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Abstract

We present an algorithm for generating Poisson-disk
patterns takingO(N) time to generateN points. The
method is based on a grid of regions which can con-
tain no more than one point in the final pattern, and
uses an explicit model of point arrival times under a
uniform Poisson process.

1 Introduction

There is a long-standing interest in Poisson-disk
patterns in the graphics community, primarily for
their use in sampling [Yel83, Coo86, Mit87]. There
have been many algorithms for generating such pat-
terns. Direct implementation of “dart-throwing”
[Mit87, MF92] produces true Poisson-disk patterns,
but is slow to converge. Approximations from re-
laxation [Llo83] or tiling [ODJ04, HDK01] can pro-
duce patterns similar to Poisson-disk patterns more
efficiently. Recently, exact methods taking log-linear
time (O(N logN) where N is the total number of
points) have been described [DH06, Jon06], as well
as a method with empirical O(N) speed, but lacking
a rigorous proof of this performance[WCE07].

We present an algorithm with provable O(N) per-
formance. The algorithm maintains two data struc-
tures: a grid of regions in which points might still
be inserted, and a bucket (i.e., an unordered set) of
regions where a point will be generated (a subset of
the grid). At each step of the algorithm, a region
is taken from the bucket, a new point is inserted in
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that region, and nearby regions are updated and pos-
sibly added to the bucket. The bucket is only empty
when no more points can be added (i.e., the pattern
is maximal). The work for each iteration is O(1), for
a total cost of O(N).

Python source code is included in the ancillary data
with this paper.

2 Background

The Poisson Disk distribution can be defined as the
limit of a uniform two-dimensional Poisson process
with a minimum-distance rejection criterion. Succes-
sive points are independently drawn from the uniform
distribution on [0, 1]2. If a new point is at least dis-
tance R from all points already accepted, it is also
accepted. Otherwise, it is rejected. We call this the
näıve algorithm. The choice of R controls the min-
imum distance between points (for N points in the
unit square, πR2N/4 ≈ 0.548 as R→ 0 [DWJ91]).

Efficient algorithms for Poisson-disk patterns rely
on generating new points in regions where they
are guaranteed (or highly probable) to be accepted
[DH06, Jon06, WCE07]. In order to guarantee equiv-
alence of results with the näıve algorithm, these
methods have used O(logN) area-weighted binary
search to find where to insert a new point [DH06,
Jon06], or weighted spatial indexing [WCE07] with
theoretical O(logN) but empirical O(1) cost.

3 Method

Our algorithm can be seen as an optimization of the
näıve algorithm using a spatial data structure. We
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Figure 1: A point p is shown with its neighbor grid
squares in grey. If p’s arrival time is earlier than any
of its neighbors, it will be accepted and added to the
output. The free regions of p’s neighbors will then
be updated to the dark gray areas. This may result
in points such as q being invalidated. In q’s case, a
replacement point q′ will be generated in its new free
region, Aq′ . The time of arrival of q′ will be tq + t+,
where t+ is drawn from an exponential distribution
parameterized by the size of the updated free region.

store a grid with spacing ≤ R/
√

2 such that no more
than one point can land in any grid square in the final
pattern. We model (implicitly) a uniform 2D Poisson
process on [0, 1]2, with rate λ = 1, by storing at each
grid square the location and time of the earliest point
landing in that square. These points and their arrival
times will be updated as the algorithm progresses.

Each grid square has three associated pieces of
data: the free region within that square where new
points might be generated, a random point within
that free region, and a time-of-arrival for that point
under a the Poisson process. Initially, the free region
for each grid square is the entire square, each point

is chosen uniformly within its square, and the times
of arrival are drawn from A0e

−A0t, where A0 is the
area of a grid square.

We also define a neighbor relationship from points
to grid squares, where the neighbors of a point are
any grid squares within R of the point (see figure 1).

The first insight of our paper is that any point p
that has time-of-arrival tp lower than any of its neigh-
bors can be added to the output immediately, as this
indicates that p arrives before any other point that
could prevent it from being accepted. On acceptance,
the free regions of p’s neighbors are updated (see fig-
ure 1).

It is possible that accepting p will invalidate a point
q from another grid square with ||p − q||2 < R and
tq > tp, in which case q is removed from the grid and
a new point q′ in the updated free region is created
with a new and later tq′ (see figure 1).

The second key insight of our algorithm is that the
new tq′ should be tq plus a random variable drawn
from the exponential distribution parameterized by
the area of the updated free region Aq′ , i.e., tq′ =
tq + t+, where t+ is drawn from Aq′e

−Aq′ t+ .
The logic is as follows. The points p and q represent

the first arrivals in their respective grid squares, at
times tp and tq (in the näıve algorithm). When q is
invalidated by p, the time until another point arrives
(in the now smaller free region) is modeled by an
exponential process with parameter Aq′ .

To track which points are candidates for accep-
tance, we traverse the grid and identify every point
that has a time of arrival earlier than any of its neigh-
bors (ignoring neighbors that have already had their
points accepted). We term these points locally early,
and add them to a bucket (an unordered set). At each
iteration, we can take any point from the bucket, and
add it to the output pattern.

Accepting p may lead to new points becoming lo-
cally early, which are then added to the bucket. Like-
wise, if a point q is invalidated by p’s acceptance,
points with q’s grid square in their neighbors may
become locally early, as q’s replacement q′ will have
tq′ > tq.

Each iteration is O(1) provided we can update,
compute the area of, and sample uniformly from the
free space of a grid square in O(1) time. Previous
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Figure 2: Performance (PD samples per second) over
a range of exclusion radii (0.64 to 0.004 in a geo-
metric progression with ratio 0.8) within the unit
square. The number of samples generated by the
Poisson arrival process versus the number accepted
Poisson Disk samples is also shown.

work has demonstrated specialized data structures
[DH06] for exactly these purposes. In our reference
implementation, we use a constructive planar geom-
etry library and approximate disks with polygons for
simplicity but without a loss of generality. We show
the performance of our algorithm in terms of samples
per second, as well as number of samples generated by
the uniform Poisson arrival process versus accepted
Poisson Disk samples (see figure 2). Since the size of
grid squares is determined by the radius of the PD
samples, the geometric complexity of the free space
is O(1).

4 Discussion

We have introduced an algorithm for generating
Poisson-disk patterns in provable O(1) time per gen-
erated sample. Our main insight, compared to re-
cent O(logN) per point algorithms, is that rather
than choosing the location for the next point based
on area-weighted binary search, we can use an
area-parameterized exponential distribution to order

points in time under a uniform Poisson arrival pro-
cess. While previous algorithms generate each point
in sequence, with an implicit time linked to their se-
quential generation, we create many points with ex-
plicit arrival times and order them (in a local fashion)
to find those that should be accepted.
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