalized with electron withdrawing (NO2, SO3H or Cl) or electron donor (NH2 or CH3) groups has been tested for the solvent-free oxidative coupling of thiophenol to disulfides. No byproducts were observed. A relationship between the catalytic activity of these MOFs with the substituent meta Hammet constant on the terephthalate ligand and with their redox potential was found, MIL-101(Cr)-NO2 being the most active catalyst. NO2-substituted MIL-101 is also more efficient than the parent MIL-101(Cr) to promote the aerobic desulfurization of dibenzothiophenes in n-dodecane or commercial Diesel as solvent. No byproduct formation was observed. Mechanistic studies reveal that MIL-101(Cr)-NO2 is acting as heterogeneous catalyst in thiophenol oxidation and as radical initiator for the aerobic desulfurization. For both reactions, the catalyst can be reused without deactivation, maintaining its crystallinity and with negligible metal leaching.Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO21) and Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. S.N. thanks financial support by the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), Ministerio de Ciencia, Innovacion y Universidades CTQ-2018 RTI2018-099482-A-I00 project and Generalitat Valenciana grupos de investigacion consolidables 2019 (AICO2019/214 project).Vallés-García, C.; Santiago-Portillo, A.; Alvaro Rodríguez, MM.; Navalón Oltra, S.; García Gómez, H. (2020). MIL-101(Cr)-NO2 as efficient catalyst for the aerobic oxidation of thiophenols and the oxidative desulfurization of dibenzothiophenes. Applied Catalysis A General. 590:1-8. https://doi.org/10.1016/j.apcata.2019.117340S18590Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149). doi:10.1126/science.1230444Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., & Yaghi, O. M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650Devic, T., & Serre, C. (2014). High valence 3p and transition metal based MOFs. Chem. Soc. Rev., 43(16), 6097-6115. doi:10.1039/c4cs00081aStock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304eSilva, P., Vilela, S. M. F., Tomé, J. P. C., & Almeida Paz, F. A. (2015). Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 44(19), 6774-6803. doi:10.1039/c5cs00307eLi, J.-R., Sculley, J., & Zhou, H.-C. (2011). Metal–Organic Frameworks for Separations. Chemical Reviews, 112(2), 869-932. doi:10.1021/cr200190sSumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., … Long, J. R. (2011). Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews, 112(2), 724-781. doi:10.1021/cr2003272Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924Rogge, S. M. J., Bavykina, A., Hajek, J., Garcia, H., Olivos-Suarez, A. I., Sepúlveda-Escribano, A., … Gascon, J. (2017). Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 46(11), 3134-3184. doi:10.1039/c7cs00033bDhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581Cui, Y., Yue, Y., Qian, G., & Chen, B. (2011). Luminescent Functional Metal–Organic Frameworks. Chemical Reviews, 112(2), 1126-1162. doi:10.1021/cr200101dKreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2011). Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112(2), 1105-1125. doi:10.1021/cr200324tHorcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., … Serre, C. (2011). Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 112(2), 1232-1268. doi:10.1021/cr200256vWu, Y., Song, X., Li, S., Zhang, J., Yang, X., Shen, P., … Xiao, G. (2018). 3D-monoclinic M–BTC MOF (M = Mn, Co, Ni) as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates. Journal of Industrial and Engineering Chemistry, 58, 296-303. doi:10.1016/j.jiec.2017.09.040Wu, Y., Song, X., Xu, S., Zhang, J., Zhu, Y., Gao, L., & Xiao, G. (2019). 2-Methylimidazole Modified Co-BTC MOF as an Efficient Catalyst for Chemical Fixation of Carbon Dioxide. Catalysis Letters, 149(9), 2575-2585. doi:10.1007/s10562-019-02874-9Wu, Y., Song, X., Zhang, J., Xu, S., Gao, L., Zhang, J., & Xiao, G. (2019). Mn-based MOFs as efficient catalysts for catalytic conversion of carbon dioxide into cyclic carbonates and DFT studies. Chemical Engineering Science, 201, 288-297. doi:10.1016/j.ces.2019.02.032Wu, Y., Song, X., Zhang, J., Xu, S., Xu, N., Yang, H., … Xiao, G. (2018). Zn2(C9H3O6)(C4H5N2)(C4H6N2)3 MOF as a highly efficient catalyst for chemical fixation of CO2 into cyclic carbonates and kinetic studies. Chemical Engineering Research and Design, 140, 273-282. doi:10.1016/j.cherd.2018.10.034Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395kDhakshinamoorthy, A., Opanasenko, M., Čejka, J., & Garcia, H. (2013). Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catalysis Science & Technology, 3(10), 2509. doi:10.1039/c3cy00350gDhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959kLee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080fMa, L., Abney, C., & Lin, W. (2009). Enantioselective catalysis with homochiral metal–organic frameworks. Chemical Society Reviews, 38(5), 1248. doi:10.1039/b807083kValvekens, P., Vermoortele, F., & De Vos, D. (2013). Metal–organic frameworks as catalysts: the role of metal active sites. Catalysis Science & Technology, 3(6), 1435. doi:10.1039/c3cy20813cYoon, M., Srirambalaji, R., & Kim, K. (2011). Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews, 112(2), 1196-1231. doi:10.1021/cr2003147Kholdeeva, O. A. (2016). Liquid-phase selective oxidation catalysis with metal-organic frameworks. Catalysis Today, 278, 22-29. doi:10.1016/j.cattod.2016.06.010Chen, Y. F., Babarao, R., Sandler, S. I., & Jiang, J. W. (2010). Metal−Organic Framework MIL-101 for Adsorption and Effect of Terminal Water Molecules: From Quantum Mechanics to Molecular Simulation. Langmuir, 26(11), 8743-8750. doi:10.1021/la904502hJhung, S. H., Lee, J.-H., Yoon, J. W., Serre, C., Férey, G., & Chang, J.-S. (2007). Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability. Advanced Materials, 19(1), 121-124. doi:10.1002/adma.200601604Hu, Z., & Zhao, D. (2017). Metal–organic frameworks with Lewis acidity: synthesis, characterization, and catalytic applications. CrystEngComm, 19(29), 4066-4081. doi:10.1039/c6ce02660eMaksimchuk, N. V., Zalomaeva, O. V., Skobelev, I. Y., Kovalenko, K. A., Fedin, V. P., & Kholdeeva, O. A. (2012). Metal–organic frameworks of the MIL-101 family as heterogeneous single-site catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2143), 2017-2034. doi:10.1098/rspa.2012.0072Santiago-Portillo, A., Navalón, S., Concepción, P., Álvaro, M., & García, H. (2017). Influence of Terephthalic Acid Substituents on the Catalytic Activity of MIL-101(Cr) in Three Lewis Acid Catalyzed Reactions. ChemCatChem, 9(13), 2506-2511. doi:10.1002/cctc.201700236Santiago-Portillo, A., Navalón, S., Cirujano, F. G., Xamena, F. X. L. i, Alvaro, M., & Garcia, H. (2015). MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 5(6), 3216-3224. doi:10.1021/acscatal.5b00411Gómez-Paricio, A., Santiago-Portillo, A., Navalón, S., Concepción, P., Alvaro, M., & Garcia, H. (2016). MIL-101 promotes the efficient aerobic oxidative desulfurization of dibenzothiophenes. Green Chemistry, 18(2), 508-515. doi:10.1039/c5gc00862jDhakshinamoorthy, A., Alvaro, M., Horcajada, P., Gibson, E., Vishnuvarthan, M., Vimont, A., … Garcia, H. (2012). Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2(10), 2060-2065. doi:10.1021/cs300345bVermoortele, F., Vandichel, M., Van de Voorde, B., Ameloot, R., Waroquier, M., Van Speybroeck, V., & De Vos, D. E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie International Edition, 51(20), 4887-4890. doi:10.1002/anie.201108565Dhakshinamoorthy, A., Alvaro, M., Concepcion, P., & Garcia, H. (2011). Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 12(11), 1018-1021. doi:10.1016/j.catcom.2011.03.018Song, C. (2003). An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 86(1-4), 211-263. doi:10.1016/s0920-5861(03)00412-7Chandra Srivastava, V. (2012). An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Adv., 2(3), 759-783. doi:10.1039/c1ra00309

    Engineering Active Sites in Reduced Graphene Oxide: Tuning the Catalytic Activity for Aerobic Oxidation

    Full text link
    "This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Sustainable Chemistry & Engineering, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acssuschemeng.9b02237."[EN] The influence of the graphene oxide (GO) reduction method on the activity of the resulting reduced graphene oxide (rGO) for the aerobic oxidation of benzylamine is reported. Starting from GO obtained by the Hummers method, a series of rGO samples were obtained either by chemical (hydroquinone (HQ), hydrazine (HZ) or ascorbic acid (ASC)) or by thermal reduction were prepared. Analytical and spectroscopic techniques provide evidence showing that chemical reducing agents reduce GO with different functional groups that influence the catalytic activity of the resulting rGO for the activation of molecular oxygen in benzylamine oxidation. The highest activity in the aerobic oxidation of benzylamine at 80 degrees C was found for the rGO-HQ1 sample prepared using HQ as a reducing agent. It is proposed that HQ introduces hydroquinone/p-benzoquinone-like moieties on the graphene sheet that act as active sites in the oxidation reaction. This proposal is supported by the activity of HQand/or p-benzoquinone as organocatalysts and by selective masking of oxygen-functional groups present in the most active rGO sample. The most active rGO sample exhibited good reusability and stability in five consecutive uses. Selective quenching experiments revealed that hydroperoxyl radicals are the primary reactive oxygen species generated in the system.Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO21) and Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. S.N. thanks financial support by the Fundacion RamOn Areces (XVIII Concurso Nacional para la Adjudication de Ayudas a la Investigation en Ciencias de la Vida y de la Materia, 2016) and Ministerio de Ciencia, Innovation y Universidades RTI2018-099482-A-I00 project and Generalitat Valenciana (grupos de investigation consolidables 2019, AICO/2019/214). A.D. thanks the University Grants Commission, New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Programme. A.D. also thanks the Department of Science and Technology, India, for the financial support through Extramural Research Funding (EMR/2016/006500).Espinosa-López, JC.; Alvaro Rodríguez, MM.; Dhakshinamoorthy, A.; Navalón Oltra, S.; García Gómez, H. (2019). Engineering Active Sites in Reduced Graphene Oxide: Tuning the Catalytic Activity for Aerobic Oxidation. ACS Sustainable Chemistry & Engineering. 7(19):15948-15956. https://doi.org/10.1021/acssuschemeng.9b02237S159481595671

    Tuning the Microenvironment of Gold Nanoparticles Encapsulated within MIL-101(Cr) for the Selective Oxidation of Alcohols with O-2: Influence of the Amino Terephthalate Linker

    Full text link
    This is the peer reviewed version of the following article: Chem. Eur. J. 2019, 25, 9280 9286, which has been published in final form at https://doi.org/10.1002/chem.201901361. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] This manuscript reports a comparative study of the catalytic performance of gold nanoparticles (NPs) encapsulated within MIL-101(Cr) with or without amino groups in the terephthalate linker. The purpose is to show how the amino groups can influence the microenvironment and catalytic stability of incorporated gold nanoparticles. The first influence of the presence of this substituent is the smaller particle size of Au NPs hosted in MIL-101(Cr)-NH2 (2.45 +/- 0.19 nm) compared with the parent MIL-101(Cr)-H (3.02 +/- 0.39 nm). Both materials are highly active to promote the aerobic alcohol oxidation and exhibit a wide substrate scope. Although both catalysts can achieve turnover numbers as high as 10(6) for the solvent-free aerobic oxidation of benzyl alcohol, Au@MIL-101(Cr)-NH2 exhibits higher turnover frequency values (12 000 h(-1)) than Au@MIL-101(Cr)-H (6800 h(-1)). Au@MIL-101(Cr)-NH2 also exhibits higher catalytic stability, being recyclable for 20 times with coincident temporal conversion profiles, in comparison with some decay observed in the parent Au@MIL-101(Cr)-H. Characterization by transmission electron microscopy of the 20-times used samples shows a very minor particle size increase in the case of Au@MIL-101(Cr)-NH2 (2.97 +/- 0.27 nm) in comparison with the Au@MIL-101(Cr)-H analog (5.32 +/- 0.72 nm). The data presented show the potential of better control of the microenvironment to improve the performance of encapsulated Au nanoparticles.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, CTQ2015-65963-CQ-R1 and CTQ2014-53292-R) is gratefully acknowledged. Generalidad Valenciana is also thanked for funding (Prometeo 2017/083). S.N. thanks financial support by the Fundacijn Ramjn Areces (XVIII Concurso Nacional para la Adjudicacijn de Ayudas a la Investigacijn en Ciencias de la Vida y de la Materia, 2016).Santiago-Portillo, A.; Cabrero-Antonino, M.; Alvaro Rodríguez, MM.; Navalón Oltra, S.; García Gómez, H. (2019). Tuning the Microenvironment of Gold Nanoparticles Encapsulated within MIL-101(Cr) for the Selective Oxidation of Alcohols with O-2: Influence of the Amino Terephthalate Linker. Chemistry - A European Journal. 25(39):9280-9286. https://doi.org/10.1002/chem.201901361S928092862539H�ft, E., Kosslick, H., Fricke, R., & Hamann, H.-J. (1996). Titanhaltige Molekularsiebe als Katalysatoren f�r selektive Oxidationsreaktionen mit Wasserstoffperoxid. Journal f�r Praktische Chemie/Chemiker-Zeitung, 338(1), 1-15. doi:10.1002/prac.19963380102Matsumoto, T., Ueno, M., Wang, N., & Kobayashi, S. (2008). Recent Advances in Immobilized Metal Catalysts for Environmentally Benign Oxidation of Alcohols. Chemistry - An Asian Journal, 3(2), 196-214. doi:10.1002/asia.200700359Saikia, M., Bhuyan, D., & Saikia, L. (2015). Facile synthesis of Fe3O4nanoparticles on metal organic framework MIL-101(Cr): characterization and catalytic activity. New Journal of Chemistry, 39(1), 64-67. doi:10.1039/c4nj01312cCorma, A., & Garcia, H. (2008). Supported gold nanoparticles as catalysts for organic reactions. Chemical Society Reviews, 37(9), 2096. doi:10.1039/b707314nParmeggiani, C., & Cardona, F. (2012). Transition metal based catalysts in the aerobic oxidation of alcohols. Green Chemistry, 14(3), 547. doi:10.1039/c2gc16344fStahl, S. S. (2004). Palladium Oxidase Catalysis: Selective Oxidation of Organic Chemicals by Direct Dioxygen-Coupled Turnover. Angewandte Chemie International Edition, 43(26), 3400-3420. doi:10.1002/anie.200300630Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047eAlhumaimess, M., Lin, Z., He, Q., Lu, L., Dimitratos, N., Dummer, N. F., … Hutchings, G. J. (2014). Oxidation of Benzyl Alcohol and Carbon Monoxide Using Gold Nanoparticles Supported on MnO2Nanowire Microspheres. Chemistry - A European Journal, 20(6), 1701-1710. doi:10.1002/chem.201303355Buonerba, A., Cuomo, C., Ortega Sánchez, S., Canton, P., & Grassi, A. (2011). Gold Nanoparticles Incarcerated in Nanoporous Syndiotactic Polystyrene Matrices as New and Efficient Catalysts for Alcohol Oxidations. Chemistry - A European Journal, 18(2), 709-715. doi:10.1002/chem.201101034Costa, V. V., Estrada, M., Demidova, Y., Prosvirin, I., Kriventsov, V., Cotta, R. F., … Gusevskaya, E. V. (2012). Gold nanoparticles supported on magnesium oxide as catalysts for the aerobic oxidation of alcohols under alkali-free conditions. Journal of Catalysis, 292, 148-156. doi:10.1016/j.jcat.2012.05.009Zhang, W., Xiao, Z., Wang, J., Fu, W., Tan, R., & Yin, D. (2019). Selective Aerobic Oxidation of Alcohols over Gold‐Palladium Alloy Catalysts Using Air at Atmospheric Pressure in Water. ChemCatChem, 11(6), 1779-1788. doi:10.1002/cctc.201900015Liu, X. Y., Wang, A., Zhang, T., & Mou, C.-Y. (2013). Catalysis by gold: New insights into the support effect. Nano Today, 8(4), 403-416. doi:10.1016/j.nantod.2013.07.005Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2016). Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 312, 99-148. doi:10.1016/j.ccr.2015.12.005Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2017). Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis. ACS Catalysis, 7(4), 2896-2919. doi:10.1021/acscatal.6b03386Howarth, A. J., Liu, Y., Li, P., Li, Z., Wang, T. C., Hupp, J. T., & Farha, O. K. (2016). Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2015.18Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080fLeus, K., Concepcion, P., Vandichel, M., Meledina, M., Grirrane, A., Esquivel, D., … Van Der Voort, P. (2015). Au@UiO-66: a base free oxidation catalyst. RSC Advances, 5(29), 22334-22342. doi:10.1039/c4ra16800cSaikia, M., Kaichev, V., & Saikia, L. (2016). Gold nanoparticles supported on nanoscale amine-functionalized MIL-101(Cr) as a highly active catalyst for epoxidation of styrene. RSC Advances, 6(108), 106856-106865. doi:10.1039/c6ra24458kLiu, H., Liu, Y., Li, Y., Tang, Z., & Jiang, H. (2010). Metal−Organic Framework Supported Gold Nanoparticles as a Highly Active Heterogeneous Catalyst for Aerobic Oxidation of Alcohols. The Journal of Physical Chemistry C, 114(31), 13362-13369. doi:10.1021/jp105666fLammert, M., Bernt, S., Vermoortele, F., De Vos, D. E., & Stock, N. (2013). Single- and Mixed-Linker Cr-MIL-101 Derivatives: A High-Throughput Investigation. Inorganic Chemistry, 52(15), 8521-8528. doi:10.1021/ic4005328Zhu, Q.-L., Li, J., & Xu, Q. (2013). Immobilizing Metal Nanoparticles to Metal–Organic Frameworks with Size and Location Control for Optimizing Catalytic Performance. Journal of the American Chemical Society, 135(28), 10210-10213. doi:10.1021/ja403330mChen, Y. F., Babarao, R., Sandler, S. I., & Jiang, J. W. (2010). Metal−Organic Framework MIL-101 for Adsorption and Effect of Terminal Water Molecules: From Quantum Mechanics to Molecular Simulation. Langmuir, 26(11), 8743-8750. doi:10.1021/la904502hFerey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275Santiago-Portillo, A., Navalón, S., Cirujano, F. G., Xamena, F. X. L. i, Alvaro, M., & Garcia, H. (2015). MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 5(6), 3216-3224. doi:10.1021/acscatal.5b00411Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(2), 513-886. doi:10.1063/1.555805Clifton, C. L., & Huie, R. E. (1989). Rate constants for hydrogen abstraction reactions of the sulfate radical, SO4?. Alcohols. International Journal of Chemical Kinetics, 21(8), 677-687. doi:10.1002/kin.550210807Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2017). Tuneable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation. Chemical Communications, 53(79), 10851-10869. doi:10.1039/c7cc05927bCancino, P., Vega, A., Santiago-Portillo, A., Navalon, S., Alvaro, M., Aguirre, P., … García, H. (2016). A novel copper(ii)–lanthanum(iii) metal organic framework as a selective catalyst for the aerobic oxidation of benzylic hydrocarbons and cycloalkenes. Catalysis Science & Technology, 6(11), 3727-3736. doi:10.1039/c5cy01448dGómez-Paricio, A., Santiago-Portillo, A., Navalón, S., Concepción, P., Alvaro, M., & Garcia, H. (2016). MIL-101 promotes the efficient aerobic oxidative desulfurization of dibenzothiophenes. Green Chemistry, 18(2), 508-515. doi:10.1039/c5gc00862

    Calidad percibida por usuarios de cirugía menor según nivel asistencial y profesionales que las realizan

    Get PDF
    Fundamentos: La cirugía menor es realizada actualmente por diversos profesionales en atención primaria y especializada. Como tecnología sanitaria debe ser evaluada para conseguir una eficiencia organizacional. La satisfacción del usuario es uno de los criterios de calidad. Por ello se plantea un análisis de la calidad percibida por el usuario según dónde y quién realice cirugía menor

    Estrategias aplicadas a la enseñanza teórico-práctica de Fisiología Vegetal mediante la tecnología B-Learning

    Get PDF
    En el marco de las XII Jornadas de Redes de Investigación en Docencia Universitaria 2014, de la Universidad de Alicante, se creó una red de trabajo formada por los profesores de la asignatura “Fisiología vegetal: Nutrición, transporte y metabolismo” del segundo curso del Grado en Biología. Durante la implementación de la asignatura, se puso de manifiesto la necesidad de revisar aspectos metodológicos con el fin de mejorar el aprendizaje de los alumnos, introduciendo para ello, innovaciones vía recursos tecnológicos de última generación. De esta forma, se incorporó la tecnología B-Learning, a través de sesiones docentes, con el propósito de mejorar la interacción profesor-alumno en la enseñanza presencial y virtual y coordinar la parte teórica y práctica de la asignatura. Este estudio permitió evaluar la nueva metodología docente aplicada, comparando las ventajas e inconvenientes de ésta con la tradicional, a partir de encuestas realizadas a los alumnos, con preguntas referidas a sus características personales y a su desempeño en la Universidad, así como a su valoración de la metodología docente propuesta. Además, también se pretendió estudiar las estrategias que mejor resultado dieran, para aplicarlas en futuros cursos
    corecore