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Abstract

We study extremal curves associated with a functional which is linear in the curve’s

torsion. The functional in question is known to capture the properties of entanglement

entropy for two-dimensional conformal field theories with chiral anomalies and has potential

applications in elucidating the equilibrium shape of elastic linear structures. We derive the

equations that determine the shape of its extremal curves in general ambient spaces in terms

of geometric quantities. We show that the solutions to these shape equations correspond

to a three-dimensional version of Mathisson’s helical motions for the centers of mass of

spinning probes. Thereafter, we focus on the case of maximally symmetric spaces, where

solutions correspond to cylindrical helices and find that the Lancret ratio of these equals the

relative speed between the Mathisson-Pirani and the Tulczyjew-Dixon observers. Finally, we

construct all possible helical motions in three-dimensional manifolds with constant negative

curvature. In particular, we discover a rich space of helices in AdS3 which we explore in

detail.
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1 Introduction

This work is devoted to the study of helical curves in three-dimensional manifolds. These

are curves γ which extremize the geometric functional

F [γ] = m `(γ) + s

∫
γ

τ , (1.1)

where `(γ) is the curve’s length and τ is its extrinsic torsion. Intuitively, τ is a measure

of non-planarity of the curve. This functional is rich in geometrical structure and applica-

tions: for space-like curves embedded in asymptotically Anti-de Sitter spaces, it encodes the

holographic entanglement entropy of two-dimensional conformal field theories with chiral

anomalies [1]. Furthermore, its extrema delineate the time-like trajectories of the center of

mass of spinning particles in three-dimensional curved spacetimes. Remarkably, its appli-

cations are not limited to holography and general relativity since functionals of this kind

can be used to understand the behaviour of elastic linear structures such as proteins and

polymers [2][3].

In a ground-breaking insight, Ryu and Takayanagi [4] observed that the entanglement en-

tropy for two-dimensional conformal field theories can be computed by evaluating the length

functional for curves in AdS3 on its extrema, which correspond to geodesics. This prescription

is valid only for field theories whose holographic dual is Einstein gravity. Over the years, a

number of generalizations to this prescription have been developed in order to accommodate

gravity duals endowed with higher-curvature corrections. The new entanglement functionals

involve terms containing geometric objects such as the extrinsic curvature and projections

of the ambient curvature [5, 6, 7]. Beyond geodesics, there is a rich space of extrema for
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these functionals even in the simplest cases [8]. A generalization of the Ryu-Takayanagi

prescription of particular relevance for the present discussion is the entanglement functional

associated with two-dimensional field theories suffering from gravitational anomalies. In two

dimensional conformal field theories this anomaly manifests itself as a discrepancy between

the left and right central charges. Provided such theory admits a gravitational dual, this

would necessarily contain a gravitational Chern-Simons term. Based on this fact, it was dis-

covered in [1] that holographic entanglement entropy must be computed using the functional

(1.1). The anomalous nature of the theory is succinctly captured by the torsion term and

geodesics must be replaced by extrema of (1.1).

Such curves are closely related to the trajectories of free falling spinning probes in

curved spacetimes. The motion of these probes is known to be governed by the Mathisson-

Papapetrou-Dixon equations [9, 10, 11]. These equations are undetermined up to a spin

supplementary condition. This undeterminacy is a manifestation of the fact that in order

to track the motion of an extended body using a single curve one must choose a reference

point in the body. Newtonian intuition would suggest that one must select this point to be

the center of mass of the body. However, the notion of center of mass is observer-dependent

in relativistic systems: in fact, it is the job of the spin supplementary condition to single

out a specific observer. Many different supplementary conditions have been considered in

the literature. Arguably, the better known ones are the Tulczejew-Dixon (TD) and the

Mathisson-Pirani (MP) conditions; the former selects an observer in the zero-momentum

frame, while the latter opts for an observer comoving with the center of mass as seen by her-

self. The MP condition is known to give rise to helical motions [12] which were regarded as

unphysical for a long time due to a subtle misapprehension. The nature of these Mathisson’s

helical motions has been settled only recently in [13, 14] where it was shown that they are in

fact physically sound solutions. As shown in this work, the extrema of the functional (1.1)

describe Mathisson’s helical motions in three dimensions. The geometric formalism devel-

oped here allows to relate physical notions to important geometrical quantites. For instance

it is shown that the relative speed between the TD and the MP observers corresponds to the

curvature to torsion ratio also known as the Lancret ratio of the helix.

This paper is organized as follows: In Section 2 we present the basic geometrical setup and

deduce the equations satisfied by the extrema of the functional (1.1). In Section (3) we show

the equivalence of the extrema of the functional (1.1) and three-dimensional Mathisson’s

helical motions. In Section 4 we construct analitically all possible helical motions in H3 and

AdS3 and discuss their properties.

2 Geometrical setup and shape equations

In this section we elaborate on the geometrical content of the functional (1.1) and deduce the

equations satisfied by its extrema. We discuss the general setup using the nomenclature of [8]
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where the subject is developed more thoroughly. Consider the embedding of a p-dimensional

manifold Σ into a d-dimensional manifold M (p < d) endowed with a (pseudo) Riemannian

metric gµν . Locally, we can write this map as xµ(σi), where µ = 1, . . . , d and i = 1, . . . , p.

Hereafter, we will refer to the embedded image of Σ also as Σ whenever this doesn’t lead

to misunderstandings. At each point p ∈ Σ the tangent space TpM can be decomposed into

the space of vectors tangent to Σ and its orthogonal complement. The former corresponds

to the span of

tµi =
∂xµ

∂σi
= ∂ix

µ, (2.1)

while the latter can be generated by vectors nAµ , with A = 1, . . . , d− p chosen such that

nAµ t
µ
i = 0 and gµνn

µ
An

ν
B = ηAB , (2.2)

where ηAB is given by the matrix ηAB = diag(−1, . . . ,−1, 1 . . . , 1). The number of negative

eigenvalues in ηAB depends on the signature of gµν and the nature of the embedding. In the

following, we use mixed indices to denote projections of ambient quantites into tangent and

normal directions, for instance:

RAiC
j = Rµνρσn

µAtν inρCtσj . (2.3)

Notice that the vectors nAµ are defined up to transformations

nAµ →MA
C

(
σi
)
nCµ such that MA

CMB
D ηAB = ηCD . (2.4)

This ambiguity gives rise to a gauge theory on the normal bundle, which for a Riemannian

ambient space corresponds to an SO(d− p) gauge theory.

The geometrical properties of the embedding of Σ ↪→ M can be divided into intrinsic

and extrinsic. Intrinsic properties are those obtained from the induced metric (or first

fundamental form)

hij = gµνt
µ
i t
ν
j . (2.5)

We can associate a Levi-Civita connection ∇̃i to hij and hence obtain the intrinsic Riemman

tensor Rijkl and its relevant contractions. In turn, the extrinsic properties can be found by

studying how the tangent and normal vectors change as we move along Σ. We can decompose

the directional derivatives tµi∇µ = Di of the normal vectors into their tangent and normal

contributions as:

Di nAµ = KA
ij t

jµ − TABi nµB . (2.6)

The coefficients of the above decomposition define the key objects that encode the extrinsic

geometry, the extrinsic curvatures

KA
ij = tµj Di nAµ , (2.7)
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and the extrinsic torsions

TABi = nAµ Di nBµ . (2.8)

It is important to point out that ambient, intrinsic and extrinsic quantities partake in subtle

relations such as the generalized Gauss identity

Rijkl = Rijkl + ηABK
A
[ilK

B
jk] , (2.9)

which relates the extrinsic curvatures with the ambient and intrinsic Riemann tensors. For

a detailed discussion on this subject we refer the reader to [8].

It is natural to ask how do the extrinsic quantities depend upon the choice of normal

frame. It can be shown that under the gauge transformations (2.4) the extrinsic quantities

transform as [8, 15]

KA
ij →MA

C

(
σi
)
KC
ij , (2.10)

and

TABi →MCA ∂iMD
A +MC

AMD
B T

AB
i . (2.11)

Notice that TABi transforms exactly as a gauge connection. Thus, TABi can be used to

construct a gauge covariant derivative in the normal bundle

D̃A
i BV

B
j = ∇̃iV

A
j + TABi ηBCV

C
j . (2.12)

With the help of this connection it possible to define gauge theoretical objects in the normal

bundle such as field strengths and, in the appropriate dimensions, Chern-Simons terms. This

gauge symmetry provides a useful guiding principle for writing consistent geometric effective

actions. A wide variety of physical situations can be described by functionals constructed

with the geometric objects introduced above. For instance, the gauge invariant term

√
hTr

(
KA
)

Tr (KA) (2.13)

in the Lagrangian plays an important role in the study of elasticity [15] as well as the

computation of entanglement entropy via holography [5, 6, 7] depending on the ambient

space considered.

In order to find the equations of motion corresponding to a geometric functional one must

understand how geometric quantities respond to variations of the underlying sub-manifold

of the form

xµ → xµ + δxµ . (2.14)

There are a number of subtleties associated with performing these variations, in the present

work we just outline the procedure and invite the interested reader to consult [8, 15] for

detailed expositions. The first step is to decompose the variation into its tangent and normal

components

xµ → xµ + εi (σ) tµi + εA (σ)nµA . (2.15)
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The advantage of this decomposition becomes clear once we notice that the tangential vari-

ations correspond to reparametrisations of Σ. Hence, tangential variations produce total

derivatives which can contribute only as boundary terms. To find the equations of motion

associated to the functional (1.1) we just need the variations of hij and TABi . These normal

variations can be obtained by taking Lie derivatives along the vector field nµ = εA (σ)nµA.

The normal variation of the induced metric reads

Ln hij = 2 εAK
A
ij , (2.16)

which implies that

Ln
√
h = εA

√
hTrKA . (2.17)

In turn, for the extrinsic torsion we find

LnTABi =−KA
ij

(
∇̃kε

B − TBCk εC

)
hjk + εD ΘDA

CT
CB
i − (A↔ B)

+ ∇̃j(εC ΘCAB) +RABC
iεC , (2.18)

where we introduced

εAΘABC = nµCnν∇νn
B
µ , (2.19)

which is antisymmetric in the last two indices.

Now, we return to the case of interest namely curves (p = 1) embedded in a three-manifold

(d = 3). Whenever we are working in codimension two we can define

τi =
1

2
εABT

AB
i , (2.20)

with ε12 = −ε21 = 1. In the case of cuves we omit the tangential index i to avoid clutter, it is

nevertheless important to be aware that τ is actually a one-form and not a scalar function.

Depending on the signature of the normal frame the gauge group is either U(1) or the group

of squeeze mappings. Under these transformations, τ transforms as

τ → τ + ∂iψ , (2.21)

where ψ is the local angle parametrizing the local rotation of the normal frame. This means

that the functional ∫ σf

σi

dσ τ , (2.22)

is not gauge-invariant, but rather receives boundary - in this case end-point - contributions∫ σf

σi

dσ τ →
∫ sf

si

dσ τ + ψ(σf )− ψ(σi) , (2.23)

in a manner reminiscent of Chern-Simons theory.
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To obtain the equations of motion, we contract Eq. (2.18) with εAB and find that

Ln
∫

Σ

ds τ =

∫ sf

si

ds εA(s)
[
εAB D̃

B
s CTrKC − εDER D E

s A

]
, (2.24)

up to boundary contributions. Combining this result with (2.17) implies that the extrema

of the functional (1.1) satisfy

mTrKA + s
(
εABD̃

B
s CTrKC − εDER D E

s A

)
= 0 . (2.25)

To unburden the notation we write kA = TrKA and define (D̃k)B = D̃B
s Ck

C , so that the

equation can be rewritten as

m kA + s εAB

[
(D̃k)B +R B

s

]
= 0 , (2.26)

where we also used the fact that in three dimensions the Riemann tensor can be expressed in

terms of the Ricci tensor. We refer to Eqs. (2.26) as the shape equations and call its solutions

extremal curves or just extrema in the following. Observe that if we set s = 0 the shape

equations reduce to kA = 0, whose solutions are geodesics. It is our objective to explore

further the possible of solutions of the shape equations.

To understand better the space of solutions of (2.26) it is important to be able to associate

gauge-invariant quantities to different extrema. An invariant of paramount importance is

the total curvature or Frenet-Serret (FS) curvature defined by

k2
FS = ηABk

AkB . (2.27)

The above, can also be regarded as the norm of the extrinsic curvature vector

kµ = kAnµA . (2.28)

In Lorentzian spaces, this vector can be spacelike, timelike or null hence we must bear in

mind that k2
FS might be negative. The behaviour of the FS curvature along the curve can

be inferred from (2.26) indeed, we find that

∂sk
2
FS = −2R B

s kB . (2.29)

Therefore, whenever R B
s = 0 the Frenet-Serret curvature is constant along the curve. This

is the case for Einstein spaces where the Ricci tensor is proportional to the metric tensor.

The shape equations (2.26) transform covariantly under the gauge transformations (2.4),

and we should fix a convenient gauge to solve them. There are two gauge choices which will

play important roles in this work. The first one is the Frenet-Serret gauge, which corresponds

to a choice of normal vectors for which the extrinsic curvature in one of the normal directions

vanishes identically. This means that all the curvature is manifested in the other normal

direction, which we call FS normal, nµFS, such that

κFS = tµDs nµFS . (2.30)
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In Lorentzian spaces one must be particularly careful in selecting the FS frame: in fact, the

FS normal must be endowed with the same causal nature of the vector kµ. Indeed, we have

κ2
FS = χFS k

2
FS χFS = gµνn

µ
FSn

ν
FS = ±1, 0 (2.31)

which keeps track of whether kµ is spacelike, timelike or null. An important consequence of

this discussion is that for curves with varying k2
FS the choice of the FS frame must be revised

whenever this quantity changes sign. The following example from [16] illustrates the point.

Consider the curve

γ(s) =

(
1

2

(
s
√
s2 − 1− log(s+

√
s2 − 1)

)
, cos(s) + s sin(s), sin(s)− s cos(s)

)
(2.32)

defined in the range s ∈ (1,∞) and embedded in flat Minkowski space (t, x, y). For this

curve, we have

χFS = sgn

(
s4 − s2 − 1

s2 − 1

)
(2.33)

and the causal structure of the FS normal vector can change as we vary s. It is important

to avoid overlooking these subtleties when dealing with curves for which k̇2
FS 6= 0.

The extrinsic geometry in a given frame is characterized by kA and τ . Above, we explained

how to obtain the curvatures in the FS frame starting from any given frame. Now, we must

find the torsion τFS in this gauge. We achieve this aim using the invariant

εABk
A(D̃k)B , (2.34)

which can be used to show that

k2
FS (τ − τFS) = εABk

A∂sk
B . (2.35)

Therefore, with the help of Eqs. (2.27), (2.31) and (2.35) it is possible to find the FS quantities

of a curve starting from any given frame.

The second convenient choice of gauge comes from demanding the torsion to be vanishing

along the curve: there are never obstructions to this choice since the field strength associated

to τ is always vanishing for one-dimensional curves. We refer to this gauge as the Fermi-

Walker (FW) frame since it can be used to to define non-inertial and non-rotating frames.

We will revisit this point in section (3). We notice that the main advantage of this frame is

the simplification of the gauge-covariant derivatives into ordinary derivatives.

3 Extrema and spinning probes

It is well known that in general relativity the trajectory of a test point particle is determined

by the geodesic equations. This is the appropriate description for a particle with no internal
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structure. In the language of the previous section geodesic curves correspond to solutions of

Eqs. (2.26) with s = 0. It is natural to wonder if more general solutions to these equations

have an analogous interpretation in terms of test objects. Indeed, as announced by the title

of this work, the extrema of (2.26) can be associated with the trajectories of the centers of

mass of spinning probes. More specifically, the solutions of the shape equations (2.26) are

closely related to Mathisson’s helical motions for spinning particles [12]. The nature of these

trajectories has been a source of contention for many years and their true character has been

elucidated only recently in [13].

An extended relativistic body can be studied with the help of a multipole expansion

performed about a suitably chosen reference worldline x̃µ(s). At first order in this expansion,

the motion of the body is encoded in two moments of T µν , the momentum pµ and the

angular momentum Sµν . This approximation corresponds to a spinning particle or a pole-

dipole interaction. Applying energy-momentum conservation and Einstein’s field equations

we obtain the Matthison-Papapetrou-Dixon (MPD) equations [9, 10, 11]

Dspλ = −1

2
tνSρσRλ

νρσ (3.1)

DsSµν = pµtν − tµpν , (3.2)

where tµ is the normalized tangent vector.

Notice that the MPD system is not a closed set of differential equations and it must

be suplemented with additional conditions. These conditions help to specify the reference

worldline used to calculate the moments. It is tempting to think that one should simply

choose the center of mass of the body but this is a rather subtle point in relativistic sys-

tems. Indeed, the notion of center of mass is observer-dependent, see [13] for an informative

exposition. In practice, the choice of worldline is implemented by requiring that

Sµνvµ = 0 , (3.3)

for some normalized vector field vµ. The condition (3.3) identifies the solution of the MPD

problem with the trajectory of the center of mass as measured in the rest frame of an observer

moving with three-velocity1 vµ. In the literature there are two widely used conditions, the

Tulczyjew-Dixon (TD) condition

Sµνpµ = 0 , (3.4)

and the Mathisson-Pirani (MP) condition

Sµνtµ = 0 . (3.5)

Mathisson’s helical motions arise if one chooses the MP condition to supplement the MPD

system. As we shall demonstrate, the 2+1 dimensional (MDP+MP) system corresponds to

the shape equations (2.26).

1Recall we are working in 2+1 dimensions.

9



Since we are in 2+1 dimensions, the MP condition (3.5) implies that the spin tensor can

be written as

Sµν = σ εAB n
AµnBν , (3.6)

where σ is in constant due to (3.1). In turn, using Eq. (3.2) we can write the momentum as

χt p
µ = (tνp

ν) tµ − tνDsSνµ , (3.7)

where χt = tµt
µ = ±1 codifies the causal nature of the probe. Now, we show that tνp

ν is

actually constant. Indeed, equation (3.1) and the properties of the Riemann tensor imply

that tµDspµ = 0. Moreover, we can show that

pµDstµ = −χt tνDsSνµDstµ = χtSνµDstνDstµ = 0 , (3.8)

where the first equality follows from (3.7) and the parametrization by arc-length, while the

second equality comes from the MP condition. Thus, we have

− χt pµ = µ tµ + tνDsSνµ , (3.9)

where µ = −tνpν is constant along the curve and corresponds to the proper mass of the

probe.

In order to relate the MPD+MP system to the shape equations it is convenient to rewrite

(3.9) as

− χt pµ = µ tµ + σ εABK
AnBµ . (3.10)

In passing, notice that

pµpµ = χt
(
µ2 − σ2k2

FS

)
, (3.11)

where we used that χ2
t = 1 and det(η) = −χt . Furthermore, we can show that

εABDs
(
KAnBµ

)
= −εAB nAµ(D̃K)B . (3.12)

The above equation together with the arc-length parametrization imply that the directional

derivative of pµ is entirely normal. Explicitly, we have

nAµDs(χt pµ) = µKA + σεAB(D̃K)B . (3.13)

Therefore, in terms of extrinsic geometry the MPD equation (3.1) reads

µKA + σ εAB

[
(D̃K)B + χtR

B
s

]
= 0 . (3.14)

Finally, using kA = TrKA = χtK
A we obtain

µ kA + σ εAB

[
(D̃k)B +R B

s

]
= 0 , (3.15)

which matches perfectly the shape equation (2.26) upon identifying µ ↔ m and σ ↔ s.

There fore we have shown that, for an arbitrary three-dimensional manifold, the system of

MPD+MP equations originates from a variational principle.
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3.1 Extrema in maximally symmetric spaces

In maximally symmetric three-dimensional manifolds the Ricci tensor is proportional to the

metric, which implies that (2.26) simplifies to

mkA + s εAB(D̃k)B = 0 . (3.16)

Clearly, geodesics are amongst the solutions to these equations. Moreover, equation (2.29)

implies that any extremal curve in this kind of manifolds must have constant FS curvature.

Furthermore, equation (3.16) implies that

κFS (m− s τFS) = 0 , (3.17)

which implies that whenever the FS curvature and s are non-vanishing the torsion is fixed

to a particular constant

τFS =
m

s
. (3.18)

Thus, extrema in maximally symmetric spaces correspond to curves with constant FS cur-

vature and torsion.

Now that we have figured out the behaviour of the extrinsic geometry we try to elucidate

the shape of the curves themselves. We move to the FS gauge and by convention identify

the normal index A = 1 with the FS normal direction. Expanding equation (2.6) we find

Dsn(1)µ = χt κFS t
µ − η22 τFS n

(2)µ (3.19)

Dsn(2)µ = η11 τFS n
(1)µ , (3.20)

where χt = tµtµ encodes the causal nature of the probe. Notice that in the present convention

η11 = χFS. Moreover, combining Eq. (2.2) with (2.6) we obtain

Dstµ = −η11 κFS n
(1)µ . (3.21)

These are nothing but the FS equations for the moving frame. In a flat background we can

reduce this system to a single differential equation for the curve γµ(s)

d4γµ

ds4
+
[
χt k

2
FS + det(η) τ 2

FS

] d2γµ

ds2
= 0 . (3.22)

If the ambient is Euclidean, this equation becomes simply

d4γµ

ds4
+
(
k2

FS + τ 2
FS

) d2γµ

ds2
= 0 , (3.23)

where k2
FS is positive definite. On the other hand, if the ambient space has Lorentizan

signature equation (3.22) reads

d4γµ

ds4
+ χt

(
k2

FS − τ 2
FS

) d2γµ

ds2
= 0 , (3.24)
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where we used the fact that det(η) = −χt. In this case there are two signs to be accounted

for, each associated with the causality of the probe and that of its extrinsic curvature vector.

To find the analogue of (3.22) in a curved ambient space such as H3 or AdS3 is less

straightforward. The key difficulty lies on the fact that Ds no longer reduces to an ordinary

derivative. To circumvent this complication it is convenient to regard the ambient space in

question as a hypersurface embedded in a four-dimensional flat space. Indeed, both H3 and

AdS3 can be described as the zero set of xαxα + L2 in R4, the difference between the two

being which metric is used to contract the xα: diag(−,+,+,+) for H3 and diag(−,−,+,+)

for AdS3. In this setting, the FS equations (3.19), (3.20) and (3.21) read

Dsn(1)α = χt κFS t
α − η22 τFS n

(2)α (3.25)

Dsn(2)α = η11 τFS n
(1)α , (3.26)

Dstα = −η11 κFS n
(1)α , (3.27)

and the directional derivative is given by the projection of the derivative along the subman-

ifold

Ds V α = ∂sV
α +

1

L2

(
γβ∂sV

β
)
γα . (3.28)

Combining the above results, we obtain the master equation

d4γα

ds4
+
[
χt k

2
FS + det(η) τ 2

FS −
χt
L2

] d2γα

ds2
− χt det(η)

(τFS

L

)2

γα = 0 , (3.29)

where solutions ought to fullfill the constraint γαγα = −L2. For the hyperbolic space H3,

equation (3.29) can be further reduced to

d4γα

ds4
+

(
k2

FS + τ 2
FS −

1

L2

)
d2γα

ds2
−
(τFS

L

)2

γα = 0 . (3.30)

Meanwhile, for AdS3 we have

d4γα

ds4
+ χt

(
k2

FS − τ 2
FS −

1

L2

)
d2γα

ds2
+
(τFS

L

)2

γα = 0 , (3.31)

where in a similar fashion to Minkowski it is necessary to keep track of the causal nature of

the probe and its extrinsic curvature vector.

In the next sections we find the curves that solve these equations. Experience with R3

hints to the fact that these solutions must be some kind of helices. A helix in R3 is a curve

whose tangent vector makes a constant angle with a predetermined direction known as the

axis. A classic result by Lancret and Saint Venant is that a necessary and sufficient condition

for a curve to be a helix is that the Lancret ratio

τFS/κFS , (3.32)

is constant along the curve. Helices with constant FS torsion, and hence constant FS cur-

vature, are known as cylindrical helices. Thus we can summarize this section by saying that
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the centers of mass of spinning probes in maximally symmetric spaces move along cylindrical

helices. However, we must first clarify what is meant by a cylindrical helix in spaces other

than R3; this will be the focus of the next sections.

3.2 Mathisson’s helical trajectories

We start with the simplest non-trivial case, a timelike probe in Minkowski space. Cylin-

drical helices in Minkoswki space have been studied from a purely geometric perspective

in [16]. In Section 3.1, we showed that these helical shapes must correspond to solutions

of the Mathisson-Papapetrou-Dixon dipole equations (3.1) and (3.2) with the Mathisson-

Pirani complementary condition (3.5). These trajectories are know as Mathisson’s helical

trajectories and surprinsingly their proper physical interpretation has been understoond only

recently in [13, 14]. In this brief aside we bridge between the geometrical language of the

shape equations and the three-dimensional version of the insights presented in [13].

In flat ambient geometries the shape of extrema are dictated by Eq. (3.22), whose generic2

solutions can be written as

γµ(s) = Aµ + sBµ + cos
(√

Λs
)
Cµ + sin

(√
Λs
)
Dµ , (3.33)

where

Λ = χt k
2
FS + det(η) τ 2

FS , (3.34)

and the coefficients in (3.33) are subject to the condition γ̇µγ̇
µ = χt. In particular, for a

timelike probe in Minkowski space we have

Λ = τ 2
FS − k2

FS , (3.35)

with k2
FS ≥ 0. Thus, unlike the Euclidean case (where Λ ≥ 0 always) the Minkowski

ambient allows for hyperbolic as well as trigonometric solutions. However, naively examining

Mathisson’s helical solutions presented in [13], it seems that only trigonometric paths are

to be considered. One might wonder whether there is something interesting hidding behind

this simple observation.

The objective of the MPD equations is to provide an approximate description of the

movement of an extended body in relativity by tracking the movement of a single point. We

encounter a similar problem in Newtonian physics and there we simply follow the trajectory

of the center of mass. In a relativistic system, however, the notion of center of mass is less

straightforward3. Indeed, the notion of center of mass is observer-dependent. In the case of

the MPD system, it is the supplementary condition which determines which is the point to be

tracked along the body trajectory. This choice entails the designation of a particular observer

and the solutions of MPD delineate the trajectory of the center of mass as measured by that

2By generic, we mean that τFS 6= κFS.
3We recommend the reader to look at [13, 14] for a very illuminating discussion.
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observer. We refer to these respectively as the TD observer or the MP observer depending

on whether we impose (3.4) or (3.5). The Lorentz factor between the MP and TD frames is

given by
1

γ2
=
M2

m2
, (3.36)

where

M2 = −pµpµ , (3.37)

is the proper mass observed by the TD observer. Using Eqs. (3.11) and (3.18) we find

1

γ2
= 1−

(
kFS

τFS

)2

. (3.38)

Thus, we reach the conclusion that the Lancret ratio (3.32) in Minkowski space corresponds

to the relative speed between the MP and the TD frame. Requiring this speed to be sublu-

minal implies that Λ is positive and thus the solutions in (3.33) are always trigonometric.

4 Helices in hyperbolic and Anti de Sitter space

In this section we study helical trajectories in negatively curved spaces. We start off in

the hyperbolic space H3, whose signature is Euclidean and then we explore AdS3 where the

subtleties associated with a Lorenzian signature must be considered. Extrema in H3 are

curves of constant kFS and τFS satisfying (3.30), solutions to the latter are of the form

γα(s) = Mα
jv
j v =


cosh(λs)

sinh(λs)

cos(ωs)

sin(ωs)

 , (4.1)

where

λ =

√√√√−Λ

2
+

√(
Λ

2

)2

+
(τFS

L

)2

ω =

√√√√Λ

2
+

√(
Λ

2

)2

+
(τFS

L

)2

, (4.2)

and

Λ = k2
FS + τ 2

FS −
1

L2
. (4.3)

Notice that both λ and ω in (4.2) are real for any value of k2
FS, τ 2

FS and L. Recall that γα

in Eq. (4.1) represents a curve in four dimensions and for it to lie on H3 it must satisfy the

embedding condition γαγα = −L2. In addition to the restrictions beared by the embedding

condition the constant coefficients in (4.1) are further constrained by the tangent vector

normalization condition γ̇αγ̇α = 1.
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The embedding condition implies that the matrix of coefficients M in (4.1) is not arbitrary.

Indeed, in order for this requirement to be satisfied we must have

M>η(1,3)M = diag(−a2, a2, b2, b2) , b2 − a2 = L2 . (4.4)

Observe that every pair of solutions can be connected by means of an isometry i.e. by left-

multiplying the matrix M with a matrix I ∈ O(1, 3), such that

I>η(1,3)I = η(1,3) . (4.5)

It is therefore possible to construct every solution starting from a seed solution γ̃ = M̃v. For

the present case a convenient choice of seed is generated by

M̃ = diag(a, a, b, b) . (4.6)

Finally, by demanding the normalization of the tangent vector γ̇αγ̇α = 1 on the seed solution

we find

(aλ)2 − (bω)2 = 1 . (4.7)

The above condition is also invariant under the action of isometries, see Fig. 1 .

A similar procedure can be followed to find the extrema corresponding to AdS3 but some

subtleties must be taken into account. To understand the solutions of Eq. (3.31) we must

study carefully the behavior of the roots of the characteristic polynomial associated with

this equation. The characteristic polynomial is biquadratic, and it s four roots are then of

the form ±λ± with

λ± =
√
z± , (4.8)

where z± are zeros of the auxiliary polynomial

z2 + Λz +
(τFS

L

)2

, (4.9)

with

Λ = χt

(
k2

FS − τ 2
FS −

1

L2

)
. (4.10)

The nature of the roots is encoded in the discriminant

∆ = Λ2 − 4
(τFS

L

)2

. (4.11)

Setting aside the degenerate cases (τFS = 0 or ∆ = 0) there are three possible scenarios:

• Case I: If ∆ > 0 and Λ < 0, then both λ± are real and distinct.

15



Figure 1: Solutions γ̃ of equation (4.1) obtained with (4.4) and seed (4.6). For drawing

purposes, we compactified H3 onto the Poincaré sphere of radius L, and constructed the

projection so that if a curve ends on the boundary, its endpoints are antipodal. Only half of

the sphere is displayed to show the interior. a) Geodesic. b) Constant curvature curve with

zero torsion and LkFS < 1, the curve consists of an circle arc of radius bigger than L. c)

Constant curvature curve with zero torsion and LkFS > 1, the curve consists of a full circle

of radius smaller than L. d) Helix with LkFS < 1, as in case b), but with LτFS = 2. The

number of twists is infinite as the boundary is approached. e) Helix with LkFS > 1 and

LτFS = 1/10. f) Helix with LkFS twice as of the one of e) and LτFS = 1/10.
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Figure 2: Region plots showing which case is pertinent for a given value of total curvature

k2
FS and squared torsion τ 2

FS for curves in AdS3. The left panel refers to space-like probes

with χt = 1 (and hence both χFS and k2
FS can be negative). The right panel shows time-like

probes with χt = −1 and which can have only space-like FS normals. Blue regions refer to

Case I, yellow to Case II and green to Case III. Notice however that different seeds (i.e.

different permutations of vj) are needed to generate real solutions within a given region: for

example the Case I splits for space-like probes into three sub-regions, labeled Ia, Ib and Ic
which correspond respectively to seeds (4.15), (4.16) and (4.14).
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• Case II: If ∆ > 0 and Λ > 0, then both λ± are imaginary and distinct.

• Case III: If ∆ < 0, then both λ± are complex with non-zero imaginary and real parts,

and λ+ = λ̄−.

The values of kFS and τFS determine to which case a solution belong, see Fig. 2 for details.

We follow a similar strategy to the one used to determine helical motions in H3. Solutions

to equation (3.31) for Case I can be written as

γα(s) = Mα
jv
j v =


cosh(λ+s)

cosh(λ−s)

sinh(λ+s)

sinh(λ−s)

 . (4.12)

A natural choice would be to simply pick

M̃ = diag(b, a, b, a) , (4.13)

which upon requiring

a2 + b2 = L2 (aλ−)2 + (bλ+)2 = χt , (4.14)

creates a seed which satifies the embedding and tangent vector normalization conditions.

However, this is not the whole picture since there is a priori no reason for choosing the

ordering of the rows of v as in Eq. (4.12). This fact can be accounted for by considering

shufflings P of the columns of M̃. A careful consideration shows that (up to isometries)

there are only two relevant permutations:

P1 = {1, 4, 3, 2} b2 − a2 = L2 (bλ+)2 − (aλ−)2 = χt (4.15)

P2 = {3, 2, 4, 1} a2 − b2 = L2 (aλ−)2 − (bλ+)2 = χt , (4.16)

where we have also displayed the restrictions on the coefficients implied by the embedding and

tangent vector normalization constraints. To stress the importance of these permutations,

observe that for a spacelike probe Eq. (4.15) has real solutions only in the k2
FS ≤ 0 region of

the (kFS, τFS)-plane, which is only a subset of the region corresponding to Case I, see Fig. 2.

Nevertheless, the whole region can be covered with (the closure of) regions where one and

only one of the systems (4.15), (4.16) or (4.14) has real roots, see Fig. 2. Timelike Case I

curves are simpler, in this case all the allowed region is covered by the seed γ̃ = P2(M̃)v.

The upshot is that, for given values of kFS and τFS falling in Case I, we must choose the

right permutation of M̃ to obtain real coefficients and then generate a seed accordingly. Once

the seed has been determined, other solutions are then obtained via isometries of R(2,2), see

Figs. 3, 4 and 5 for illustrative examples.
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Figure 3: Constant kFS curves in AdS3 with τFS = 0. We represent global AdS3 as a

torus, since both boundary time and space are periodic (i.e. we do not take the universal

covering of AdS3). The AdS3 boundary is depicted in light blue. As in Figure 1, we display

only half of the boundary in order to better show curves in the bulk. a) Spacelike geodesic,

connecting two space-like separated boundary points. b) Spacelike curves with constant

space-like curvature, with LkFS > 1 (left circle) and LkFS < 1 (right circle-arc), connecting

two space-like separated boundary points. They belong repsectively to case IIa and Ia.

c) Spacelike curve with constant time-like curvature (i.e χFS = −1) belonging to case Ic
and connecting two space-like separated boundary points. d) Closed time-like geodesic. In

AdS spacetimes, time-like geodesics can never connect two separate boundary points. e)

Time-like curves with constant space-like curvature, with LkFS < 1 (larger full circle) and

LkFS > 1 (inner circle-arc), connecting two time-like separated boundary points. They

belong repsectively to case IIb and Ib.
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In Case II all roots are purely imaginary and solutions of (3.31) take the form

γα(s) = Mα
jv
j v =


cos(ω+s)

sin(ω+s)

cos(ω−s)

sin(ω−s)

 , (4.17)

where ω± = −iλ±. Once more, M must satisfy the embedding condition and we can generate

a seed using

M̃ = diag(b, b, a, a) , (4.18)

where

b2 − a2 = L2 (aω−)2 − (bω+)2 = χt . (4.19)

Just as in the previous case, it is important to consider the permutations of the columns of

M̃. In the present case, it is the timelike probes that require more than one permutation.

Indeed, the allowed region for Case II spacelike probes, see Fig. 2, is completely covered

by the seed M̃. On the other hand, for a timelike probe we must consider, besides M̃, the

additional permutation

P1 = {3, 4, 1, 2} b2 − a2 = L2 (aω+)2 − (bω−)2 = χt , (4.20)

to cover the whole region, see Fig. 2. As usual, once a seed is determined we can generate

other solutions via isometries, see Figs. 3 and 4.

Finally, solutions for Case III read

γα(s) = Mα
jv
j v =


cosh(λs) cos(ωs)

cosh(λs) sin(ωs)

sinh(λs) cos(ωs)

sinh(λs) sin(ωs)

 , (4.21)

were

λ =
1

2
(λ+ + λ−) ω =

1

2i
(λ+ − λ−) . (4.22)

The embedding and tangent vector normalization constraints can be solved using the matrix

M̃ =


−b 0 0 a

0 −b −a 0

0 −a b 0

a 0 0 b

 (4.23)

with

b2 − a2 = L2 L2(ω2 − λ2)− 4abλω = χt . (4.24)

This system has real roots on all the Case III region of the (kFS, τFS)-plane and all seeds

generated by other permutations with real roots are connected by isometries.
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Figure 4: Continuation of Figure 3, showing curves with non-zero Frenet-Serret torsion

τFS. a) Space-like helix belonging to case Ia with LkFS = 1/4 and torsion LτFS = 1/4. b)

Space-like helix belonging to case Ib with LkFS = 1/2 and torsion LτFS = 2 and, remarkably,

connecting two time-like separated boundary points. c) Space-like helix belonging to case

Ic with χFS = −1, LκFS = 1/4 and torsion LτFS = 2. d) Space-like helix belonging to case

IIa with LkFS = 2 and torsion such that ω+/ω− = 16. e) Time-like helix belonging to case

Ib with LkFS = 2 and torsion LτFS = 1/2, ending on time-like separated boundary points,

as in Figure 3.e. f) Time-like helix belonging to case IIb with LkFS = 1/2 and torsion such

that ω+/ω− = 2.
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Figure 5: Examples of helices belonging to case III. We display solutions embedded in the

universal cover of AdS3, i.e. the inside of a cylinder where the time coordinate spans along the

axial direction. We depict respectively in red and blue the s→ ±∞ asymptotic null curves

(4.32), towards which the solutions tend while approaching the conformal boundary. We show

only half of the boundary cylinder in light blue. a) Space-like helix with LkFS = LτFS = 3.

b) Time-like helix with LkFS = LτFS = 1.

4.1 Asymptotic behaviour

Now that the landscape of cylindrical helices in hyperbolic spaces has been thorougly ex-

plored, one might still wonder whether there is a more intuitive way for understanding the

different types of solutions we encountered so far. It turns out that the various helices con-

structed above have very different asymptotic behaviour. We refer to the Appendix A for

the notation of our coordinate representations of H3 and global AdS3.

First, let us focus on the helices in H3. From (4.1) and (A.2) one computes the radial

profile of the solutions to be

(tanh ρ(s)/2)2 = 1− 2L

L+ a cosh sλ
, (4.25)

which implies that ρ → ∞ for s → ±∞ if λ 6= 0. This means that all cylindrical helices in

H3 reach the conformal boundary, unless the parameter λ is equal to zero. By inspection of

(4.2), it is easy to show that the latter condition holds only if

τFS = 0 and LkFS ≥ 1, (4.26)

i.e. only if the curve is a planar with constant curvature, as the circle depicted in Figure 1.c.

In a similar fashion, we are able to determine the asymptotic behaviour of helices in

AdS3, case by case. For case Ia, using the seed (4.15) one gets

(tanh ρ(s)/2)2 = 1− 2L

L+
√
a2 sinh2 λ−s+ b2 cosh2 λ+s

, (4.27)

which shows how the curves will asymptotically approach the conformal boundary unless

both roots λ± vanish simultaneously. It can be shown that for λ± = 0 to be satisfied, a
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curve needs to have L2k2
FS = 1 and τFS = 0, which corresponds to a degenerate solution

where every point of the curve lies at the conformal boundary for every s. Discarding this

degenerate case, it is possible to show how curves of type Ia approach a specific point on the

boundary given by

t(s) −−−−→
s→±∞

0 , φ(s) −−−−→
s→±∞

±π
2
, (4.28)

which implies that the endpoints for seed (4.15) are space-like separated. Cases Ib and Ic
produce a radial profile very similar to (4.27), and thus also these curves end on the boundary.

While case Ic with seed (4.14) has exactly the same endpoints as Ia, i.e. (4.28), case Ib has

endpoints which are time-like separated

t(s) −−−−→
s→±∞

{0, π} , φ(s) −−−−→
s→±∞

π

2
. (4.29)

Note that this result is independent of the causal nature of the probe: therefore, curves

with χt = 1 and belonging to case Ib are space-like curves connecting time-like separated

boundary points.

Curves belonging to case II are simpler, since it is easy to prove that all solutions lie at

constant radial coordinate

(tanh ρ(s)/2)2 = 1− 2L

|b|+ L
< 1 , (4.30)

where the inequality follows from either relation (4.18) or (4.20), both of which imply |b| > L.

Therefore, all curves in Cases IIa and IIb never reach the boundary, as shown in the examples

of Figures 3 and 4.

Finally, curves belonging to case III display a similar behaviour to case I, where the

radial profile from seed (4.24) is

(tanh ρ(s)/2)2 = 1− 4L

2L+
√

2
√
L2 + (a2 + b2) cosh 2λs

, (4.31)

which shows that also these curves always end on the conformal boundary for s→ ±∞ (the

case λ = 0 reduces to the same degenerate curve of Case I). However, we find that instead

of ending on fixed endpoints, these helices tend towards asymptotic null boundary curves,

defined by the relation

cos2 t(s) = sin2 φ(s) , (4.32)

which implies φ(s) = ±t(s)± π
2
. In Figure 5 we represent these two asymptotic curves as a

blue and a red helices of opposite chirality.

5 Conclusions and discussion

In this work we have explored the space of extrema of the functional (1.1). When the

embedding manifold is a hyperbolic space form, this functional is of interest in computations
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of holographic entanglement entropy associated to anomalous CFTs [1]. If instead the curve

is embedded in R3, then it can be interpreted as a torsion-dependent energy associated to a

linear elastic structure (as it might be a long polymer) [2][3].

In Section 2 we derive the equations of motion associated to (1.1) for an arbitrary em-

bedding manifold, see (2.26). For maximally symmetric spaces (as H3 and AdS3) such shape

equations take the very simple form (3.16). By choosing an appropriate local rotation acting

on the normal bundle of the curve, we can express the shape equations in terms of Frenet-

Serret frame, which makes evident how extrema of (1.1) are cylidrical helices, i.e. curves

with constant total squared curvature and Frenet-Serret torsion. While the value of the total

curvature can be arbitrary, the torsion is fixed to be τFS = m/s.

The shape equations are intimately related to the motion of spinning extended objects

in curved space-times. Indeed, we show in Section 3 that the Mathisson-Papapetrou-Dixon

(MPD) dipole equations (3.1) and (3.2) (see [9, 10, 11]) are exactly equivalent to (2.26),

once the Mathisson-Pirani (MP) supplementary condition (3.5) is implemented. The MPD

equations have been extensively studied for four-dimensional trajectories in Lorenzian man-

ifolds, while much less has been said about the three-dimensional case. We have here proved

that the MPD+MP system of equations can be obtained from a variational principle for an

arbitrary gravitational background.

In the theory of relativistic spinning bodies it is known that the notion of center of mass

is observer-dependent [13]. It is in fact the role of the spin supplementary condition to pick

a specific observer. In the literature, besides the MP condition often the Tulczyjew-Dixon

(TD) (3.4) is also often implemented. We proved n Section 3.2 that in our geometric language

the Lancret ratio (i.e. the quantity kFS/τFS) of an helix embedded in Minkowksy space is

directly linked to the relative velocity between the MP and TD reference frames.

Once established that the extrema of (1.1) are cylindrical helices, we explain in Section

3.1 how to find the actual embedding functions. For maximally symmetric space-times

it turns out to be extremely convenient to view curves as embedded in four-dimensional

Minkowsky space and constrained to move on a three-dimensional hyperbolic submanifold.

In this way it is immediate to view the curve as a solution of a single master equation (3.29)

which depends on the causal nature of both the probe (encoded by χt = ±1, the norm of

the curve’s tangent vector) and of the Frenet-Serret normal (encoded by χFS, the norm of

the FS normal vector). Namely, while time-like curves always have a space-like FS normal,

a space-like helix can have either a time-like or a space-like FS normal.

In Section 4 we explicitly solve the master equation for both H3 and AdS3 spaces. While

the former case is straightforward (see Figure 1), the case for Anti-de Sitter contains several

subtleties. As explained in Figure 2, solutions of different nature are possible depending on

the values of kFS and τFS as well as of χt and χFS. We recognize that helices in AdS3 belong

to three different classes, which eventually splits in a total of six different sub-classes. These

different cases can be understood in terms of their asymptotic behaviour (see Section 4.1):
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• Case I solutions always end on the conformal boundary. Curves of type Ia and Ic
always end on space-like separated endpoints, while curves of type Ib end always on

time-like separated endpoints, regardless of the causal nature of the curve itself (see

Figure 3). These curves can be seen as deformations of AdS3 geodesics and curves of

constant curvature with kFS < 1/L.

• Case II solutions lie always at a fixed radial distance, and therefore never reach the

boundary. They generalize curves of constant curvature with κFS larger than the AdS3

radius.

• Case III solutions do also reach always the conformal boundary, but instead of ending

on a fixed point, they asymptotize towards boundary null curves : they interpolate

between two boundary helices of opposite chirality, see Figure 5. Such curves have no

analogue in Riemannian spaces.

There are a number of avenues for future reseach that follow naturally from the present

considerations. First of all, it ought to be straightforward to map our helices to any Bañados

geometry, such as shockwaves or BTZ black holes. While local properties should remain

intact, there might be interesting findings to be made from a global perspective. Moreover,

the true importance of torsionfull curves in the study of entanglement entropy emerges

when geodesics are not amongst the extrema of 1.1. This turs out to be the case for domain

walls which are used to model renormalization group flows holographically. We have delved

into this subject in an article which will be released shortly [17]. Following [1], we know

that the solutions of the shape equations are a proxy for entanglement entropy in theories

such as Topologically Massive Gravity (TMG) [18]. Interestingly, TMG admits non-AdS

vacuum solutions known as warped AdS, these are spacetimes with non-vanishing Cotton

tensor. Warped AdS geometries can be dealt with in a manner analogous to the embedding

formalism used to construct the H3 and AdS3 helices in Sec. 4, see [19]. We deem the

construction of helices in warped AdS an interesting and physically relevant question and

we are currently engaged in it.
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A Projections

In this appendix we elaborate on the coordinate systems used to depict and study helices in

the hyperbolic and Anti de Sitter Space. We first consider these spaces as hypersurfaces em-

bedded in a four-dimensional flat space. For instance, the hyperbolic space can be described

as the hypersurface in R4 with metric diag(−1, 1, 1, 1) satisfying

xαxα + L2 = 0. (A.1)

One way to solve the equation of this hyperboloid is by

x1 = L cosh ρ, x2 = L sinh ρ cos θ cosφ, (A.2)

x3 = L sinh ρ cos θ sinφ, x4 = L sinh ρ sin θ

but in order to study the asymptotic behavior of the curves in H3, we must compactify the

hyperbolic space. To do so, we introduce the finite variable

ρ̃ = tanh
ρ

2
. (A.3)

The resulting coordinate system, corresponds to the Poincaré sphere of radius L.

Meanwhile, we consider AdS3 to be the hypersurface

xαxα + L2 = 0, (A.4)

in R4 with metric diag(−1,−1, 1, 1). One solution for this equation is given by the global

coordinates of AdS3:

x1 = L cosh ρ cos t, x2 = L cosh ρ sin t, x3 = L sinh ρ sinφ, x4 = L sinh ρ cosφ. (A.5)

As in the case of H3, it is convenient to work in a compactified space, to make clear the

behavior of the curves as they approach the boundary. For that purpose, we make use again

of equation A.3.

Finally, for drawing purposes we represent AdS3 as a torus. This representation is useful

because the torus clearly shows the periodic behavior of the solutions described in section 4

for the case II. The function we use to map AdS3 onto the torus with mayor radius R and

minor radius L is given by

x = (R + Lρ̃ sinφ) sin t, y = (R + Lρ̃ sinφ) cos t, z = Lρ̃ cosφ. (A.6)
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