141 research outputs found

    Observer-based quantum state estimation by continuous weak measurement

    Full text link
    We propose to apply the Back and Forth Nudging (BFN) method used for geophysical data assimilations to estimate the initial state of a quantum system. We consider a cloud of atoms interacting with a magnetic field while a single observable is being continuously measured over time using homodyne detection. The BFN method relies on designing an observer forward and backwards in time. The state of the BFN observer is continuously updated by the measured data and tends to converge to the systems state. The proposed estimator seems to be globally asymptotically convergent when the system is observable. A detailed convergence proof and simulations are given in the 2-level case. A discussion on the extension of the algorithm to the multilevel case is also presented

    Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing

    Full text link
    Decoherence originates from the leakage of quantum information into external degrees of freedom. For a qubit the two main decoherence channels are relaxation and dephasing. Here, we report an experiment on a superconducting qubit where we retrieve part of the lost information in both of these channels. We demonstrate that raw averaging the corresponding measurement records provides a full quantum tomography of the qubit state where all three components of the effective spin-1/2 are simultaneously measured. From single realizations of the experiment, it is possible to infer the quantum trajectories followed by the qubit state conditioned on relaxation and/or dephasing channels. The incompatibility between these quantum measurements of the qubit leads to observable consequences in the statistics of quantum states. The high level of controllability of superconducting circuits enables us to explore many regimes from the Zeno effect to underdamped Rabi oscillations depending on the relative strengths of driving, dephasing and relaxation.Comment: Supplemental videos can be found at http://physinfo.fr/publications/Ficheux1710.html and supplemental information can be found as an ancillary file on arxi

    Loss-tolerant parity measurement for distant quantum bits

    Get PDF
    We propose a scheme to measure the parity of two distant qubits, while ensuring that losses on the quantum channel between them does not destroy coherences within the parity subspaces. This capability enables deterministic preparation of highly entangled qubit states whose fidelity is not limited by the transmission loss. The key observation is that for a probe electromagnetic field in a particular quantum state, namely a superposition of two coherent states of opposite phases, the transmission loss stochastically applies a near-unitary back-action on the probe state. This leads to a parity measurement protocol where the main effect of the transmission losses is a decrease in the measurement strength. By repeating the non-destructive (weak) parity measurement, one achieves a high-fidelity entanglement in spite of a significant transmission loss

    Quantum system characterization with limited resources

    Full text link
    The construction and operation of large scale quantum information devices presents a grand challenge. A major issue is the effective control of coherent evolution, which requires accurate knowledge of the system dynamics that may vary from device to device. We review strategies for obtaining such knowledge from minimal initial resources and in an efficient manner, and apply these to the problem of characterization of a qubit embedded into a larger state manifold, made tractable by exploiting prior structural knowledge. We also investigate adaptive sampling for estimation of multiple parameters

    Continuous Generation and Stabilization of Mesoscopic Field Superposition States in a Quantum Circuit

    Full text link
    While dissipation is widely considered as being harmful for quantum coherence, it can, when properly engineered, lead to the stabilization of non-trivial pure quantum states. We propose a scheme for continuous generation and stabilization of Schr\"{o}dinger cat states in a cavity using dissipation engineering. We first generate non-classical photon states with definite parity by means of a two-photon drive and dissipation, and then stabilize these transient states against single-photon decay. The single-photon stabilization is autonomous, and is implemented through a second engineered bath, which exploits the photon number dependent frequency-splitting due to Kerr interactions in the strongly dispersive regime of circuit QED. Starting with the Hamiltonian of the baths plus cavity, we derive an effective model of only the cavity photon states along with analytic expressions for relevant physical quantities, such as the stabilization rate. The deterministic generation of such cat states is one of the key ingredients in performing universal quantum computation.Comment: 9 pages, 6 figure

    Back and forth nudging for quantum state estimation by continuous weak measurement

    No full text
    International audienceWe propose to apply the Back and Forth Nudging (BFN) method used for geophysical data assimilations [1] to estimate the initial state of a quantum system. We consider a cloud of atoms interacting with a magnetic field while a single observable is being continuously measured over time using homodyne detection. The BFN method relies on designing an observer forward and backwards in time. The state of the BFN observer is continuously updated by the measured data and tends to converge to the system's state. The proposed estimator seems to be globally asymptotically convergent when the system is observable. A detailed convergence proof and simulations are given in the 2-level case. An extension of the algorithm to the multilevel case is also presented

    Parameter estimation of a 3-level quantum system with a single population measurement

    No full text
    International audienceAn observer-based Hamiltonian identification algorithm for quantum systems has been proposed in [2]. The later paper provided a method to estimate the dipole moment matrix of a quantum system requiring the measurement of the populations on all states, which could be experimentally difficult to achieve. We propose here an extension to a 3-level quantum system, having access to the population of the ground state only. By a more adapted choice of the control field, we will show that a continuous measurement of this observable, alone, is enough to identify the field coupling parameters (dipole moment)

    Hardware-efficient autonomous quantum error correction

    Full text link
    We propose a new method to autonomously correct for errors of a logical qubit induced by energy relaxation. This scheme encodes the logical qubit as a multi-component superposition of coherent states in a harmonic oscillator, more specifically a cavity mode. The sequences of encoding, decoding and correction operations employ the non-linearity provided by a single physical qubit coupled to the cavity. We layout in detail how to implement these operations in a practical system. This proposal directly addresses the task of building a hardware-efficient and technically realizable quantum memory.Comment: 12 pages,6 figure

    Dynamically protected cat-qubits: a new paradigm for universal quantum computation

    Full text link
    We present a new hardware-efficient paradigm for universal quantum computation which is based on encoding, protecting and manipulating quantum information in a quantum harmonic oscillator. This proposal exploits multi-photon driven dissipative processes to encode quantum information in logical bases composed of Schr\"odinger cat states. More precisely, we consider two schemes. In a first scheme, a two-photon driven dissipative process is used to stabilize a logical qubit basis of two-component Schr\"odinger cat states. While such a scheme ensures a protection of the logical qubit against the photon dephasing errors, the prominent error channel of single-photon loss induces bit-flip type errors that cannot be corrected. Therefore, we consider a second scheme based on a four-photon driven dissipative process which leads to the choice of four-component Schr\"odinger cat states as the logical qubit. Such a logical qubit can be protected against single-photon loss by continuous photon number parity measurements. Next, applying some specific Hamiltonians, we provide a set of universal quantum gates on the encoded qubits of each of the two schemes. In particular, we illustrate how these operations can be rendered fault-tolerant with respect to various decoherence channels of participating quantum systems. Finally, we also propose experimental schemes based on quantum superconducting circuits and inspired by methods used in Josephson parametric amplification, which should allow to achieve these driven dissipative processes along with the Hamiltonians ensuring the universal operations in an efficient manner.Comment: 28 pages, 11 figure

    Deterministic protocol for mapping a qubit to coherent state superpositions in a cavity

    Full text link
    We introduce a new gate that transfers an arbitrary state of a qubit into a superposition of two quasi-orthogonal coherent states of a cavity mode, with opposite phases. This qcMAP gate is based on conditional qubit and cavity operations exploiting the energy level dispersive shifts, in the regime where they are much stronger than the cavity and qubit linewidths. The generation of multi-component superpositions of quasi-orthogonal coherent states, non-local entangled states of two resonators and multi-qubit GHZ states can be efficiently achieved by this gate
    corecore