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Abstract
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1. Introduction

Principal angles, also referred to as canonical angles, or simply as angles, between subspaces
represent one of the classical mathematical tools with many applications. The cosines of the an-
gles are related to canonical correlations which are widely used in statistics. Angles between
finite dimensional subspaces have become so popular that they can be found even in linear alge-
bra textbooks.

The angles between subspaces F and G are defined as q = min{dimF ,dim G} values on
[0,π/2] if q < ∞. In the case q = ∞, where both subspaces F and G are infinite dimensional,
traditionally only single-valued angles are defined, which in the case q < ∞ would correspond
to the smallest (Dixmier [11]), smallest nonzero (Friedrichs [13]), or largest (Krein et al. [29])
angles. We define angles from–to and between (infinite) dimensional subspaces of a Hilbert
space using the spectra of the product of corresponding orthogonal projectors. The definition is
consistent with the finite dimensional case q < ∞ and results in a set, possibly infinite, of angles.

Our definition is inspired by E.J. Hannan [16], where such an approach to canonical corre-
lations of stochastic processes is suggested. Canonical correlations for stochastic processes and
functional data often involve infinite dimensional subspaces. This paper is intended to revive the
interest in angles between infinite dimensional subspaces.

In functional analysis, the gap and the minimum gap are important concepts used, e.g., in
operator perturbation theory [19]. The gap between infinite dimensional subspaces bounds the
perturbation of a closed linear operator by measuring the change in its graph. We show in Theo-
rem 2.12 that the gap is closely connected to the sine of the largest angle.

The minimum gap between infinite dimensional subspaces provides a necessary and sufficient
condition to determine if the sum of two subspaces is closed. The minimum gap is applied,
e.g., in [22] to prove wellposedness of degenerate saddle point problems. The minimum gap is
precisely, see Theorem 2.15, the sine of the angle of Friedrichs, which, in its turn, as shown in
Theorem 2.14, is the infimum of the set of nonzero angles. The Dixmier angle is simply the
smallest of all angles in our definition.

We consider a (real or complex) Hilbert space equipped with an inner product (f, g) and
a vector norm ‖f ‖ = (f,f )1/2. The angle between two unit vectors f and g is defined as
θ(f, g) = arccos |(f, g)| ∈ [0,π/2]. In Section 2 of the present paper, we replace 1D subspaces
spanned by the vectors f and g with (infinite dimensional) subspaces, and introduce the con-
cept of principal angles from one subspace to another and between subspaces using the spectral
theory of selfadjoint operators. We investigate the basic properties of the angles, which are al-
ready known for finite dimensional subspaces, see [23], e.g., we establish connections between
the angles corresponding to subspaces and their orthogonal complements. We express classical
quantities: the gap and the minimum gap between subspaces, in terms of the angles.

In Section 2, we provide a foundation and give necessary tools for the rest of the paper, see
also [5] and references there. In Section 3, we introduce principal invariant subspaces and prove
that they are connected by the isometry that appears in the polar decomposition of the product of
corresponding orthogonal projectors. We define point angles by analogy with the point operator
spectrum and consider peculiar properties of the invariant subspaces corresponding to a point
angle. In Section 4, the Hausdorff distance is used to measure the change in the principal angles,
where one of the subspaces varies, extending some of our previous results of [23,25] to infinite
dimensional subspaces.

We consider two applications of the angles: to bound the change in Ritz values, where the
Rayleigh–Ritz method is applied to different infinite dimensional trial subspaces, in Section 5;
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and to analyze and accelerate the convergence of the classical alternating projectors method (e.g.,
[10, Chapter IX]) in the context of a specific example—a domain decomposition method (DDM)
with an overlap, in Section 6. In computer simulations the subspaces involved are evidently finite
dimensional; however, the assumption of the finite dimensionality is sometimes irrelevant in
theoretical analysis of the methods.

In Section 5, we consider the Rayleigh–Ritz method for a bounded selfadjoint operator A on
a trial subspace F of a Hilbert space, where the spectrum Σ((PF A)|F ) of the restriction to
the subspace F of the product of the orthoprojector PF onto F and the operator A is called
the set of Ritz values, corresponding to A and F . In the main result of Section 5, we bound
the change in the Ritz values, where one trial subspace F is replaced with another subspace G ,
using the Hausdorff distance between the sets of Ritz values, by the spread of the spectrum times
the gap between the subspaces. The proof of the general case is based on a specific case of
one dimensional subspaces F and G , spanned by unit vectors f and g, correspondingly, where
the estimate becomes particularly simple: |(f,Af )− (g,Ag)| � (λmax −λmin) sin(θ(f, g)); here
λmax − λmin is the spread of the spectrum of A, cf. [24]. If in addition f or g is an eigenvector
of A, the same bound holds but with the sine squared—similarly, our Hausdorff distance bound
involves the gap squared, assuming that one of the trial subspaces is A-invariant. The material
of Section 5 generalizes some of the earlier results of [25,26] and [27] for the finite dimensional
case. The Rayleigh–Ritz method with infinite dimensional trial subspaces is used in the method
of intermediate problems for determining two-sided bounds for eigenvalues, e.g., [36,37]. The
results of Section 5 may be useful in obtaining a priori estimates of the accuracy of the method
of intermediate problems, but this is outside of the scope of the present paper.

Our other application, in Section 6, is the classical alternating projectors method given by:
e(i+1) = PF PG e(i), e(0) ∈ F , where F and G are two given subspaces and PF and PG are
the orthogonal projectors onto F and G , respectively. If ‖(PF PG )|F ‖ < 1 then the sequence of
vectors e(i) evidently converges to zero. Such a situation is typical if e(i) represents an error of an
iterative method, e.g., a multiplicative DDM, so that the alternating projectors method describes
the error propagation in the DDM, e.g., [38,4].

If the intersection F ∩ G is nontrivial then the sequence of vectors e(i) converges under reason-
able assumptions to the orthogonal projection of e(0) onto F ∩ G as in the von Neumann–Halperin
method, see [34,15], and [2]. Several attempts to estimate and accelerate the convergence of al-
ternating projectors method are made, e.g., [9,2], and [39]. Here, we use a different approach,
known in the DDM context, e.g., [38,4], but apparently novel in the context of the von Neumann–
Halperin method, and suggest the ultimate, conjugate gradient based, acceleration of the von
Neumann–Halperin alternating projectors method.

Our idea of the acceleration is inspired by the following facts. On the one hand, every self-
adjoint nonnegative non-expansion A, 0 � A � I in a Hilbert space H can be extended to an
orthogonal projector PG in the space H × H, e.g., [14,31], and, thus, is unitarily equivalent to a
product of two orthogonal projectors PF PG restricted to the subspace F = H × {0}. Any poly-
nomial iterative method that involves as a main step a multiplication of a vector by A can thus
be called an “alternating projectors” method. On the other hand, the conjugate gradient method
is the optimal polynomial method for computing the null-space of A, therefore the conjugate
gradient approach provides the ultimate acceleration of the alternating projectors method.

We give in Section 6 the corresponding convergence rate estimate in terms of the angles. We
illustrate a possible acceleration for the DDM with a small overlap for the 1D diffusion equation.
The convergence of the classical alternating projectors method degrades when the overlap gets
smaller, but the conjugate gradient method we describe converges to the exact solution in two
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iterations. For a finite difference approximation of the 1D diffusion equation a similar result can
be found in [12].

This paper is partially based on [18], where simple proofs that we skip here can be found.

2. Definition and properties of the angles

Here we define angles from one subspace to another and angles between subspaces, and inves-
tigate the properties of the (sets of) angles, such as the relationship concerning angles between
the subspaces and their orthogonal complements. We express the gap and the minimum gap be-
tween subspaces in terms of angles. We introduce principal invariant subspaces and prove that
they are connected by an isometry that appears in the polar decomposition of the product of
corresponding orthogonal projectors. We define point angles and their multiplicities by analogy
with the point operator spectrum, and consider peculiar properties of the invariant subspaces
corresponding to a point angle.

2.1. Preliminaries

Let H be a (real or complex) Hilbert space and let F and G be proper nontrivial subspaces.
A subspace is defined as a closed linear manifold. Let PF and PG be the orthogonal projectors
onto F and G , respectively. We denote by B(H) the Banach space of bounded linear operators
defined on H with the induced norm. We use the same notation ‖ · ‖ for the vector norm on H,
associated with the inner product (·,·) on H, as well as for the induced operator norm on B(H).
For T ∈ B(H) we define |T | = √

T ∗T , using the positive square root. T |U denotes the restric-
tion of the operator T to its invariant subspace U . By D(T ), R(T ), N(T ), Σ(T ), and Σp(T )

we denote the domain, range, null-space, spectrum, and point spectrum, respectively, of the op-
erator T . In this paper, we distinguish only between finite and infinite dimensions. If q is a finite
number then we set by definition min{q,∞} = q and max{q,∞} = ∞, and assume that ∞ � ∞
holds. We use ⊕ to highlight that the sum of subspaces is orthogonal and for the corresponding
sum of operators. We denote the 	 operation between subspaces F and G by F 	 G = F ∩ G⊥.

Introducing an orthogonal decomposition H = M00 ⊕ M01 ⊕ M10 ⊕ M11 ⊕ M, where

M00 = F ∩ G, M01 = F ∩ G⊥, M10 = F ⊥ ∩ G, M11 = F ⊥ ∩ G⊥

(see, e.g., [14,6]), we note that every subspace in the decomposition is PF and PG invariant.

Definition 2.1. (See [14].) Two subspaces F ⊂ H and G ⊂ H are said to be in generic position
within the space H, if all four subspaces M00,M01,M10, and M11 are null-dimensional.

Clearly, subspaces F ⊂ H and G ⊂ H are in generic position within the space H iff any of
the pairs of subspaces: F ⊂ H and G⊥ ⊂ H, or F ⊥ ⊂ H and G ⊂ H, or F ⊥ ⊂ H and G⊥ ⊂ H,
is in generic position within the space H.

The fifth part, M, can be further orthogonally split in two different ways as follows:

• M = MF ⊕ MF ⊥ with MF = F 	 (M00 ⊕ M01), MF ⊥ = F ⊥ 	 (M10 ⊕ M11), or
• M = MG ⊕ MG⊥ with MG = G 	 (M00 ⊕ M10), MG⊥ = G⊥ 	 (M01 ⊕ M11).

We obtain orthoprojectors’ decompositions
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PF = IM00 ⊕ IM01 ⊕ 0M10 ⊕ 0M11 ⊕ PF |M and

PG = IM00 ⊕ 0M01 ⊕ IM10 ⊕ 0M11 ⊕ PG |M,

and decompositions of their products:

(PF PG )|F = IM00 ⊕ 0M01 ⊕ (PF PG )|MF , and (PG PF )|G = IM00 ⊕ 0M10 ⊕ (PG PF )|MG .

These decompositions are very useful in the sequel. In the next theorem we apply them to prove
the unitary equivalence of the operators PF PG PF and PG PF PG .

Theorem 2.2. Let F and G be subspaces of H. Then there exists a unitary operator W ∈ B(H)

such that PF PG PF = W ∗PG PF PG W .

Proof. Denote T = PG PF . Then T ∗ = PF PG and T ∗T = PF PG PF . Using the approach of
[31, Section 110, p. 286] or [19, Section VI.2.7, p. 334], we introduce the polar decomposition,
T = U |T |, where |T | = √

T ∗T = √
PF PG PF is selfadjoint and nonnegative and U : R(|T |) →

R(T ) is an isometry. We extend U by continuity, keeping the same notation, to the isometry U :
R(|T |) → R(T ). It is easy to check directly that N(|T |) = N(T ), so R(|T |) = (N(T ))⊥ since
|T | is selfadjoint. Taking also into account that R(T ) = (N(T ∗))⊥, we have U : (N(T ))⊥ →
(N(T ∗))⊥.

For a general operator T ∈ B(H), the isometry U is then typically extended to a partial isom-
etry U ∈ B(H) by setting U = 0 on N(T ). For our special T = PG PF , we can do better and
extend U to a unitary operator W ∈ B(H). Indeed, we set W = U on (N(T ))⊥ to make W an
extension of U . To make W unitary, we set W = V on N(T ), where V : N(T ) → N(T ∗) must
be an isometry. The specific form of V is of no importance, since it evidently does not affect
the validity of the formula PG PF = W

√
PF PG PF , which implies PF PG = √

PF PG PF W ∗.
Multiplying these equalities we obtain the required PG PF PG = WPF PG PF W ∗.

For the existence of such V , it is sufficient (and, in fact, necessary) that N(T ∗) = N(PF PG )

and N(T ) = N(PG PF ) be isomorphic. Using the five-parts decomposition, we get

N(PF PG ) = M01 ⊕ M10 ⊕ M11 ⊕ N
(
(PF PG )|M

)
,

N(PG PF ) = M01 ⊕ M10 ⊕ M11 ⊕ N
(
(PG PF )|M

)
.

The first three terms in the decompositions of N(PF PG ) and N(PG PF ) are the same, so
N(PF PG ) and N(PG PF ) are isomorphic iff the last terms N((PF PG )|M) = MG⊥ and
N((PG PF )|M) = MF ⊥ are isomorphic. The pair of the subspaces MF = PF M ⊆ M and
MG = PG M ⊆ M are in generic position within the space M, see [14], as well as their orthogo-
nal in M complements MF ⊥ and MG⊥ . According to [14, Proof of Theorem 1, p. 382], any two
subspaces in generic position are isomorphic, thus N(PF PG ) and N(PG PF ) are isomorphic. �
Corollary 2.3. The operators (PF PG )|MF and (PG PF )|MG are unitarily equivalent.

Proof. We have the representations PF PG PF = (PF PG )|MF ⊕ IM00 ⊕ 0H	(M00⊕MF ) and
PG PF PG = (PG PF )|MG ⊕ IM00 ⊕ 0H	(M00⊕MG ). The subspaces MF and MG are connected
by MF = WMG , MG = W ∗MF , and PF PG PF = W ∗PG PF PG W . �
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In the important particular case ‖PF − PG ‖ < 1, subspaces F and G are isometric and Riesz
and Sz.-Nagy [31, Section VII.105] explicitly describe a partial isometry

U = PG
[
I + PF (PG − PF )PF

]−1/2
PF

that maps F one-to-one and onto G . On F , clearly I + PF (PG − PF )PF is just the same as
PF PG PF , so this U represents the partial isometry in the polar decomposition in the proof of
our Theorem 2.2, in this case. Let

V = (I − PG )
[
I + (I − PF )

(
(I − PG ) − (I − PF )

)
(I − PF )

]−1/2
(I − PF )

be another partial isometry that maps F ⊥ one-to-one and onto G⊥, constructed in the same
way as U . Setting W = U + V , we extend U from the subspace F to a unitary operator W on
the whole space. The sum W = U + V is the same as the unitary extension suggested in Kato
[19, Sections I.4.6, I.6.8] and Davis and Kahan [7]:

W = [
PG PF + (I − PG )(I − PF )

][
I − (PF − PG )2]−1/2

= [
(I − PG )(I − PF ) + PF PG

]−1/2[
PG PF + (I − PG )(I − PF )

]
(2.1)

(the second equality holds since the corresponding terms in square brackets are the same and
(PF − PG )2 commutes both with PF and PG ), which is used there to prove the unitary equiva-
lence PF = W ∗PG W . It is easy to check directly that the operator W is unitary and that on F
it acts the same as the operator U , so it is indeed a unitary extension of U . If ‖PF − PG ‖ < 1,
Theorem 2.2 holds with this choice of W .

In the next subsection we define angles from–to and between subspaces using the spectrum of
the product of two orthogonal projectors. Our goal is to develop a theory of angles from–to and
between subspaces based on the well-known spectral theory of selfadjoint bounded operators.

2.2. Angles from–to and angles between subspaces

Definition 2.4. Θ̂(F , G) = {θ : θ = arccos(σ ), σ � 0, σ 2 ∈ Σ((PF PG )|F )} ⊆ [0,π/2] is called
the set of angles from the subspace F to the subspace G . Angles Θ(F , G) = Θ̂(F , G)∩Θ̂(G,F )

are called angles between the subspaces F and G .

Let the operator T ∈ B(H) be a selfadjoint nonnegative contraction. Using an extension of T

to an orthogonal projector [31, Section A.2, p. 461], there exist subspaces F and G in H2 such
that T is unitarily equivalent to (PF PG )|F , where PF and PG are the corresponding orthogonal
projectors in H2. This implies that the spectrum of the product of two orthogonal projectors is
as general a set as the spectrum of an arbitrary selfadjoint nonnegative contraction, so the set of
angles between subspaces can be a sufficiently general subset of [0,π/2].

Definition 2.5. The angles Θ̂p(F , G) = {θ ∈ Θ̂(F , G): cos2(θ) ∈ Σp((PF PG )|F )} and
Θp(F , G) = Θ̂p(F , G) ∩ Θ̂p(G,F ) are called point angles. Angle θ ∈ Θ̂p(F , G) inherits its
multiplicity from cos2(θ) ∈ Σp((PF PG )|F ). Multiplicity of angle θ ∈ Θp(F , G) is the mini-
mum of multiplicities of θ ∈ Θ̂p(F , G) and θ ∈ Θ̂p(G,F ).
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For two vectors f and g in the plane, and their orthogonal counterparts f ⊥ and g⊥ we
evidently have that θ(f, g) = θ(f ⊥, g⊥) and θ(f, g) + θ(f, g⊥) = π/2. We now describe re-
lationships for angles, corresponding to subspaces F , G,F ⊥, and G⊥. We first consider the
angles from one subspace to another as they reveal the finer details and provide a foundation for
statements on angles between subspaces.

Theorem 2.6. For any pair of subspaces F and G of H:

1. Θ̂(F , G⊥) = π/2 − Θ̂(F , G);
2. Θ̂(G,F ) \ {π/2} = Θ̂(F , G) \ {π/2};
3. Θ̂(F ⊥, G) \ ({0} ∪ {π/2}) = π/2 − {Θ̂(F , G) \ ({0} ∪ {π/2})};
4. Θ̂(F ⊥, G⊥) \ ({0} ∪ {π/2}) = Θ̂(F , G) \ ({0} ∪ {π/2});
5. Θ̂(G,F ⊥) \ {0} = π/2 − {Θ̂(F , G) \ {π/2}};
6. Θ̂(G⊥,F ) \ {π/2} = π/2 − {Θ̂(F , G) \ {0}};
7. Θ̂(G⊥,F ⊥) \ {0} = Θ̂(F , G) \ {0}.

The multiplicities of the point angles θ ∈ (0,π/2) in Θ̂(F , G), Θ̂(F ⊥, G⊥), Θ̂(G,F ) and
Θ̂(G⊥,F ⊥) are the same, and are equal to the corresponding multiplicities of the point angles
π/2 − θ ∈ (0,π/2) in Θ̂(F , G⊥), Θ̂(F ⊥, G), Θ̂(G,F ⊥) and Θ̂(G⊥,F ).

Proof. (1) Using the equalities (PF PG⊥)|F = PF |F − (PF PG )|F = I |F − (PF PG )|F and the
spectral mapping theorem for f (T ) = I − T we have Σ((PF PG⊥)|F ) = 1 − Σ((PF PG )|F ).
Next, using the identity N(T −λI) = N((I −T )− (1−λ)I), we conclude that λ is an eigenvalue
of (PF PG )|F if and only if 1 − λ is an eigenvalue of (PF PG⊥)|F , and that their multiplicities
are the same.

(2) The statement on nonzero angles follows from Corollary 2.3. The part concerning the zero
angles follows from the fact that (PF PG )|M00 = (PG PF )|M00 = I |M00 .

(3–7) All other statements can be obtained from the (1–2) by exchanging the subspaces. Ta-
ble 1 entries are checked directly using the five-parts decomposition. �

Theorem 2.7 and Table 2 relate the sets of angles between pairs of subspaces:

Theorem 2.7. For any subspaces F and G of H the following equalities hold:

1. Θ(F , G) \ ({0} ∪ {π/2}) = {π/2 − Θ(F , G⊥)} \ ({0} ∪ {π/2});
2. Θ(F , G) \ {0} = Θ(F ⊥, G⊥) \ {0};
3. Θ(F , G⊥) \ {0} = Θ(F ⊥, G) \ {0}.

Table 1
Multiplicities of 0 and π/2 angles for different pairs of subspaces.

Pair θ = 0 θ = π/2 Pair θ = 0 θ = π/2

Θ̂(F , G) dimM00 dimM01 Θ̂(G,F ) dimM00 dimM10
Θ̂(F , G⊥) dimM01 dimM00 Θ̂(G,F ⊥) dimM10 dimM00
Θ̂(F ⊥, G) dimM10 dimM11 Θ̂(G⊥,F ) dimM01 dimM11
Θ̂(F ⊥, G⊥) dimM11 dimM10 Θ̂(G⊥,F ⊥) dimM11 dimM01
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Table 2
Multiplicities of 0 and π/2 angles between subspaces.

Pair θ = 0 θ = π/2

Θ(F , G) dimM00 min{dimM01,dimM10}
Θ(F , G⊥) dimM01 min{dimM00,dimM11}
Θ(F ⊥, G) dimM10 min{dimM00,dimM11}
Θ(F ⊥, G⊥) dimM11 min{dimM01,dimM10}

The multiplicities of the point angles θ in Θ(F , G) and Θ(F ⊥, G⊥) satisfying 0 < θ < π/2 are
the same, and equal to the multiplicities of point angles 0 < π/2 − θ < π/2 in Θ(F , G⊥) and
Θ(F ⊥, G).

Proof. Statement (1) follows from Theorem 2.6 since

Θ(F , G) \ ({0} ∪ {π/2}) = Θ̂(F , G) \ ({0} ∪ {π/2})
= {

π/2 − Θ̂
(
F , G⊥)} \ ({0} ∪ {π/2})

= {
π/2 − Θ

(
F , G⊥)} \ ({0} ∪ {π/2}).

Using Theorem 2.6(7) twice: first for F and G , next for G and F , and then intersecting them
gives (2). Interchanging G and G⊥ in (2) leads to (3). The statements on multiplicities easily
follow from Theorem 2.6 as the entries in Table 2 are just the minima between pairs of the
corresponding entries in Table 1. �
Remark 2.8. Theorem 2.6(1) allows us to introduce an equivalent sine-based definition:

Θ̂(F , G) = {
θ : θ = arcsin(μ), μ � 0, μ2 ∈ Σ

(
(PF PG⊥)|F

)} ⊆ [0,π/2].

Remark 2.9. Theorem 2.6(2) implies Θ(F , G) \ {π/2} = Θ̂(F , G) \ {π/2} = Θ̂(G,F ) \ {π/2}.

Remark 2.10. We have Θ(F , G) \ ({0} ∪ {π/2}) = Θ(PMF ,PMG), in other words, the pro-
jections PMF = MF and PMG = MG of the initial subspaces F and G onto their “fifth
part” M are in generic position within M, see [14], so the zero and right angles cannot be-
long to the set of point angles Θp(PMF ,PMG), but apart from 0 and π/2 the angles Θ(F , G)

and Θ(PMF ,PMG) are the same.

Remark 2.11. Tables 1 and 2 give the absolute values of the multiplicities of 0 and π/2. If
we need relative multiplicities, e.g., how many “extra” 0 and π/2 values are in Θ(F ⊥, G⊥)

compared to Θ(F , G), we can easily find the answers from Tables 1 and 2 by subtraction,
assuming that we subtract finite numbers, and use identities such as dimM00 − dimM11 =
dimF − dim G⊥ and dimM01 − dimM10 = dimF − dim G . Indeed, for the particular ques-
tion asked above, we observe that the multiplicity of π/2 is the same in Θ(F ⊥, G⊥) and in
Θ(F , G), but the difference in the multiplicities of 0 in Θ(F ⊥, G⊥) compared to in Θ(F , G) is
equal to dimM11 − dimM00 = dim G⊥ − dimF , provided that the terms that participate in the
subtractions are finite. Some comparisons require both the dimension and the codimension of a
subspace to be finite, thus, effectively requiring dim H < ∞.
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2.3. Known quantities as functions of angles

The gap bounds the perturbation of a closed linear operator by measuring the change in its
graph, while the minimum gap between two subspaces determines if the sum of the subspaces
is closed. We connect the gap and the minimum gap to the largest and to the nontrivial smallest
principal angles. E.g., for subspaces F and G in generic position, i.e., if M = H, we show that
the gap and the minimum gap are the supremum and the infimum, correspondingly, of the sine
of the set of angles between F and G .

The gap (aperture) between subspaces F and G defined as, e.g., [19],

gap(F , G) = ‖PF − PG ‖ = max
{‖PF PG⊥‖,‖PG PF ⊥‖}

is used to measure the distance between subspaces. We now describe the gap in terms of the
angles.

Theorem 2.12. min{min{cos2(Θ̂(F , G))},min{cos2(Θ̂(G,F ))}} = 1 − gap2(F , G).

Proof. Let us consider both norms in the definition of the gap separately. Using Theorem 2.6,
we have

‖PF PG⊥‖2 = sup
u∈H‖u‖=1

‖PF PG⊥u‖2 = sup
u∈H‖u‖=1

(PF PG⊥u,PF PG⊥u)

= sup
u∈H‖u‖=1

(PG⊥PF PG⊥u,u) = ∥∥(PG⊥PF )|G⊥
∥∥ = max

{
cos2(Θ̂(

G⊥,F
))}

= max
{
sin2(Θ̂(G,F )

)} = 1 − min
{
cos2(Θ̂(G,F )

)}
.

Similarly, ‖PG PF ⊥‖2 = max{cos2(Θ̂(F ⊥, G))} = 1 − min{cos2(Θ̂(F , G))}. �
It follows directly from the above proof and the previous section that

Corollary 2.13. If gap(F , G) < 1 or if the subspaces are in generic position then both terms
under the minimum are the same and so gap(F , G) = max{sin(Θ(F , G))}.

Let c(F , G) = sup{|(f, g)|: f ∈ F 	 (F ∩ G), ‖f ‖ � 1, g ∈ G 	 (F ∩ G), ‖g‖ � 1}, as
in [8], which is a definition of the cosine of the angle of Friedrichs.

Theorem 2.14. In terms of the angles, c(F , G) = cos(inf{Θ(F , G) \ {0}}).

Proof. Replacing the vectors f = PF u and g = PG v in the definition of c(F , G) with the
vectors u and v and using the standard equality of induced norms of an operator and the cor-
responding bilinear form, we get

c(F , G) = sup
u∈H	M00

sup
v∈H	M00

∣∣(u,PF PG v)
∣∣ = ∥∥(PF PG )|H	M00

∥∥.
‖u‖=1 ‖v‖=1
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Using the five-parts decomposition, PF PG = IM00 ⊕ 0M01 ⊕ 0M10 ⊕ 0M11 ⊕ (PF PG )|M, thus
“subtracting” the subspace M00 from the domain of PF PG excludes 1 from the point spectrum
of PF PG , and, thus, 0 from the set of point angles from F to G and, by Theorem 2.6(2), from
the set of point angles between F and G . �

Let the minimum gap, see [19, Section IV.4], be defined as

γ (F , G) = inf
f ∈F , f /∈G

dist(f, G)

dist(f,F ∩ G)
.

Theorem 2.15. In terms of the angles, γ (F , G) = sin(inf{Θ(F , G) \ {0}}).

Proof. We have f ∈ F and f /∈ G , so we can represent f in the form f = f1 + f2, where
f1 ∈ F 	 (F ∩ G), f1 �= 0 and f2 ∈ F ∩ G . Then

γ (F , G) = inf
f ∈F , f /∈G

dist(f, G)

dist(f,F ∩ G)

= inf
f1∈F 	(F ∩G), f2∈F ∩G

‖f1 + f2 − PG f1 − PG f2‖
‖f1 + f2 − PF ∩G f1 − PF ∩G f2‖

= inf
f1∈F 	(F ∩G)

‖f1 − PG f1‖
‖f1 − PF ∩G f1‖

= inf
f ∈F 	(F ∩G)

‖f − PG f ‖
‖f − PF ∩G f ‖ .

But f ∈ (F ∩ G)⊥ and ‖f − PF ∩G f ‖ = ‖f ‖. Since ‖κf − PG (κf )‖ = |κ|‖f − PG f ‖, using
the Pythagorean theorem we have

γ 2(F , G) = inf
f ∈F 	(F ∩G)

‖f − PG f ‖2

‖f ‖2

= inf
f ∈F 	(F ∩G),‖f ‖=1

‖f − PG f ‖2

= inf
f ∈F 	(F ∩G),‖f ‖=1

1 − ‖PG f ‖2.

Using the equality ‖PG f ‖ = supg∈G,‖g‖=1 |(f, g)| we get

γ 2(F , G) = 1 − sup
f ∈F 	(F ∩G), g∈G,‖f ‖=‖g‖=1

∣∣(f, g)
∣∣2

= 1 − (
c(F , G)

)2

and finally we use Theorem 2.14. �
Let us note that removing 0 from the set of angles in Theorems 2.14 and 2.15 changes the

result after taking the inf, only if 0 is present as an isolated value in the set of angles, e.g., it has
no effect for a pair of subspaces in generic position.
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2.4. The spectra of sum and difference of orthogonal projectors

Sums and differences of a pair of orthogonal projectors often appear in applications. Here,
we describe their spectra in terms of the angles between the ranges of the projectors, which
provides a geometrically intuitive and uniform framework to analyze the sums and differences of
orthogonal projectors. First, we connect the spectra of the product and of the difference of two
orthogonal projectors.

Lemma 2.16. (See [30, Theorem 1], [28, Lemma 2.4].) For proper subspaces F and G we have
Σ(PF PG ) = Σ(PF PG PF ) ⊆ [0,1] and

Σ(PG − PF ) \ ({−1} ∪ {0} ∪ {1}) = {±(
1 − σ 2)1/2: σ 2 ∈ Σ(PF PG ) \ ({0} ∪ {1})}.

Using Lemma 2.16, we now characterize the spectrum of the differences of two orthogonal
projectors in terms of the angles between the corresponding subspaces.

Theorem 2.17. The multiplicity of the eigenvalue 1 in Σ(PG − PF ) is equal to dimM10, the
multiplicity of the eigenvalue −1 is equal to dimM01, and the multiplicity of the eigenvalue 0 is
equal to dimM00 + dimM11, where M00, M01, M10 and M11 are defined in Section 2.1. For
the rest of the spectrum, we have the following:

Σ(PF − PG ) \ ({−1} ∪ {0} ∪ {1}) = ± sin
(
Θ(F , G)

) \ ({−1} ∪ {0} ∪ {1}).
Proof. The last statement follows from Lemma 2.16 and Definition 2.4. To obtain the results
concerning the multiplicity of eigenvalues 1, −1 and 0, it suffices to use the decomposition of
these projectors into five parts, given in Section 2.1. �

In some applications, e.g., in domain decomposition methods, see Section 6, the distribution
of the spectrum of the sum of projectors is important. We directly reformulate [3, Corollary 4.9,
p. 86], see also [33, p. 298], in terms of the angles between subspaces:

Theorem 2.18. For any nontrivial pair of orthogonal projectors PF and PG on H the spectrum
of the sum PF + PG , with the possible exception of the point 0, lies in the closed interval of the
real line [1 − ‖PF PG ‖,1 + ‖PF PG ‖], and the following identity holds:

Σ(PF + PG ) \ ({0} ∪ {1}) = {
1 ± cos

(
Θ(F , G)

)}∖({0} ∪ {1}).
3. Principal vectors, subspaces and invariant subspaces

In this section, we basically follow [18, Section 2.8] to introduce principal invariant subspaces
for a pair of subspaces by analogy with invariant subspaces of operators. Given the principal
invariant subspaces (see Definition 3.1 below) of a pair of subspaces F and G , we construct
the principal invariant subspaces for pairs F and G⊥, F ⊥ and G , F ⊥ and G⊥. We describe
relations between orthogonal projectors onto principal invariant subspaces. We show that, in
particular cases, principal subspaces and principal vectors can be defined essentially as in the
finite dimensional case, and we investigate their properties. Principal vectors, subspaces and
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principal invariant subspaces reveal the fine structure of the mutual position of a pair of subspaces
in a Hilbert space. Except for Theorem 3.3, all other statements can be found in [18, Sections
2.6–2.9], which we refer the reader to for detailed proofs and more facts.

3.1. Principal invariant subspaces

Principal invariant subspaces for a pair of subspaces generalize the already known notion
of principal vectors, e.g., [35]. We give a geometrically intuitive definition of principal invariant
subspaces and connect them with invariant subspaces of the product of the orthogonal projectors.

Definition 3.1. A pair of subspaces U ⊆ F and V ⊆ G is called a pair of principal invariant
subspaces for the subspaces F and G , if PF V ⊆ U and PG U ⊆ V . We call the pair U ⊆ F
and V ⊆ G nondegenerate if PF V = U �= {0} and PG U = V �= {0} and strictly nondegenerate if
PF V = U �= {0} and PG U = V �= {0}.

This definition is different from that used in [18, Section 2.8, p. 57], where only what we call
here strictly nondegenerate principal invariant subspaces are defined.

The following simple theorem deals with enclosed principal invariant subspaces.

Theorem 3.2. Let U ⊂ F and V ⊂ G be a pair of principal invariant subspaces for subspaces
F and G , and U ⊂ U , V ⊂ V be a pair of principal invariant subspaces for subspaces U and V .
Then U , V form a pair of principal invariant subspaces for the subspaces F , G , and the following
inclusions hold Θ(U , V ) ⊆ Θ(U , V ) ⊆ Θ(F , G).

Definition 3.1 resembles the notion of invariant subspaces. The next theorem completely clar-
ifies this connection for general principal invariant subspaces.

Theorem 3.3. The subspaces U ⊆ F and V ⊆ G form a pair of principal invariant subspaces for
the subspaces F and G if and only if U ⊆ F is an invariant subspace of the operator (PF PG )|F
and V = PG U ⊕ V0, where V0 ⊆ M10 = G ∩ F ⊥.

Proof. Conditions PF V ⊆ U and PG U ⊆ V imply PF PG U ⊆ PF V ⊆ U . Let us consider a vec-
tor v0 ∈ V 	 PG U = V ∩ U ⊥ (the latter equality follows from 0 = (v0,PG u) = (v0, u), ∀u ∈ U ).
We have PF v0 ∈ U ⊥ since U ⊆ F , but our assumption PF V ⊆ U assures that PF v0 ∈ U , so
PF v0 = 0, which means that V0 ⊆ M10, as required.

To prove the converse, let PF PG U ⊆ U and V = PG U ⊕ V0. Then PF V = PF PG U ⊆ U since
U is closed. PG U ⊆ V follows from the formula for V . �

If the subspace M10 is trivial, the principal invariant subspace V that corresponds to U is
clearly unique. The corresponding statement for U , given V , we get from Theorem 3.3 by
swapping F and G . We now completely characterize (strictly) nondegenerate principal invariant
subspaces using the corresponding angles.

Theorem 3.4. The pair U ⊆ F and V ⊆ G of principal invariant subspaces for the subspaces F
and G is nondegenerate if and only if both operators (PF PG )|U and (PG PF )|V are invertible,
i.e., π/2 /∈ Θ̂p(U , V ) ∪ Θ̂p(V , U ), and strictly nondegenerate if and only if each of the inverses
is bounded, i.e., π/2 /∈ Θ̂(U , V ) ∪ Θ̂(V , U ), or equivalently, gap(U , V ) = ‖PU − PV ‖ < 1.
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Proof. We prove the claim for the operator (PF PG )|U , and the claim for the other operator
follows by symmetry. Definition 3.1 uses PF V = U �= {0} for nondegenerate principal invariant
subspaces. At the same time, Theorem 3.3 holds, so V = PG U ⊕ V0, where V0 ⊆ M10 = G ∩F ⊥.
So U = PF V = PF PG U . Also by Theorem 3.3, U ⊆ F is an invariant subspace of the opera-
tor (PF PG )|F , so U = PF PG U = (PF PG )|U U . Since (PF PG )|U is Hermitian, its null-space
is trivial (as the orthogonal in U complement to its range which is dense in U ), i.e., the oper-
ator (PF PG )|U is one-to-one and thus invertible. For strictly nondegenerate principal invariant
subspaces, (PF PG )|U U = U , so the operator (PF PG )|U by the open mapping theorem has a
continuous and thus bounded inverse.

Conversely, by Theorem 3.3 U ⊆ F is an invariant subspace of the operator (PF PG )|F , so the
restriction (PF PG )|U is correctly defined. The operator (PF PG )|U is invertible by assumption,
thus its null-space is trivial, and so its range is dense: U = (PF PG )|U U = PF PG U . By Theo-
rem 3.3, V = PG U ⊕ V0, therefore PF V = PF PG U = U . The other equality, PG U = V �= {0},
of Definition 3.1 for nondegenerate principal invariant subspaces, is proved similarly using the
assumption that (PG PF )|G is invertible. If, in addition, each of the inverses is bounded, the cor-
responding ranges are closed, U = PF PG U and V = PF PG V and we obtain PF V = U �= {0}
and PG U = V �= {0} as is needed in Definition 3.1 for strictly nondegenerate principal invariant
subspaces.

The equivalent formulations of conditions of the theorem in terms of the angles and the gap
follow directly from Definitions 2.4 and 2.5 and Theorem 2.12. �

Theorem 2.2 introduces the unitary operator W that gives the unitary equivalence of PF PG PF

and PG PF PG and, if gap(F , G) < 1, the unitary equivalence by (2.1) of PF and PG . Now we
state that the same W makes orthogonal projectors PU and PV unitarily equivalent for strictly
nondegenerate principal invariant subspaces U ⊂ F and V ⊂ G , and we obtain expressions for
the orthogonal projectors.

Theorem 3.5. Let U ⊆ F and V ⊆ G be a pair of strictly nondegenerate principal invariant
subspaces for the subspaces F and G , and W be defined as in Theorem 2.2. Then V = W U and
U = W ∗V , while the orthoprojectors satisfy PV = WPU W ∗ = PG PU ((PF PG )|U )−1PU PG and
PU = W ∗PV W = PF PV ((PG PF )|V )−1PV PF .

The proof of Theorem 3.5 is straightforward and can be found in [18, Section 2.8]. Juju-
nashvili [18, Section 2.9] also develops the theory of principal invariant subspaces, using the
spectral decompositions, e.g., below is [18, Theorem 2.108]:

Theorem 3.6. Let {E1} and {E2} be spectral measures of the operators (PF PG )|F and
(PG PF )|G , respectively. Let Θ ⊆ Θ(U , V ) \ {π/2} be a closed Borel set, and define projectors
PU (Θ) = ∫

cos(Θ)
dE1(λ) and PV (Θ) = ∫

cos(Θ)
dE2(λ). Then U (Θ) ⊂ F and V (Θ) ⊂ G is a pair

of strictly nondegenerate principal invariant subspaces and

PV (Θ) = PG

{ ∫
cos(Θ)

1

λ
dE1(λ)

}
PG ,

and Θ = Θ̂(U (Θ), V (Θ)) = Θ̂(V (Θ), U (Θ)).
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Proof. We have
∫

cos(Θ)
1
λ

dE1(λ) = ((PF PU )|U )−1 = PU ((PF PG )|U )−1PU (where we denote
U = U (Θ)), which we plug into the expression for the orthogonal projector PV of Theo-
rem 3.5. �

For a pair of principal invariant subspaces U ⊂ F and V ⊂ G , using Theorems 3.3 and 3.4
we define the corresponding principal invariant subspaces in F ⊥ and G⊥ as U⊥ = PF ⊥ V and
V⊥ = PG⊥ U , and describe their properties in the next theorem.

Theorem 3.7. Let U and V be a pair of principal invariant subspaces for subspaces F and G
and 0,π/2 /∈ Θ̂(U , V ) ∪ Θ̂(V , U ). Then U⊥ = PF ⊥ V and V⊥ = PG⊥ U are closed and

• U and V is a pair of strictly nondegenerate principal invariant subspaces for subspaces F
and G ;

• U⊥ and V is a pair of strictly nondegenerate principal invariant subspaces for subspaces
F ⊥ and G and PU⊥ and PV are unitarily equivalent;

• U and V⊥ is a pair of strictly nondegenerate principal invariant subspaces for subspaces F
and G⊥ and PU and PV⊥ are unitarily equivalent;

• U⊥ and V⊥ is a pair of strictly nondegenerate principal invariant subspaces for subspaces
F ⊥ and G⊥ and PU⊥ and PV⊥ are unitarily equivalent.

Proof. The statements follow directly from Theorems 3.3 and 3.4 applied to the corresponding
pairs of subspaces. The closedness of U⊥ and V⊥ can be alternatively derived from Theorem 2.14
and [8, Theorem 22]. �
3.2. Principal subspaces and principal vectors

For a pair of principal invariant subspaces U ⊂ F and V ⊂ G , if the spectrum Σ((PF PG )|U )

consists of one number, which belongs to (0,1] and which we denote by cos2(θ), we can use
Theorem 3.5 to define a pair of principal subspaces corresponding to an angle θ :

Definition 3.8. Let θ ∈ Θ(F , G)\{π/2}. Nontrivial subspaces U ⊆ F and V ⊆ G define a pair of
principal subspaces for subspaces F and G corresponding to the angle θ if the following holds,
(PF PV )|F = cos2(θ)PU and (PG PU )|G = cos2(θ)PV . Normalized vectors u = u(θ) ∈ F and
v = v(θ) ∈ G form a pair of principal vectors for subspaces F and G corresponding to the angle
θ if PF v = cos(θ)u and PG u = cos(θ)v.

We exclude θ = π/2 in Definition 3.8 so that principal subspaces belong to the class of strictly
nondegenerate principal invariant subspaces. We describe the main properties of principal sub-
spaces and principal vectors that can be checked directly (for details, see [18]). The first property
characterizes principal subspaces as eigenspaces of the products of the corresponding projectors.

Theorem 3.9. Subspaces U ⊂ F and V ⊂ G form a pair of principal subspaces for subspaces
F and G corresponding to the angle θ ∈ Θ(F , G) \ {π/2} if and only if θ ∈ Θp(F , G) \ {π/2}
and U and V are the eigenspaces of the operators (PF PG )|F and (PG PF )|G , respectively, cor-
responding to the eigenvalue cos2(θ). In such a case, Θ(U , V ) = Θp(U , V ) = {θ}. All pairs of
principal vectors u and v of subspaces F and G corresponding to the angle θ generate the
largest principal subspaces U and V corresponding to the angle θ .
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Theorem 3.10. Let U (θ), U (φ) ⊂ F , and V (θ), V (φ) ⊂ G be the principal subspaces for sub-
spaces F and G corresponding to the angles θ,φ ∈ Θp(F , G) \ {π/2}, respectively. Then
PU (θ)PU (φ) = PU (θ)∩ U (φ); PV (θ)PV (φ) = PV (θ)∩V (φ); PU (θ) and PV (φ) are mutually orthogo-
nal if θ �= φ (if θ = φ we can choose V (θ) such that PU (θ)PV (θ) = PU (θ)PG ); for given U (θ) we
can choose V (θ) such that PV (θ)PU (θ) = PV (θ)PF .

Corollary 3.11 (of Theorem 3.7). Let U and V be the principal subspaces for subspaces F and G ,
corresponding to the angle θ ∈ Θp(F , G) \ ({0} ∪ {π/2}). Then U⊥ = PF ⊥ V and V⊥ = PG⊥ U
are closed and

• U⊥, V are the principal subspaces for subspaces F ⊥ and G , corresponding to the angle
π/2 − θ ;

• U , V⊥ are the principal subspaces for subspaces F and G⊥, corresponding to the angle
π/2 − θ ;

• U⊥, V⊥ are the principal subspaces for subspaces F ⊥ and G⊥, corresponding to the angle θ .

Let u and v form a pair of principal vectors for the subspaces F and G , corresponding to the
angle θ . Then u⊥ = (v − cos(θ)u)/ sin(θ) and v⊥ = (u − cos(θ)v)/ sin(θ) together with u and
v describe the pairs of principal vectors.

4. Bounding the changes in the angles

Here we prove bounds on the change in the (squared cosines of the) angles from one subspace
to another where the subspaces change. These bounds allow one to estimate the sensitivity of the
angles with respect to the changes in the subspaces. For the finite dimensional case, such bounds
are known, e.g., [23,24]. To measure the distance between two bounded real sets S1 and S2 we use
the Hausdorff distance, e.g., [19], dist(S1, S2) = max{supu∈S1

dist(u,S2), supv∈S2
dist(v, S1)},

where dist(u,S) = infv∈S |u − v| is the distance from the point u to the set S. The following
theorem estimates the proximity of the set of squares of cosines of Θ̂(F , G) and the set of
squares of cosines of Θ̂(F , G̃), where F , G and G̃ are nontrivial subspaces of H.

Theorem 4.1. dist(cos2(Θ̂(F , G)), cos2(Θ̂(F , G̃))) � gap(G, G̃).

Proof. cos2(Θ̂(F , G)) = Σ((PF PG )|F ) and cos2(Θ̂(F , G̃)) = Σ((PF PG̃ )|F ) by Defini-
tion 2.4. Both operators (PF PG )|F and (PF PG̃ )|F are selfadjoint. By [19, Theorem 4.10,
p. 291],

dist
(
Σ

(
(PF PG )|F

)
,Σ

(
(PF PG̃ )|F

))
�

∥∥(PF PG )|F − (PF PG̃ )|F
∥∥.

Then, ‖(PF PG )|F − (PF PG̃ )|F ‖ � ‖PF ‖‖PG − PG̃ ‖‖PF ‖ � gap(G, G̃). �
The same result holds also if the first subspace, F , is changed in Θ̂(F , G):

Theorem 4.2. dist(cos2(Θ̂(F , G)), cos2(Θ̂(F̃ , G))) � gap(F , F̃ ).

Proof. The statement of the theorem immediately follows from Theorem 5.2, which is indepen-
dently proved in the next section, where one takes A = PG . �
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We conjecture that similar generalizations to the case of infinite dimensional subspaces can
be made for bounds involving changes in the sines and cosines (without squares) of the angles
extending known bounds [23,24] for the finite dimensional case.

5. Changes in the Ritz values and Rayleigh–Ritz error bounds

Here we estimate how Ritz values of a selfadjoint operator change with the change of a vector,
and then we extend this result to estimate the change of Ritz values with the change of a (infinite
dimensional) trial subspace, using the gap between subspaces, gap(F , G) = ‖PF − PG ‖. Such
results are natural extensions of the results of the previous section that bound the change in the
squared cosines or sines of the angles, since in the particular case where the selfadjoint operator
is an orthogonal projector its Ritz values are exactly the squared cosines of the angles from the
trial subspace of the Rayleigh–Ritz method to the range of the orthogonal projector. In addition,
we prove a spectrum error bound that characterizes the change in the Ritz values for an invariant
subspace, and naturally involves the gap squared; see [27,1,26] for similar finite dimensional
results.

Let A ∈ B(H) be a selfadjoint operator. Denote by λ(f ) = (f,Af )/(f,f ) the Rayleigh quo-
tient of an operator A at a vector f �= 0. In the following lemma, we estimate changes in the
Rayleigh quotient with the change in a vector. This estimate has been previously proven only
for real finite dimensional spaces [24]. Here, we give a new proof that works both for real and
complex spaces.

Lemma 5.1. Let A ∈ B(H) be a selfadjoint operator on a Hilbert space H and f,g ∈ H with
f,g �= 0. Then

∣∣λ(f ) − λ(g)
∣∣ �

(
max

{
Σ(A)

} − min
{
Σ(A)

})
sin

(
θ(f, g)

)
. (5.1)

Proof. We use the so-called “mini-dimensional” analysis, e.g., [20,21]. Let S = span{f,g} ⊂ H
be a two dimensional subspace (if f and g are linearly dependent then the Rayleigh quotients
are the same and the assertion is trivial). Denote Ã = (PSA)|S and two eigenvalues of Ã by
λ1 � λ2. By well-known properties of the Rayleigh–Ritz method, the Rayleigh quotients satisfy
λ(f ),λ(g) ∈ [λ1, λ2] ⊆ [max{Σ(A)},min{Σ(A)}]. In the nontrivial case λ(f ) �= λ(g), we then
have the strong inequality λ1 < λ2.

In this proof, we extend the notation of the Rayleigh quotient of an operator A at a vector f

to λ(f ;A) = (f,Af )/(f,f ) to explicitly include A. It is easy to see that λ(f ;A) = λ(f ; Ã) and
that the same holds for vector g. Then, since [λ1, λ2] ⊆ [max{Σ(A)},min{Σ(A)}] the statement
of the lemma would follow from the 2D estimate |λ(f ; Ã) − λ(g; Ã)| � (λ2 − λ1) sin(θ(f, g))

that we now have to prove. The latter estimate is clearly invariant with respect to a shift and
scaling of Ã. Let us use the transformation Ā = (Ã − λ1I )/(λ2 − λ1) then the estimate we need
to prove turns into |λ(f ; Ā) − λ(g; Ā)| � sin(θ(f, g)), but the operator Ā has two eigenval-
ues, zero and one, and thus is an orthoprojector on some one dimensional subspace span{h} ⊂
S. Finally, λ(f ; Ā) = (f,Phf )/(f,f ) = cos2(θ(h,f )) and λ(g; Ā) = (g,Phg)/(g, g) =
cos2(θ(h, g)). But | cos2(θ(h,f ))− cos2(θ(h, g))| = |‖PhPf Ph‖−‖PhPgPh‖| � ‖Pf −Pg‖ =
sin(θ(f, g)). �

In the Rayleigh–Ritz method for a selfadjoint operator A ∈ B(H) on a trial subspace F the
spectrum Σ((PF A)|F ) is called the set of Ritz values, corresponding to A and F . The next
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result of this section is an estimate of a change in the Ritz values, where one trial subspace, F ,
is replaced with another, G . For finite dimensional subspaces such a result is obtained in [24],
where the maximal distance between pairs of individually ordered Ritz values is used to measure
the change in the Ritz values. Here, the trial subspaces may be infinite dimensional, so the Ritz
values may form rather general sets on the real interval [min{Σ(A)},max{Σ(A)}] and we are
limited to the use of the Hausdorff distance between the sets, which does not take into account
the ordering and multiplicities.

Theorem 5.2. Let A ∈ B(H) be a selfadjoint operator and F and G be nontrivial subspaces
of H. Then a bound for the Hausdorff distance between the Ritz values of A, with respect to the
trial subspaces F and G , is given by the following inequality

dist
(
Σ

(
(PF A)|F

)
,Σ

(
(PG A)|G

))
�

(
max

{
Σ(A)

} − min
{
Σ(A)

})
gap(F , G).

Proof. If gap(F , G) = 1 then the assertion holds since the both spectra are subsets of
[min{Σ(A)},max{Σ(A)}]. Consequently we can assume without loss of generality that
gap(F , G) < 1. Then we have G = WF with W defined by (2.1). Operators (PG A)|G and
(W ∗(PG A)|G W)|F are unitarily equivalent, since W is an isometry on F , therefore, their spectra
are the same. Operators (PF A)|F and (W ∗(PG A)|G W)|F are selfadjoint on the space F and
using [19, Theorem 4.10, p. 291] we get

dist
(
Σ

(
(PF A)|F

)
,Σ

(
(PG A)|G

)) = dist
(
Σ

(
(PF A)|F

)
,Σ

((
W ∗(PG A)|G W

)|F ))
�

∥∥(
PF A − W ∗(PG A)|G W

)|F ∥∥. (5.2)

Then

∥∥(
PF A − W ∗(PG A)|G W

)|F ∥∥ = sup
‖f ‖=1, f ∈F

∣∣((PF A − W ∗(PG A)|G W
)
f,f

)∣∣
= sup

‖f ‖=1, f ∈F

∣∣(Af,f ) − (AWf,Wf )
∣∣.

We have |(f,Af ) − (Wf,AWf )| � (max{Σ(A)} − min{Σ(A)})√1 − |(f,Wf )|2, ∀f ∈ F ,
‖f ‖ = 1 by Lemma 5.1. We need to estimate |(f,Wf )| from below. From the polar decom-
position PG PF = W

√
PF PG PF , we derive the equalities

(f,Wf ) = (PG PF f,Wf ) = (
W ∗PG PF f,f

) = (
√

PF PG PF f,f ),

where we have
√

PF PG PF |F = √
(PF PG PF )|F = √

(PF PG )|F , since F is an invariant sub-
space of the operator PF PG PF . Thus, (f,Wf ) = (

√
(PF PG )|F f,f ) � min{cos(Θ̂(F , G))} by

Definition 2.4. Finally, by assumption, gap(F , G) < 1, thus Corollary 2.13 gives
min{cos2(Θ̂(F , G))} = 1 − gap2(F , G). �

Finally, we assume that F is A-invariant, which implies that the set of the values Σ((PF A)|F )

is a subset, namely Σ(A|F ), of the spectrum of A. The change in the Ritz values, bounded
in Theorem 5.2, can now be interpreted as a spectrum error in the Rayleigh–Ritz method.
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The result of Theorem 5.2 here is improved since the new bound involves the gap squared as
in [1,26].

Theorem 5.3. Under the assumptions of Theorem 5.2 let in addition F be an A-invariant sub-
space of H corresponding to the top (or bottom) part of the spectrum of A. Then

dist
(
Σ(A|F ),Σ

(
(PG A)|G

))
�

(
max

{
Σ(A)

} − min
{
Σ(A)

})
gap2(F , G).

Proof. As the subspace F is A-invariant and A is selfadjoint, the subspace F ⊥ is also
A-invariant, so A = PF APF + PF ⊥APF ⊥ and A = A|F + A|F ⊥ , corresponding to the de-
composition H = F ⊕ F ⊥, thus Σ(A) = Σ(A|F ) ∪ Σ(A|F ⊥). We assume that F corresponds
to the top part of the spectrum of A—the bottom part case can be treated by replacing A with
−A. Under this assumption, we have max{Σ(A|F ⊥)} � min{Σ(A|F )}.

Let us also notice that the inequality we want to prove is unaltered by replacing A with A−αI

where α is an arbitrary real constant. Later in the proof we need A|F to be nonnegative. We set
α = min{Σ(A|F )} and substitute A with A − αI , so now max{Σ(A|F ⊥)} � 0 = min{Σ(A|F )},
thus

‖A|F ‖ = max
{
Σ(A|F )

} = max
{
Σ(A)

}
, and

‖A|F ⊥‖ = −min
{
Σ(A|F ⊥)

} = −min
{
Σ(A)

}
.

The constant in the bound we are proving then takes the following form:

max
{
Σ(A)

} − min
{
Σ(A)

} = ‖A|F ‖ + ‖A|F ⊥‖. (5.3)

As in the proof of Theorem 5.2, if gap(F , G) = 1 then the assertion holds since the both
spectra are subsets of [min{Σ(A)},max{Σ(A)}]. Consequently we can assume without loss of
generality that gap(F , G) < 1. Then we have G = WF with W defined by (2.1). Operators
(W ∗(PG PF APF )|G W)|F and (PG PF APF )|G are unitarily equivalent, since W is an isometry
on F , thus their spectra are the same. Now, instead of (5.2), we use the triangle inequality for
the Hausdorff distance:

dist
(
Σ(A|F ), Σ

(
(PG A)|G

))
� dist

(
Σ

(
(A|F ),Σ

((
W ∗(PG PF APF )|G W

)|F ))
+ dist

(
Σ

(
(PG PF APF )|G

))
,Σ

(
(PG A)|G

))
. (5.4)

The operator
√

PF PG PF |F = √
(PF PG )|F is selfadjoint and its smallest point of the

spectrum is min{cos(Θ̂(F , G))} by Definition 2.4, which is positive by Theorem 2.12 with
gap(F , G) < 1. The operator

√
PF PG PF |F is invertible, so from the polar decomposition

PG PF = W
√

PF PG PF , which gives PF PG PF = PF PG W
√

PF PG PF , we obtain by applying
the inverse on the right that (PF PG W)|F = √

PF PG PF |F = (W ∗PG PF )|F . Thus,

(
W ∗(PG PF APF )|G W

)∣∣
F

= (
√

PF PG PF A
√

PF PG PF )|F
= √

PF PG PF |F
√

A|F
√

A|F
√

PF PG PF |F
where the operator A|F is already made nonnegative by applying the shift and the substitution.
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The spectrum of the product of two bounded operators, one of which is bijective, does not
depend on the order of the multipliers, since both products are similar to each other. One of our
operators,

√
PF PG PF |F , in the product is bijective, so

Σ
((

W ∗(PG PF APF )|G W
)∣∣

F

) = Σ
(√

A|F (PF PG )|F
√

A|F |F
)
.

Then the first term in the triangle inequality (5.4) for the Hausdorff distance is estimated using
[19, Theorem 4.10, p. 291]:

dist
(
Σ(A|F ),Σ

((
W ∗(PG PF APF )|G W

)∣∣
F

)) = dist
(
Σ(A|F ),Σ

(√
A|F (PF PG )|F

√
A|F

))
�

∥∥A|F − √
A|F (PF PG )|F

√
A|F

∥∥
= ∥∥√

A|F (PF − PF PG )|F
√

A|F
∥∥

� ‖A|F ‖∥∥(PF PG⊥)|F
∥∥ = ‖A|F ‖‖PF PG⊥‖2.

To estimate the second term in (5.4), we apply again [19, Theorem 4.10, p. 291]:

dist
(
Σ

(
(PG PF APF )|G

)
,Σ

(
(PG A)|G

))
�

∥∥(PG PF APF )|G − (PG A)|G
∥∥

= ∥∥(PG PF ⊥APF ⊥)|G
∥∥

= ∥∥PG PF ⊥A|F ⊥PF ⊥PG
∥∥ � ‖A|F ⊥‖‖PG PF ⊥‖2,

where A = PF APF + PF ⊥APF ⊥ . Plugging in bounds for both terms in (5.4) gives

dist
(
Σ(A|F ),Σ

(
(PG A)|G

))
� ‖A|F ‖‖PF PG⊥‖2 + ‖A|F ⊥‖‖PG PF ⊥‖2.

Assumption gap(F , G) < 1 implies that ‖PF PG⊥‖ = ‖PG PF ⊥‖ = gap(F , G), e.g., see
[19, Section I.8, Theorem 6.34] and, cf. Corollary 2.13. Thus we obtain

dist
(
Σ

(
(PF A)|F

)
,Σ

(
(PG A)|G

))
�

(‖A|F ‖ + ‖A|F ⊥‖)gap2(F , G).

Taking into account (5.3) completes the proof. �
We conjecture that our assumption on the invariant subspace representing a specific part of

the spectrum of A is irrelevant, i.e., the statement of Theorem 5.3 holds without it as well, cf.
Argentati et al. [1], Knyazev and Argentati [26].

6. The ultimate acceleration of the alternating projectors method

Every selfadjoint nonnegative non-expansion A, 0 � A � I in a Hilbert space H can be
extended to an orthogonal projector in the space H × H, e.g., [14,31], and, thus, can be im-
plicitly written as (strictly speaking is unitarily equivalent to) a product of two orthogonal
projectors PF PG restricted to a subspace F ⊂ H × H. Any iterative method that involves as
a main step a multiplication of a vector by A can thus be called “an alternating projectors”
method.
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In the classical alternating projectors method, it is assumed that the projectors are given ex-
plicitly and that the iterating procedure is trivially

e(i+1) = PF PG e(i), e(0) ∈ F . (6.1)

If ‖(PF PG )|F ‖ < 1 then the sequence of vectors e(i) evidently converges to zero. Such a situa-
tion is typical when e(i) represents an error of an iterative method, e.g., in a multiplicative DDM,
and formula (6.1) describes the error propagation as in our DDM example below.

If the subspace M00 = F ∩ G is nontrivial and ‖(PF PG )|F 	M00‖ < 1 then the sequence
of vectors e(i) converges to the orthogonal projection e of e(0) onto M00. The latter is called a
von Neumann–Halperin [34,15] method in [2] of alternating projectors for determining the best
approximation to e(0) in M00. We note that, despite the non-symmetric appearance of the error
propagation operator PF PG in (6.1), it can be equivalently replaced with the selfadjoint operator
(PF PG )|F since e(0) ∈ F and thus all e(i) ∈ F .

Several attempts to estimate and accelerate the convergence of iterations (6.1) are made, e.g.,
[9,2,39]. Here, we use a different approach, cf., e.g., [38,4], to suggest the ultimate acceleration
of the alternating projectors method. First, we notice that the limit vector e ∈ M00 is a nontrivial
solution of the following homogeneous equation

(I − PF PG )|F e = 0, e ∈ F . (6.2)

Second, we observe that the linear operator is selfadjoint and nonnegative in the equation above,
therefore, a conjugate gradient (CG) method can be used to calculate approximations to the solu-
tion e in the null-space. The standard CG algorithm for linear systems Ax = b can be formulated
as follows, see, e.g., [17]:

Initialization: set γ = 1 and compute the initial residual r = b − Ax;
Loop until convergence:

γold = γ , γ = (r, r);
on the first iteration: p = r ; otherwise:

β = γ /γold (standard) or β = (r − rold, r)/(rold, rold)

(the latter is recommended if an approximate application of A is used)
p = r + βp, r = Ap, α = γ /(r,p), x = x + αp, r = r − αr .

End loop

It can be applied directly to the homogeneous equation Ae = 0 with A = A∗ � 0 by set-
ting b = 0. We need A = (I − PF PG )|F for Eq. (6.2). Finally, we note that CG acceleration
can evidently be applied to the symmetrized alternating projectors method with more than two
projectors.

The traditional theory of the CG method for non-homogeneous equations extends trivially to
the computation of the null-space of a selfadjoint nonnegative operator A and gives the following
convergence rate estimate:

(
e(k),Ae(k)

)
� min

degpk=k,pk(0)=1
sup

∣∣pk(λ)
∣∣2(

e(0),Ae(0)
)
. (6.3)
λ∈Σ(A)\{0}
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For Eq. (6.2), A = (I − PF PG )|F and thus (e(k),Ae(k)) = ‖PG⊥e(k)‖2 and by Definition 2.4 we
have Σ(A) = 1 − cos2 Θ̂(F , G). Estimate (6.3) shows convergence if and only if zero is an iso-
lated point of the spectrum of A, or, in terms of the angles, if and only if zero is an isolated point,
or not present, in the set of angles Θ̂(F , G), which is the same as the condition for convergence
of the original alternating projectors method (6.1), stated above.

Method (6.1) can be equivalently reformulated as a simple Richardson iteration

e(k) = (I − A)ke(0), e(0) ∈ F , where A = (I − PF PG )|F ,

and thus falls into the same class of polynomial methods as does the CG method. It is well
known that the CG method provides the smallest value of the energy (semi-) norm of the error,
in our case of ‖PG⊥e(k)‖, where e(k) ∈ F , which gives us an opportunity to call it the “ultimate
acceleration” of the alternating projectors method.

A possible alternative to Eq. (6.2) is

(PF ⊥ + PG⊥)e = 0, (6.4)

so we can take A = PF ⊥ + PG⊥ in the CG method for Eq. (6.4) and then Σ(A) is given by
Theorem 2.18. Eq. (6.4) appears in the so-called additive DDM method, e.g., [32]. A discussion
of (6.4) can be found in [18, Section 7.1, p. 127].

Estimate (6.3) guarantees the finite convergence of the CG method if the spectrum of A con-
sists of a finite number of points. At the same time, the convergence of the Richardson method
can be slow in such a case, so that the CG acceleration is particularly noticeable. In the remain-
der of the section, we present a simple domain decomposition example for the one dimensional
diffusion equation.

We consider the equation
∫ 1

0 u′v′ dx = ∫ 1
0 f v′ dx, ∀v ∈ H 1

0 ([0,1]) with the solution u ∈
H 1

0 ([0,1]), where H 1
0 ([0,1]) is the usual Sobolev space of real-valued functions with the

Lebesgue integrable squares of the first generalized derivatives and with zero values at the end
points of the interval [0,1]. We use the bilinear form

∫ 1
0 u′v′ dx as a scalar product on H 1

0 ([0,1]).
We consider DDM with an overlap, i.e., we split [0,1] = [0, α] ∪ [β,1], with 0 < β < α < 1

so that [β,α] is an overlap. We directly define orthogonal complements:

F ⊥ = {
u ∈ H 1

0

([0,1]): u(x) = 0, x ∈ [α,1]} and

G⊥ = {
v ∈ H 1

0

([0,1]): v(x) = 0, x ∈ [0, β]}

of subspaces F ⊂ H 1
0 ([0,1]) and G ⊂ H 1

0 ([0,1]). Evidently, H = F ⊥ + G⊥, where the sum is
not direct due to the overlap.

It can be checked easily that the subspace F consists of functions, which are linear on the
interval [0, α] and the subspace G consists of functions, which are linear on the interval [β,1].
Because of the overlap [β,α], the intersection M00 = F ∩ G is trivial and the only solution
of (6.2) and (6.4) is e = 0.

We now completely characterize all angles between F and G . Let f ∈ F be linear on in-
tervals [0, α] and [α,1]. Similarly, let g ∈ G be linear on intervals [0, β] and [β,1]. It is easy
to see, cf. [18, Section 7.2], that all functions in the subspace F 	 span{f } vanish outside
of the interval [α,1], while all functions in the subspace G 	 span{g} vanish outside of the
interval [0, β]. Therefore, the subspaces F 	 span{f } and G 	 span{g} are orthogonal, since
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β < α. We summarize these results in terms of the angles: Θ̂(F , G) = Θ(F , G) = Θp(F , G) =
θ(f, g) ∪ π/2, where cos2 θ(f, g) = (β(1 − α))/(α(1 − β)) (the latter equality can be derived
by elementary calculations, see [18, Theorem 7.2, p. 131]); span{f } and span{g} is one pair of
principal subspaces and F 	 span{f } and G 	 span{g} is the other, corresponding to the an-
gle π/2.

In multiplicative Schwarz DDM with an overlap for two subdomains, the error propagation of
a simple iteration is given by (6.1) and the convergence rate is determined by the quantity

∥∥(PF PG )|F
∥∥ = cos2 θ(f, g) = (

β(1 − α)
)/(

α(1 − β)
)
< 1,

which approaches one when the overlap α − β becomes small. At the same time, however, the
CG method described, e.g., in [4,38], converges at most in two iterations, since the spectrum of A

in (6.2) consists of only two eigenvalues, 1 − cos2 θ(f, g) = sin2 θ(f, g) and 1.
In the additive DDM the error is determined by (6.4) and the spectrum of A, the sum of two

orthoprojectors, by analogy with Theorem 2.18 consists of four eigenvalues,

1 − cos θ(f, g) = 2 sin2(θ(f, g)/2
)
, 1, 1 + cos θ(f, g) = 2 cos2(θ(f, g)/2

)
, and 2,

therefore the CG method converges at most in four iterations. Similar results for a finite difference
discretization of the 1D diffusion equation can be found in [12].
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