104 research outputs found

    Scintillation effects in the magnetized plasma

    Get PDF
    Statistical characteristics of scattered electromagnetic waves in the turbulent magnetized plasma caused by electron density fluctuations are calculated using complex geometrical optics approximation taking into account both diffraction effects and polarization coefficients. Scintillation level normalized on the variance of the phase fluctuations is analyzed analytically and numerically for small-scale plasma irregularities using the experimental data. New properties of the electromagnetic wave scintillations have been revealed. It is shown that splashes arise in the ionosphere leading to the turbulence and generation of new oscillations (waves and/or Pc pulsations) propagating in space and the terrestrial atmosphere. Turbulence extending in the lower atmospheric layers can influence on the meteorological parameters leading to climate change.Web of Science8116515

    On the theory of the passive impurity distribution in the turbulent air flow

    Get PDF
    The statistical model of passive impurity transfer in surface boundary layers of the turbulent atmosphere in the presence of wind is offered. Analytical expressions of the normalized concentration of impurity for arbitrary correlation tensor of the second rank of velocity pulsation when the emission source is located at a certain height over the Earth's surface are obtained. The effective coefficient of turbulent diffusion contains coefficient of molecular diffusion, longitudinal and transverse turbulent diffusion coefficients. Numerical calculations were carried out using experimental data of ground(-based) observations. The isolines describing distribution of the passive impurities at calm case are depicted at different values of a wind speed and at certain distances from a source. Dynamics of globules formation with various concentration of impurity transferred by wind is constructed. They have specific characteristic spatial scales and lifetimes. &nbsp

    On the wave excitation in the turbulent meteor trace

    Get PDF
    The solution to the problem of excitation of longitudinal and transverse electromagnetic waves in randomly inhomogeneous media is reduced to the derivation of a complex effective dielectric constant (EDC) tensor which nonlocally connects together the average macroscopic electromagnetic fields in continuous media, it is implied that the field values which are rapidly fluctuating on a microscopic scale in space and time become smoothed out in a specified way due to the inhomogeneous mixing of diffusion. Proceedings from the derived general expression for the EDC tensor new modes of longitudinal and transverse electromagnetic wave generation due to fluctuation in the parameters of the medium was predicted. In this connection, it is of interest to investigate the peculiarities of electromagnetic longitudinal and transverse wave propagation in such randomly inhomogeneous media where, apart from the charged particle concentration change, the random spatial and temporal changes of natural frequency of closely located oscillators take place

    Coupled-mode analysis of contra-directional coupling between two asymmetric photonic crystal waveguides

    Get PDF
    A self-contained coupled-mode theory for the coupled two asymmetric photonic crystal waveguides (PCWs) is presented. The first-order coupled-mode equations are derived under a weak coupling assumption. The coupling coefficients are obtained systematically by a matrix calculus using the modal solutions of each PCW in isolation. The coupled-mode equations are solved for contra-directional coupling between two asymmetric PCWs formed by a hexagonal lattice of circular air holes in a dielectric medium. The power transmission spectra at different output ports of the coupled PCWs are investigated. It is shown that the self-contained coupled-mode analysis is useful to characterize a peculiar feature of the contra-directionally coupled PCWs as a drop filter.Web of Science31352351

    Power Spectrum in the Conductive Terrestrial Ionosphere

    Get PDF
    Stochastic differential equation of the phase fluctuations is derived for the collision conductive magnetized plasma in the polar ionosphere applying the complex geometrical optics approximation. Calculating second order statistical moments it was shown that the contribution of the longitudinal conductivity substantially exceeds both Pedersen and Hall’s conductivities. Experimentally observing the broadening of the spatial power spectrum of scattered electromagnetic waves which equivalent to the brightness is analyzed for the elongated ionospheric irregularities. It was shown that the broadening of the spectrum and shift of its maximum in the plane of the location of an external magnetic field (main plane) less than in perpendicular plane for plasmonic structures having linear scale tenth of kilometer; and substantially depends on the penetration angle of an incident wave in the conductive collision turbulent magnetized ionospheric plasma. The angle-of-arrival (AOA) in the main plane has the asymmetric Gaussian form while in the perpendicular plane increases at small anisotropy factors and then tends to the saturation for the power-low spectrum characterizing electron density fluctuations. Longitudinal conductivity fluctuations increase the AOAs of scattered radiation than in magnetized plasma with permittivity fluctuations. Broadening of the temporal spectrum containing the drift velocity of elongated ionospheric irregularities in the polar ionosphere allows to solve the reverse problem restoring experimentally measured velocity of the plasma streams and characteristic linear scales of anisotropic irregularities in the terrestrial ionosphere

    Development and investigation of the technological process of plasma carbothermal reduction of slag from secondary metallurgy of aluminum

    Get PDF
    Based on a critical analysis of the current state and prospects of development of the problem of pyrometallurgical recovery/extraction of aluminum from aluminum-bearing industrial waste, the need to replace traditional, electrocarbonothermic processes and melting process units with innovative, plasma carbothermal processes and furnace-reactors, with the possibility of reverse feeding and recovery of gasified during melting metal and metal oxide components is substantiated. On the basis of this analysis a new technological scheme of smelting with a new design of plasma-arc furnace-reactor, which provides a solution to the problem using a special hollow double-shell graphite cathode connected to the system of circulating supply of gases separated from the reaction zone, was developed and presented. The proposed technological scheme also differs in the use of such highly active liquid and gaseous reagents as carbon-containing reducing agents as calcium carbide (CaC2) and methane (CH4). The main features of chemism of reducing processes are described. It is shown that by replacing traditional coke with anodized calcium carbide and natural gas (methane) the recovery rate of aluminum oxide (Al 29-34%) and silica (SiO2) and hematite (Fe2O3) present with it increases to 80-99%. Specific power consumption is reduced by 35-40%, the 90-95% reduction in the loss of target elements, the 80% reduction in the emission of greenhouse carbon dioxide, which is replaced by a very valuable recyclable synthesis gas - CO-H2. By additionally feeding separate portions of quartzite and steel-rolling scale in the furnace-reactor, a complex alloy-ligature of Fe-Si-Al-Ca system is melted, with the ratio of components: 1:[1.3-2]:[1.3-1.2]:[0.9-1.25]. With the introduction into industrial practice of the plasma carbothermal process of aluminum reduction from secondary aluminum dumping slags accumulated in the world (4 million tons/year), it will be possible to return up to 1-1.5 million tons/year of aluminum to the production processing cycle

    SCINTILLATION EFFECTS AND THE SPATIAL POWER SPECTRUM OF SCATTERED RADIO WAVES IN THE IONOSPHERIC F REGION

    Get PDF
    Differential equation for two-dimensional spectral function of the phase fluctuation is derived using the modify smooth perturbation method. Second order statistical moments of the phase fluctuations are calculated taking into account polarization coefficients of both ordinary and extraordinary waves in the turbulent collision magnetized plasma and the diffraction effects. Analytical and numerical investigations in the ionospheric F region are based on the anisotropic Gaussian and power law spectral functions of electron density fluctuations including both the field-aligned anisotropy and field-perpendicular anisotropy of the plasma irregularities. Scintillation effects in this region are investigated for the small-scale ionospheric irregularities. The large-scale background plasma structures are responsible for the double-humped shape in the spatial power spectrum taking into account diffraction effects. Numerical calculations are based on the experimental data of the navigation satellites

    THREE-DIMENSIONAL MAGNETOGRADIENT WAVES IN THE UPPER ATMOSPHERE

    Get PDF
    General dispersion equation has been obtained for three-dimensional electromagnetic planetary waves, from which follows, as particular case Khantadze results in one-dimension case. It was shown that partial magnetic field line freezing-in as in one-dimension case lead to the excitation of both fast and slow planetary waves, in two-liquid approximation (i.e. at ion drag by neutral particles) they are represent oscillations of magnetized electrons and partially magnetized ions in E region of the ionosphere. In F region of the ionosphere using one-liquid approximation only fast planetary wave will be generated representing oscillation of medium as a whole. Hence, it was shown that three-dimension magnetogradient planetary waves are exist in all components of the ionosphere, and as exact solutions, with well-known slow short-wave MHD waves, are simple mathematical consequence of the MHD equations for the ionosphere
    corecore