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ABSTRACT: Native electrospray ionization (ESI) mass spectrometry (MS) is widely used for the 

detection and characterization of multi-protein complexes. A well-known problem with this 

approach is the possible occurrence of nonspecific protein clustering in the ESI plume. This effect 

can distort the results of binding affinity measurements, and it can even generate gas phase 

complexes from proteins that are strictly monomeric in bulk solution. By combining experiments 

and molecular dynamics (MD) simulations, the current work for the first time provides detailed 

insights into the ESI clustering of proteins. Using ubiquitin as a model system, we demonstrate how 

the entrapment of more than one protein molecule in an ESI droplet can generate nonspecific clusters 

(e.g., dimers or trimers) via solvent evaporation to dryness. These events are in line with earlier 

proposals, according to which protein clustering is associated with the charged residue model 

(CRM). MD simulations on cytochrome c (which carries a large intrinsic positive charge) confirmed 

the viability of this CRM avenue. In addition, the cytochrome c data uncovered an alternative 

mechanism where protein-protein contacts were formed early within ESI droplets, followed by 

cluster ejection from the droplet surface. This second pathway is consistent with the ion evaporation 

model (IEM). The observation of these IEM events for large protein clusters is unexpected, because 

the IEM has been thought to be associated primarily with low MW analytes. In all cases, our MD 

simulations produced protein clusters that were stabilized by intermolecular salt bridges. The MD-

generated charge states agreed with experiments. Overall, this work reveals that ESI-induced protein 

clustering does not follow a tightly orchestrated pathway, but can proceed along different avenues. 
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Introduction 

Multi-subunit proteins are involved in numerous biological tasks. These complexes range from 

dimers all the way to MDa assemblies that contain dozens of subunits.1-4 Some protein complexes 

are stabilized by intermolecular disulfide bridges. More commonly, however, protein-protein 

binding involves only noncovalent contacts such as van der Waals interactions, H-bonds, and salt 

bridges. The hydrophobic effect can play a major role as well.5 The same types of noncovalent 

contacts can also mediate the formation of amyloid and other protein aggregates that are associated 

with various diseases.6, 7 The detection and characterization of all these complexes remains 

challenging.5 Available high-throughput methods include yeast-two-hybrid and affinity purification 

protocols. In addition, chromatographic, spectroscopic, and calorimetric techniques can be applied 

for targeted assays. X-ray diffraction provides high-resolution data, but often it is uncertain if protein 

contacts detected in this way are biologically relevant or if they are crystallization artifacts.5 

 Native electrospray ionization (ESI) mass spectrometry (MS) has emerged as another key 

tool for the characterization of protein complexes. This approach relies on the premise that 

noncovalent assemblies can be transformed into gaseous ions that retain many of their solution 

properties. Mass analysis of these ions reveals their subunit stoichiometry.8-12 Native ESI-MS is 

attractive because of its conceptual simplicity, minimal sample preparation, high sensitivity, and 

short analysis time. Additional insights are obtainable by combining ESI-MS with ion mobility 

spectrometry (IMS),13-16 gas phase activation,17-19 and fragmentation techniques.20-24 

ESI commences with a plume of charged droplets that emanates from the tip of a Taylor 

cone at the emitter outlet. These droplets undergo solvent evaporation and fission events, 

culminating in nanometer-sized progeny droplets. Droplets in the ESI plume are close to the 

Rayleigh limit zR = 8/e  (0  r3)1/2 [r = radius,  = surface tension, e = elementary charge].25-27 
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The release of analyte ions from ESI nanodroplets into the gas phase remains an active 

research area.28-33 It is believed that in native ESI most protein ions are released via droplet 

evaporation to dryness, in accordance with the charged residue model (CRM).34-37 The ion 

evaporation model (IEM) describes an alternative mechanism where ions are desorbed from the 

droplet surface. Although the IEM is invoked mostly for low MW ions,27, 38-42 it can also apply to 

larger species such as peptides43 and some proteins.44 Requirements for protein IEM include a 

relatively large droplet size, a compact conformation, and a sufficiently high intrinsic protein charge 

that can trigger electrostatic ejection from the droplet.44 The chain ejection model (CEM) applies to 

unfolded proteins and therefore does not usually play a role in native ESI.34 

 Despite the widespread use of native ESI-MS for studying protein complexes (and other 

noncovalently bound systems), this technique can be prone to artifacts.25, 45 False-positive results 

are obtained when mass spectra show complexes that did not exist in solution. Conversely, false-

negative outcomes occur when complexes that exist in solution are unobservable by ESI-MS. More 

generally, there can be a range of undesirable scenarios where the free vs. bound ratio in solution 

differs from that in the gas phase.45 Possible reasons for such discrepancies include concentration 

and pH changes during ESI,46-49 differences in the detection efficiencies of free vs. bound species,45 

and the dissociation of complexes on their way from solution into the gas phase. 50-53 

 False-positive outcomes arise from ESI-induced nonspecific clustering. This phenomenon 

can manifest itself as complex formation from monomeric proteins,54-58 or the assembly of 

complexes into higher order oligomers.20, 59-61 There can also be a mix of specific solution binding 

and nonspecific clustering.45, 62 All of these clustering scenarios complicate the interpretation of 

native ESI-MS data. Various strategies have been proposed for mitigating this problem,24, 45, 61-71 but 

it is nonetheless challenging to distinguish specific from nonspecific complexes in a mass spectrum. 

Interestingly, there are also instances where nonspecific clustering is beneficial; for example, protein 
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clusters can serve as model systems for benchmarking mass analyzer performance at high m/z, and 

as a testbed for top-down dissociation experiments.20, 56, 57, 60 

Nonspecific clustering is usually attributed to the CRM, where a nanodroplet containing two 

or more analyte molecules causes these solutes to “stick” to one another as the droplet dries out. In 

addition to nonspecific protein-protein contacts, these conditions can cause adduction to other 

nonvolatile species.25, 45 Nonspecific clustering can be reduced by using narrow emitters that 

produce smaller initial droplets, thereby decreasing the number of analyte molecules in each 

droplet.24, 62, 66, 67, 70 Unfortunately, narrow emitters are prone to clogging.72 Similarly, one can lower 

the analyte concentration, such that the fraction of droplets containing more than one analyte 

molecule is lowered.61, 68 However, results obtained in this way can be ambiguous, because mass 

action dictates that lower concentrations also reduce specific binding in solution.73  

In summary, nonspecific protein-protein clustering represents an impediment for the 

interpretation of native ESI data. Part of the problem is that the mechanistic origins of cluster 

formation are poorly understood. Questions that have to be answered include the following: Is it true 

that clustering can always be attributed to ion formation via the CRM? How, when, and where are 

protein clusters formed during ESI? Will droplets that contain several proteins always generate a 

nonspecific cluster? What are the intermolecular contacts that mediate protein-protein clustering? 

Using a combination of ESI-MS experiments and molecular dynamics (MD) simulations, the current 

work addresses all of these questions. For the first time, we provide an atomistic view of the 

processes that culminate in the formation of ESI-generated protein clusters. 

 
 
 
  



 6 

Materials and Methods 

Horse heart cytochrome c (cyt c) and bovine ubiquitin were from Sigma (St. Louis, MO). Samples 

were prepared in LC grade water, adjusted to pH 7 using traces of ammonium hydroxide. 

Ammonium acetate or NaCl were added as noted below. Data were acquired on a Waters Synapt 

G2 Q-TOF using a standard ESI source at 5 μL min−1 and +2.8 kV. The conditions were chosen to 

be as gentle (“native”) as possible, with a cone voltage of 5 V. Source and desolvation temperatures 

were 30 C and 40 C, respectively. IMS arrival time distributions were converted to He collision 

cross section () distributions using a calibration procedure that involved a number of reference 

ions (monomeric cyt c, ubiquitin, and myoglobin in various charge states).74 Each reported value 

represents the maximum of the corresponding  distribution, averaged over three replicates.75 The 

IMS parameters were DC entrance 6.7 V, He cell DC 10 V, He exit -5 V, bias 3 V, exit 0 V, wave 

height 8 V, wave velocity 450 m s-1, N2 IMS gas 3.61 mbar at 16 mL min-1, He cell 7.41e2 mbar. 

MD simulations of ESI droplets were conducted as described,44 except that the initial 

droplets contained more than one protein molecule. Briefly, we used Gromacs 201876 with the 

Charmm36 force field.77 The TIP4P/2005 model was used to adequately model the water surface 

tension.78 The droplets had an initial radius of 5.5 nm (~23000 H2O). Two or three protein molecules 

were inserted into these droplets, using the X-ray coordinates 1hrc79 and 1ubq.80 Titratable sites 

were set for pH 7 (N-terminus+, Arg+, Lys+, His0, Glu-, Asp-, C-terminus-), resulting in an “intrinsic” 

charge of 6+ for cyt c and zero for ubiquitin. Excess Na+ were added to bring the initial net droplet 

charge to zR = 46+.25 Four additional Na+ / Cl- pairs were inserted to reflect the presence of some 

chloride counterions. For each run, Na+ and Cl- were placed in random positions; proteins were 

inserted in random positions and orientations, and with random inter-protein distances. All runs used 

different initial atom positions and velocities. Simulations were performed at 370 K for 75 ns, then 
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the temperature was raised to 450 K for an additional 75 ns to promote the final steps of solvent 

evaporation. Charge states of MD-generated gaseous ions were determined by tallying the protein 

intrinsic charge and the charges of adducted Na+ and Cl-.  values of MD-generated protein 

structures were determined using Collidoscope81 for the final (t = 150 ns) desolvated species. 

 

 

Results and Discussion 

Protein Clustering Experiments. The first step in our efforts to understand ESI-induced protein 

clustering was the experimental characterization of simple test systems. We selected cyt c (12360 

Da) and ubiquitin (8565 Da), both of which are common model proteins. Under physiological 

conditions both proteins adopt tightly folded monomeric structures; neither of them has a propensity 

to form noncovalent complexes in bulk solution.79, 80 While typical native ESI experiments try to 

suppress nonspecific clustering, we aimed to promote this phenomenon because our goal was to 

elucidate the clustering mechanism. 

 Native ESI of 5 µM cyt c at pH 7 produced a narrow distribution of monomeric protein ions 

(Figure 1A). These data were acquired in the presence of ammonium acetate which is a standard 

background electrolyte for native ESI.25 In contrast, aqueous solution without added background 

electrolyte resulted in nonspecific dimers and trimers (Figure 1B). The absence of these clusters in 

Figure 1A indicates that protein clustering may involve electrostatic contacts, keeping in mind that 

charge-charge interactions are weakened by dissolved electrolytes.82  

 Next, we examined the concentration dependence of protein clustering in the absence of 

ammonium acetate. Nonspecific clustering was virtually absent for 2 µM cyt c (Figure 1C), whereas 

an elevated protein concentration of 100 µM generated abundant dimers, trimers, and tetramers 
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(Figure 1D). This trend is consistent with earlier observations.61, 68 A slight shift to lower charge 

states at elevated protein concentration (Figure 1C, D) may result from charge competition.83 

 The solution conditions used for acquiring the data of Figure 1 resulted in [M + zH]z+ ions 

that were almost free of adducts. Extensive protein cluster formation was also observed when 

electrospraying 100 µM cyt c in the presence of 0.2 mM NaCl, with peak broadening due to salt 

adduction (Figure 2A). The clusters formed under these conditions had a [M + (z-n+m)H + nNa + 

mCl]z+ composition, where a significant fraction of the overall charge resulted from sodiation 

(Figure S1).25 Thus, protein clustering occurred regardless of the type of ESI charge carrier (H+ or 

Na+). 

We also performed experiments on ubiquitin. For a protein concentration of 100 µM in the 

presence of 0.2 mM NaCl, ubiquitin showed a behavior similar to that of cyt c. The ubiquitin spectra 

showed various clusters, ranging from dimers to pentamers (Figure 2B) with heterogeneous charging 

due to sodiation, protonation, and chloride binding (Figure S1). These data demonstrate that protein 

clustering takes place regardless of intrinsic protein charge, keeping in mind that at pH 7 cyt c carries 

a net positive charge (pI ≈ 10),84 while ubiquitin is neutral (pI ≈ 7).80 

 

ESI Simulations – General Considerations. We and others34, 40, 41, 44, 51, 85-90 previously used MD 

simulations to gain insights into ESI mechanisms. The current work marks the first time that this 

approach was applied to nonspecific protein clustering, focusing on the two proteins introduced 

above. Realistic modeling of H+ as ESI charge carrier is challenging. A workaround is to replace H+ 

with low MW metal ions.34 For the current simulations we therefore used droplets that were charged 

with Na+. Cl- were added as well, to mimic the aqueous NaCl solutions used in the experiments of 

Figure 2 that produced [M + (z-n+m)H + nNa + mCl]z+ gaseous ions. 
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As outlined in the Methods section, the charges on all titratable protein sites were set to their 

pH 7 values, in accordance with the composition of the bulk solution. ESI droplets can undergo 

acidification caused by electrochemical H+ production91 and evaporative shrinkage.48 However, pH 

is a macroscopic property that is not necessarily meaningful in nanometer-sized droplets. Excess H+ 

are believed to stay preferentially on the droplet surface,92 such that ESI-induced acidification in the 

interior (where proteins reside throughout much of the process) is likely more moderate. Hence, the 

use of pH 7 charge patterns in our MD runs represents a reasonable approximation. 

Our simulations relied on the premise that droplets containing more than one protein 

represent the prerequisite for nonspecific ESI clustering.24, 45, 61-70 Hence, the MD runs described 

below followed a strategy similar to earlier protein ESI simulations,34, 44 except that the initial 

droplets contained multiple protein molecules. The initial Rayleigh-charged droplets in our 

simulations had a 5.5 nm radius, consistent with the size in the ESI plume after several 

fission/evaporation cycles.25 

 

MD Simulations of Nonspecific Ubiquitin Clustering. A typical simulation run for an ESI droplet 

containing two ubiquitin molecules is depicted in Figure 3A. The droplets underwent gradual solvent 

evaporation, accompanied by occasional Na+ IEM events that kept the shrinking droplets close to 

the Rayleigh limit. Such IEM ejection of low MW ions is a common occurrence.34, 40, 41, 85, 87 One of 

these IEM events is highlighted in Figure 3A for t = 0.5 ns. The two ubiquitin molecules remained 

inside the droplet until all the water had evaporated. Initially (t = 0.5 ns), the proteins were well 

separated. At around t ≈ 33 ns they established contact with one another. Ultimately, the proteins 

formed a gaseous dimer where the chains were noncovalently bound to one another. The dimer also 

contained a number of Na+ and Cl-, just like in the experimental spectra of Figures 2, S1. Tallying 

of all charged components revealed a cluster charge of 9+. Ten repeat runs yielded 9+ (6/10) and 
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10+ clusters (4/10), for an average charge of 9.4+. These MD-generated charge states fall within the 

range of the experimentally observed ubiquitin dimers (6+ to 11+, Figure 2B).  

Similar events were observed in simulations on droplets containing three ubiquitin 

molecules, culminating in the formation of trimeric clusters with a number of Na+ and Cl- attached 

(Figure 3B). Seven repeat runs produced trimers in charge states 10+ (1/7), 11+ (4/7), 12+ (1/7), and 

13+ (1/7), for an average charge of 11.3+. These MD results coincide with the experimentally 

observed trimer charge states (Figure 2B). 

Overall, the MD data of Figure 3 reveal that ESI-generated ubiquitin clusters form via the 

CRM. Two or more proteins that are entrapped in the same droplet associate with one another as the 

droplet dries out. The net charge of the resulting gaseous cluster is governed by the residual Na+ and 

Cl- that bind to the cluster as the final solvent layers evaporate. This CRM cluster formation is 

consistent with mechanistic proposals that had been put forward in earlier studies.25, 45, 57, 61, 68, 70 

 

MD Simulations on Droplets Containing Two Cyt c. A key difference between ubiquitin and cyt 

c is that the former has an intrinsic charge of ~zero, while the cyt c intrinsic charge is 6+ (see 

Methods). Simulations analogous to those discussed in the preceding section were conducted for cyt 

c to examine whether intrinsic protein charge affects the clustering mechanism. Figure 4A displays 

MD snapshots for a cyt c dimer CRM trajectory similar to that seen for ubiquitin in Figure 3A. Both 

cyt c molecules stayed in the droplet, and they associated with one another as the solvent evaporated. 

The resulting ESI-generated dimer accommodated several Na+ and Cl-, for an overall charge state 

of 13+. Nine replicates were performed, and CRM behavior like that of Figure 4A was seen in 5/9 

instances. The charge states formed in these runs were 12+ and 13+, for an average charge of 12.8+. 

These MD-generated dimer charge states are consistent with the experiments of Figure 2A. 
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 Interestingly, the remaining 4/9 cyt c runs showed a different behavior. Instead of forming a 

dimer, they culminated in the IEM ejection of one protein, while the other protein remained in the 

droplet and followed the CRM (Figure 4B). Protein IEM has been examined in earlier MD work 

from our laboratory.44 IEM ejection is driven by electrostatic repulsion between the analyte charge 

and the other charges within the droplet.44 This explains why IEM ejection can take place for cyt c 

(intrinsic charge 6+), while it is not feasible for ubiquitin (intrinsic charge zero). IEM and CRM-

generated monomeric cyt c ions in our MD runs had charge states of 7+ and 8+, in agreement with 

the experimental charge states (Figure 2A). Overall, the cyt c data of Figure 4 reveal that the 

entrapment of two proteins in the same ESI droplet does not necessarily have to culminate in a 

nonspecific cluster. In addition to CRM dimer formation (Figure 4A), we observed the formation of 

monomeric protein ions via IEM and CRM pathways (Figure 4B). 

 

MD Simulations on Droplets Containing Three Cyt c. The capability of cyt c to undergo IEM 

ejection due to its high intrinsic charge gave rise to a variety of scenarios for droplets that initially 

contained three proteins. Nine runs were conducted for droplets of this type. The majority of these 

simulations (5/9) showed CRM behavior, where all three proteins stayed in the droplet and formed 

trimeric clusters (Figure 5A). The MD charge states of these trimers were between 15+ and 18+ for 

an average of 16.6+, consistent with the experimental trimer charge states (Figure 2A). Additionally, 

we observed instances where either a single protein, a protein dimer, or a protein trimer underwent 

IEM ejection (Figure 5B-D). Any proteins remaining in the droplet after these IEM events followed 

the CRM. Charge states of the protein clusters formed via these IEM/CRM avenues were 

indistinguishable from those discussed previously. 

 The ejection of cyt c dimers and trimers (Figure 5C, D) illustrates that the CRM is not the 

only mechanism that can produce nonspecific protein clusters. Instead, the IEM also presents a 
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viable pathway. Prerequisites for this IEM avenue are (i) protein cluster formation prior to (or 

during) ejection, and (ii) a sufficiently large intrinsic cluster charge that can trigger ejection via 

repulsion from the remaining droplet charge (2 × 6+, or 3 × 6+ in Figure 5C, D).44 Nonetheless, the 

canonical CRM scenario of Figure 5A remained the dominant clustering mechanism even for cyt c, 

evident from the fact that more than half of the trimer-containing droplets showed this behavior.  

As noted, the IEM has traditionally been associated with low MW ions,27, 38-42 exemplified 

in Figure 3A (at t = 0.5 ns) for Na+. However, it has already been suggested that this mechanism can 

also apply to larger analytes such as peptides and proteins.43 The largest species for which IEM 

behavior had previously been demonstrated is monomeric cyt c.44 The data of Figure 5D now extend 

this IEM range to cyt c trimers with a mass of 37 kDa. 

 

Cluster Formation Kinetics. After having established that most of the ubiquitin and cyt c MD runs 

followed the CRM, we examined at what point during droplet shrinkage the protein clusters were 

formed. To this end, we tracked protein-protein distances vs. time by focusing on specific marker 

atoms that were buried close to the protein center (the C atoms of V26 and L32 were chosen for 

ubiquitin and cyt c, respectively). The time point when the CRM clusters formed varied considerably 

between individual runs. For ubiquitin dimers, Figure 6B illustrates an instance where the two 

proteins assembled during the very final stages of solvent evaporation, around t = 45 ns. The 

trajectory in Figure 6C illustrates the opposite extreme, where the dimer formed already after ~15 

ns when more than half of the solvent was still present. 

Considerable temporal heterogeneity was also observed for ubiquitin trimers; in Figure 6E, 

formation of a dimeric complex was followed almost immediately by binding of the third protein. 

On the other hand, there were also examples of trajectories where a dimer formed instantaneously, 

followed by binding of the third chain at a much later stage (Figure 6F). A similar temporal 



 13 

heterogeneity was also observed for cyt c dimers and trimers (Figure S2). We conclude that 

nonspecific CRM clustering does not follow a tightly scripted timeline. Instead, the exact cluster 

formation time point depends on the random rotational and translational diffusion of the proteins, as 

well as shape fluctuations of the droplet. 

 

Protein-Protein Contacts. What are the types of interactions that link the components of ESI-

generated protein clusters? In their native state, both ubiquitin and cyt c have globular structures 

with a hydrophobic core, while charged and other hydrophilic residues are found in the exterior. 

Inspection of the MD-generated clusters revealed that none of the protein chains underwent major 

structural changes during cluster formation, implying that nonpolar core residues remained 

inaccessible and were not available for intermolecular contacts. Instead, the cluster interfaces 

comprised a multitude of salt bridges among surfaces residues (Arg+, Lys+, Glu-, Asp-). These 

electrostatic networks also incorporated a number of Na+ and Cl- ions (Figure S3). 

The role of salt bridges as a dominant type of protein-protein contact in ESI-generated 

clusters is consistent with the experiments of Figure 1A, B, where 10 mM ammonium acetate 

suppressed cluster formation. We tentatively attribute this effect to salt-induced electrostatic 

screening,82 which weakens salt bridges and thereby interferes with the formation of protein-protein 

contacts in the droplets. In comparison, the presence of a low NaCl concentration (0.2 mM) was not 

sufficient for suppressing cluster formation (Figure 2). The existence of salt bridges in monomeric 

proteins has been noted earlier,93, 94 but the dominant role of these zwitterionic contacts for 

nonspecific protein clustering (as seen in Figure S3) had not been demonstrated previously. 

 

Collision Cross Sections. The  values of MD-generated ubiquitin dimers and trimers were slightly 

(5 - 10%) lower than the corresponding experimental values (Figure S4A,B). Considering the 
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challenges associated with the accurate calculation of  values,13 this level of agreement is quite 

reasonable. For cyt c clusters, the discrepancy between MD-generated and experimental  values 

was somewhat larger, particularly for trimers (up to ~20%, Figure S4C,D). These deviations suggest 

that the experimentally generated clusters have less compact structures than those produced in our 

simulations. Almost all of the MD-generated cyt c trimers had a triangular arrangement (Figure 

5A,D). Only one of the runs produced a cyt c trimer with a more elongated structure, where three 

globular chains were in a linear arrangement (Figure S4D). Interestingly, the calculated  of this 

linear trimer was in excellent agreement with the experimental value of ~38 nm2. It is therefore 

possible that ESI clustering of cyt c under experimental conditions favors linear trimers, in contrast 

to the MD runs which mostly produced triangular complexes. 

 

 

Conclusions 

Nonspecific protein clustering is a well-known problem in native ESI. If not properly recognized, 

this process can mislead experimentalists into reporting erroneously high protein-protein binding 

affinities. Even worse, clustering can generate complexes that are completely artifactual, as 

demonstrated here for two proteins that are known to be monomeric in solution. The formation of 

such nonspecific clusters can be suppressed by ensuring that the initial ESI droplets contain no more 

than a single protein molecule, e.g., by using low analyte concentrations (Figure 1C/D)61, 68  and/or 

narrow emitter tips that produce smaller droplets.24, 62, 66, 67, 70  Also, the use of relatively high 

background electrolyte concentrations (e.g., ammonium acetate) can help suppress the formation of 

ESI-generated salt bridge contacts (Figures 1A/B, S3). 
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 For the first time, this work provides an atomistic view of ESI-induced protein cluster 

formation. Our MD runs generated dimers and trimers in charge states that coincided with 

experimental values, attesting to the fidelity of the modeling strategy used. Overall, our simulations 

support the view24, 45, 61-70 that protein cluster formation is often linked to the CRM, where individual 

solute molecules are forced to “stick” to one another as solvent evaporates. However, we found that 

the CRM is not the only possible protein cluster formation pathway. For proteins that carry a 

sufficiently large intrinsic charge, clustering within the droplet can be followed by IEM cluster 

ejection. Similar IEM scenarios have previously been discussed for certain salt clusters,31, 95, 96 but 

the existence of this pathway for proteins is unexpected. 

 Regardless of the release mechanism (CRM or IEM), protein cluster assembly was shown to 

occur at various time points for different runs. Sometimes protein-protein contacts were formed very 

early when the droplet had lost very little solvent, while in other instances, clustering took place 

during the final stages of solvent evaporation. One might have expected that clustering is disfavored 

for proteins that are intrinsically charged, such that the chains repel each other. Interestingly, we 

found that intrinsic charge is irrelevant for protein clustering, since cyt c (intrinsic charge 6+) and 

ubiquitin (intrinsic charge zero) showed very similar behavior. We attribute this effect to the 

tendency of droplets to project their internal charge to the droplet surface via dipole ordering of the 

solvent, thereby creating a field-free region in the droplet interior.97 

All clusters in our MD runs were assembled from proteins that retained a native-like fold. 

Protein-protein contacts were mediated primarily by salt bridges involving surface residues. This 

retention of native-like structure might open up interesting avenues for emerging single-particle 

structure determination methods, where the deliberate creation of protein clusters could help boost 

signal intensities by increasing the number of X-ray scattering centers.98 In addition, the combination 

of ESI clustering with soft-landing99 could produce protein assemblies for future applications in 
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nanotechnology. Hence, while nonspecific clustering is a nuisance in native ESI, there could be 

scenarios where clustering is desirable. It is hoped that the mechanistic insights of this work will 

stimulate future studies on the behavior of proteins in charged droplets. 

 

Supporting Information. Figure S1: Close-up view of selected protein signals in the presence of 

NaCl. Figure S2: Protein-protein distances during cluster formation. Figure S3: Protein-protein 

contacts. Figure S4: Collision cross sections of experimental and MD-generated clusters. 
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Figure 1. ESI mass spectra of cyt c acquired at pH 7 under different solvent conditions. Panels on 
the right zoom into regions of interest, with signals annotated as M (monomer), D (dimer), Tri 
(trimer), and Tet (tetramer) along with the corresponding charge states. (A) 5 µM protein in water 
containing 10 mM ammonium acetate. (B) 5 µM protein in water. (C) 2 µM protein in water. (D) 
100 μM protein in water.  
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Figure 2. ESI mass spectra acquired in aqueous solution containing 100 µM protein and 0.2 mM 
NaCl. (A) cyt c, (B) ubiquitin. Panels on the right zoom into regions of interest, with signals 
annotated as M (monomer), D (dimer), Tri (trimer), Tet (tetramer), and Pent (pentamer) along with 
the corresponding charge states. Peak broadening is due to salt adduction caused by the addition of 
NaCl (see Figure S1 for details). 
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Figure 3. ESI simulation snapshots for two MD runs that show CRM behavior. (A) Droplet 
containing two ubiquitin molecules, forming a protein dimer. (B) Droplet containing three ubiquitin 
molecules, forming a protein trimer. The charge states of the nonspecific clusters are indicated in 
the final frame. Protein chains are depicted in different colors, water oxygen is red, Na+ (blue) and 
Cl- (green) are shown as spheres. Time points are identical for panels on the left and right. The blue 
circle in the top left panel highlights the IEM ejection of a solvated Na+. 
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Figure 4. ESI simulation snapshots for two MD runs, both of which started with a droplet that 
initially contained two cyt c molecules (top). (A) The two proteins undergo nonspecific clustering, 
and a 13+ dimer is formed via the CRM. (B) One protein (magenta) undergoes IEM ejection at 
~18.25 ns, liberating a 7+ monomer. The other protein (cyan) forms an 8+ monomer via the CRM. 
Element coloring is as in the preceding figure. 
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Figure 5. ESI simulation snapshots for four MD runs, all of which started with a droplet that initially 
contained three cyt c molecules (top). (A) All three proteins undergo clustering, and a 17+ trimer is 
formed via the CRM. (B) One protein (cyan) undergoes IEM ejection at 4 ns, liberating a 8+ 
monomer. The remaining two proteins form a 13+ dimer via the CRM. (C) A 14+ dimer undergoes 
IEM ejection at 4.8 ns. (D) A 17+ trimer is IEM ejected at 10.5 ns. Element coloring is as in the 
preceding figures. 
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Figure 6. Examples of ubiquitin MD time profiles, illustrating cluster formation for droplets that 
initially contained two (A-C) or three (D-F) proteins. (A, D) Number of water molecules during 
droplet shrinkage for the data shown in the subsequent panels. (B, C) Distance between V26 C of 
the two proteins, representing a marker atom that is buried in the ubiquitin core. (E, F) Distances 
between V26 C atoms of the three proteins; the three traces represent distances between proteins 
1-2, 1-3, and 2-3. 
 
 
 
 

 

 

  

0

5000

10000

15000

20000

0

3

6

Time (ns)

0 15 30 45 60
0

3

6

N
um

be
r 

of
 W

at
er

 M
ol

.

0

5000

10000

15000

20000

V
26

-V
26

 D
is

ta
nc

e 
(n

m
)

0

3

6

Time (ns)

0 15 30 45
0

3

6 dimer has
formed

dimer has
formed

trimer has
formed

trimer has
formed

dimer has formed

dimer has formed

A

B

C

D

E

F



 29 

For Table of Contents Only 
 
 
 

  


	Atomistic Insights into the Formation of Nonspecific Protein Complexes during Electrospray Ionization.
	Citation of this paper:

	Microsoft Word - Elnaz nonspecific complexes8_revised.docx

