108 research outputs found

    Registered report: IDH mutation impairs histone demethylation and results in a block to cell differentiation

    Get PDF
    The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered Report describes the proposed replication plan of key experiments from “IDH mutation impairs histone demethylation and results in a block to cell differentiation” by Lu and colleagues, published in Nature in 2012 (Lu et al., 2012). The experiments that will be replicated are those reported in Figures 1B, 2A, 2B, 2D and 4D. Lu and colleagues demonstrated that expression of mutant forms of IDH1 or IDH2 caused global increases in histone methylation and increased levels of 2 hydroxyglutarate (Figure 1B). This was correlated with a block in differentiation (Figures 2A, B and D). This effect appeared to be mediated by the histone demethylase KDM4C (Figure 4D). The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Scienceand Science Exchange, and the results of the replications will be published by eLife. DOI: http://dx.doi.org/10.7554/eLife.10860.00

    PPT-DB: the protein property prediction and testing database

    Get PDF
    The protein property prediction and testing database (PPT-DB) is a database housing nearly 30 carefully curated databases, each of which contains commonly predicted protein property information. These properties include both structural (i.e. secondary structure, contact order, disulfide pairing) and dynamic (i.e. order parameters, B-factors, folding rates) features that have been measured, derived or tabulated from a variety of sources. PPT-DB is designed to serve two purposes. First it is intended to serve as a centralized, up-to-date, freely downloadable and easily queried repository of predictable or ‘derived’ protein property data. In this role, PPT-DB can serve as a one-stop, fully standardized repository for developers to obtain the required training, testing and validation data needed for almost any kind of protein property prediction program they may wish to create. The second role that PPT-DB can play is as a tool for homology-based protein property prediction. Users may query PPT-DB with a sequence of interest and have a specific property predicted using a sequence similarity search against PPT-DB's extensive collection of proteins with known properties. PPT-DB exploits the well-known fact that protein structure and dynamic properties are highly conserved between homologous proteins. Predictions derived from PPT-DB's similarity searches are typically 85–95% correct (for categorical predictions, such as secondary structure) or exhibit correlations of >0.80 (for numeric predictions, such as accessible surface area). This performance is 10–20% better than what is typically obtained from standard ‘ab initio’ predictions. PPT-DB, its prediction utilities and all of its contents are available at http://www.pptdb.c

    PROTEUS2: a web server for comprehensive protein structure prediction and structure-based annotation

    Get PDF
    PROTEUS2 is a web server designed to support comprehensive protein structure prediction and structure-based annotation. PROTEUS2 accepts either single sequences (for directed studies) or multiple sequences (for whole proteome annotation) and predicts the secondary and, if possible, tertiary structure of the query protein(s). Unlike most other tools or servers, PROTEUS2 bundles signal peptide identification, transmembrane helix prediction, transmembrane β-strand prediction, secondary structure prediction (for soluble proteins) and homology modeling (i.e. 3D structure generation) into a single prediction pipeline. Using a combination of progressive multi-sequence alignment, structure-based mapping, hidden Markov models, multi-component neural nets and up-to-date databases of known secondary structure assignments, PROTEUS is able to achieve among the highest reported levels of predictive accuracy for signal peptides (Q2 = 94%), membrane spanning helices (Q2 = 87%) and secondary structure (Q3 score of 81.3%). PROTEUS2's homology modeling services also provide high quality 3D models that compare favorably with those generated by SWISS-MODEL and 3D JigSaw (within 0.2 Å RMSD). The average PROTEUS2 prediction takes ∼3 min per query sequence. The PROTEUS2 server along with source code for many of its modules is accessible a http://wishart.biology.ualberta.ca/proteus2

    svmPRAT: SVM-based Protein Residue Annotation Toolkit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the last decade several prediction methods have been developed for determining the structural and functional properties of individual protein residues using sequence and sequence-derived information. Most of these methods are based on support vector machines as they provide accurate and generalizable prediction models.</p> <p>Results</p> <p>We present a general purpose protein residue annotation toolkit (<it>svm</it><monospace>PRAT</monospace>) to allow biologists to formulate residue-wise prediction problems. <it>svm</it><monospace>PRAT</monospace> formulates the annotation problem as a classification or regression problem using support vector machines. One of the key features of <it>svm</it><monospace>PRAT</monospace> is its ease of use in incorporating any user-provided information in the form of feature matrices. For every residue <it>svm</it><monospace>PRAT</monospace> captures local information around the reside to create fixed length feature vectors. <it>svm</it><monospace>PRAT</monospace> implements accurate and fast kernel functions, and also introduces a flexible window-based encoding scheme that accurately captures signals and pattern for training effective predictive models.</p> <p>Conclusions</p> <p>In this work we evaluate <it>svm</it><monospace>PRAT</monospace> on several classification and regression problems including disorder prediction, residue-wise contact order estimation, DNA-binding site prediction, and local structure alphabet prediction. <it>svm</it><monospace>PRAT</monospace> has also been used for the development of state-of-the-art transmembrane helix prediction method called TOPTMH, and secondary structure prediction method called YASSPP. This toolkit developed provides practitioners an efficient and easy-to-use tool for a wide variety of annotation problems.</p> <p><it>Availability</it>: <url>http://www.cs.gmu.edu/~mlbio/svmprat</url></p

    Improved Bevirimat resistance prediction by combination of structural and sequence-based classifiers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maturation inhibitors such as Bevirimat are a new class of antiretroviral drugs that hamper the cleavage of HIV-1 proteins into their functional active forms. They bind to these preproteins and inhibit their cleavage by the HIV-1 protease, resulting in non-functional virus particles. Nevertheless, there exist mutations in this region leading to resistance against Bevirimat. Highly specific and accurate tools to predict resistance to maturation inhibitors can help to identify patients, who might benefit from the usage of these new drugs.</p> <p>Results</p> <p>We tested several methods to improve Bevirimat resistance prediction in HIV-1. It turned out that combining structural and sequence-based information in classifier ensembles led to accurate and reliable predictions. Moreover, we were able to identify the most crucial regions for Bevirimat resistance computationally, which are in line with experimental results from other studies.</p> <p>Conclusions</p> <p>Our analysis demonstrated the use of machine learning techniques to predict HIV-1 resistance against maturation inhibitors such as Bevirimat. New maturation inhibitors are already under development and might enlarge the arsenal of antiretroviral drugs in the future. Thus, accurate prediction tools are very useful to enable a personalized therapy.</p

    Machine learning on normalized protein sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Machine learning techniques have been widely applied to biological sequences, e.g. to predict drug resistance in HIV-1 from sequences of drug target proteins and protein functional classes. As deletions and insertions are frequent in biological sequences, a major limitation of current methods is the inability to handle varying sequence lengths.</p> <p>Findings</p> <p>We propose to normalize sequences to uniform length. To this end, we tested one linear and four different non-linear interpolation methods for the normalization of sequence lengths of 19 classification datasets. Classification tasks included prediction of HIV-1 drug resistance from drug target sequences and sequence-based prediction of protein function. We applied random forests to the classification of sequences into "positive" and "negative" samples. Statistical tests showed that the linear interpolation outperforms the non-linear interpolation methods in most of the analyzed datasets, while in a few cases non-linear methods had a small but significant advantage. Compared to other published methods, our prediction scheme leads to an improvement in prediction accuracy by up to 14%.</p> <p>Conclusions</p> <p>We found that machine learning on sequences normalized by simple linear interpolation gave better or at least competitive results compared to state-of-the-art procedures, and thus, is a promising alternative to existing methods, especially for protein sequences of variable length.</p

    Predicting Bevirimat resistance of HIV-1 from genotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maturation inhibitors are a new class of antiretroviral drugs. Bevirimat (BVM) was the first substance in this class of inhibitors entering clinical trials. While the inhibitory function of BVM is well established, the molecular mechanisms of action and resistance are not well understood. It is known that mutations in the regions CS p24/p2 and p2 can cause phenotypic resistance to BVM. We have investigated a set of p24/p2 sequences of HIV-1 of known phenotypic resistance to BVM to test whether BVM resistance can be predicted from sequence, and to identify possible molecular mechanisms of BVM resistance in HIV-1.</p> <p>Results</p> <p>We used artificial neural networks and random forests with different descriptors for the prediction of BVM resistance. Random forests with hydrophobicity as descriptor performed best and classified the sequences with an area under the Receiver Operating Characteristics (ROC) curve of 0.93 ± 0.001. For the collected data we find that p2 sequence positions 369 to 376 have the highest impact on resistance, with positions 370 and 372 being particularly important. These findings are in partial agreement with other recent studies. Apart from the complex machine learning models we derived a number of simple rules that predict BVM resistance from sequence with surprising accuracy. According to computational predictions based on the data set used, cleavage sites are usually not shifted by resistance mutations. However, we found that resistance mutations could shorten and weaken the <it>α</it>-helix in p2, which hints at a possible resistance mechanism.</p> <p>Conclusions</p> <p>We found that BVM resistance of HIV-1 can be predicted well from the sequence of the p2 peptide, which may prove useful for personalized therapy if maturation inhibitors reach clinical practice. Results of secondary structure analysis are compatible with a possible route to BVM resistance in which mutations weaken a six-helix bundle discovered in recent experiments, and thus ease Gag cleavage by the retroviral protease.</p
    corecore