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Abstract

When ties and incomplete preference lists are permitted in the Stable Marriage
and Hospitals/Residents problems, stable matchings can have different sizes. The
problem of finding a maximum cardinality stable matching in this context is known to
be NP-hard, even under very severe restrictions on the number, size and position of
ties. In this paper, we present two new heuristics for finding large stable matchings in
variants of these problems in which ties are on one side only. We describe an empirical
study involving these heuristics and the best existing approximation algorithm for this
problem. Our results indicate that all three of these algorithms perform significantly
better than naive tie-breaking algorithms when applied to real-world and randomly-
generated data sets, and that one of the new heuristics fares slightly better than the
other algorithms in most cases. This study, and these particular problem variants, are
motivated by important applications in large scale centralized matching schemes.

1 Introduction

Many large-scale centralized matching schemes that allocate applicants to institutions
employ variants of the classical Gale-Shapley algorithm [7] to form stable matchings,
taking into account preferences expressed by all participants. Possibly the best known such
scheme is the National Resident Matching Program (NRMP) in the US [26], which has
operated continuously since 1952, and currently matches annually some thirty thousand
medical graduates (or residents) to their first hospital posts. Other similar schemes exist
for medical graduates in, amongst other places, Canada [25] and Scotland [27], and in a
variety of other contexts and countries. Among those that are documented in the literature
are school placement in Boston [2, 24] and New York [1], university faculty recruitment
in France [3] and university admission in Spain [22] and Hungary [4]. Anecdotal evidence
suggests that there are many other such schemes world-wide. It has been convincingly
argued and demonstrated, for example in [23], that stability is the key property that
contributes to the success and durability of a centralized matching scheme, and therefore
that algorithms that produce stable matchings are crucial in such schemes.

Ties in the preference lists

In practice, because the Gale-Shapley algorithm assumes strict preferences, almost all
such matching schemes either require all participants to rank their choices in strict order
of preference, or use some form of randomisation to break any ties in the preference
lists. This may result in arbitrary decisions, either on the part of participants or scheme
administrators, who produce a strictly ordered list by discriminating unnecessarily or
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artificially between applicants. It is not difficult to envisage the magnitude of the task faced
by a popular hospital in producing a genuine strictly ordered preference list containing
possibly hundreds of applicants. Moreover, in some schemes, applicants are ranked on a
relatively coarse-grained scale, and this inevitably produces ties in individual preference
lists, which then have to be broken in some more or less arbitrary way.

Formal problem description

At the heart of the centralized matching schemes described above are efficient algorithms
that essentially solve the Hospitals-Residents problem (HR) or the College Admissions
problem; we adopt the former terminology in view of the pre-eminence of applications in
the medical sphere, and of our own involvement in such a real-world matching scheme.
The well-known Stable Marriage problem [7] is a special case of HR. In view of practical
applications where ties may arise in preference lists, as detailed above, we will define
formally a generalisation of HR called the Hospitals / Residents problem with Ties (HRT).

An instance of HRT comprises a set of n residents r1,...,7, and a set of m hospitals
hi, ..., hm, each hospital h; having a capacity ¢; € Z*, indicating its number of available
posts. Each resident has a preference list consisting of a subset of the hospitals, his or
her acceptable assignments, listed in order of preference. In an arbitrary HRT instance,
a resident’s preference list may contain one or more ties, each consisting of two or more
hospitals of equal preference. However our main focus in this paper will be on the case in
which residents’ preferences are strict, since, in practice, these preference lists are typically
short, and individuals can generally discriminate among their preferred career options.
Each hospital has a preference list containing their applicants, namely those residents who
have ranked that hospital, but with ties permitted. If hospital h; precedes hospital hj on
resident r;’s list then r; is said to prefer h; to hy, and similarly for residents on a hospital’s
list.

A matching in I is a set M of resident-hospital pairs (r;, h;), where h; is an acceptable
assignment for r;, with each resident appearing in at most one pair of M and each hospital
in a number of pairs that is bounded by its capacity. If M is a matching and (r;, h;) € M
we write M (r;) = hj, and we say that r; is matched in M to h;. Also for any hospital h; we
let M(hj;) = {ri: (ri,h;) € M} (so that M(h;) is a set). A pair (r;, hj) is a blocking pair
for M, or blocks M, if h; is an acceptable assignment for r;, r; is either unmatched in M
or prefers h; to M(r;), and simultaneously either h; is undersubscribed, i.e., |M(h;)| < ¢;,
or prefers r; to at least one member of M (h;). A matching for which there is no blocking
pair is said to be stable. (This notion of stability is also referred to as weak stability in
contexts where other kinds of stability are discussed [12].)

The restriction of HRT in which each hospital has a capacity of 1 is known as the
Stable Marriage problem with Ties and Incomplete lists (SMTI); in this setting residents
and hospitals may be equated with men and women, and matchings are one-to-one. SMTI
is an extension of the classical Stable Marriage problem (SM) introduced by Gale and
Shapley [7], in which all preference lists are complete and strict. Gale and Shapley proved
that, for every instance of SM, there is at least one stable matching, and they described an
O(n?) time algorithm to find such a matching, where n is the number of men/women; this
has come to be known as the Gale-Shapley algorithm. This algorithm is easily extended
to the case of incomplete lists and to the Hospitals-Residents problem (without ties), and
it can be implemented to run in O(a) time in this case, where a is the sum of the lengths
of all of the preference lists — see [9] for details.



Why not employ random tie-breaking?

As mentioned above, in the context of centralized matching schemes where preference lists
involve ties, some element of tie-breaking is necessary in order that the Gale-Shapley algo-
rithm can be employed. Arbitrary or random tie-breaking does not, on the surface, seem
controversial, and a genuinely random tie-breaking mechanism might well be accepted as a
fair way of proceeding in such circumstances. However, the ways in which ties are broken
can affect not only the precise details, but, crucially, the size, of the matching produced
by the Gale-Shapley algorithm [20]. In almost all situations, a larger stable matching
is preferable to a smaller one, since unmatched residents will typically be disappointed,
and possibly disillusioned, at being unmatched, and will have to enter some secondary
process that allocates them to unfilled places, such as the so-called ‘scramble’ that follows
the NRMP match [26]. Indeed, there can be more serious implications; for example, it is
known that, in Scotland, there is a genuine risk that residents who are not matched in the
first round will seek positions elsewhere, in England or further afield, and hence may be
lost to the Scottish healthcare system.

Fundamental results

If all preference lists are strict, then it is known that, for a given problem instance, there
may be many stable matchings. Indeed, in the HR context, the Gale-Shapley algorithm
may be applied from either the residents’ side (the resident-oriented version of the al-
gorithm) or the hospitals’ side (the hospital-oriented version), and in general these two
applications will produce different stable matchings. The resident-oriented algorithm con-
structs the resident-optimal stable matching; in this matching, every resident has the best
assignment that she can have in any stable matching. On the other hand, the hospital-
oriented version produces the hospital-optimal stable matching, in which each hospital
has, in a precise sense, the best set of residents that it can have in any stable matching.
However, what is best possible for the residents turns out to be worst possible for the
hospitals, and vice versa — see [9] for a fuller discussion of these optimality issues. Ex-
ceptionally, the resident-optimal and hospital-optimal stable matchings may coincide, in
which case this is the unique stable matching, but in general there may be other stable
matchings — possibly exponentially many — between these two extremes [13]. However, for
a given instance of HR, all stable matchings have the same size, match exactly the same
set of residents, and fill exactly the same number of posts at each hospital [8, 23].

By contrast, the situation for HRT (and SMTI), is dramatically different. Again, at
least one stable matching exists for every instance, and can be found in O(a) time by
breaking all ties in an arbitrary way to give an instance of HR, and applying the Gale-
Shapley algorithm to that instance. However, the ways in which ties are broken can
significantly affect the size of the stable matching found, and in the most extreme case,
there may be two stable matchings M and M’ with |M| = 2|M’| [20]. Furthermore, the
problem of finding a stable matching of maximum cardinality (henceforth a mazimum
stable matching) for an instance of HRT — problem MAX-HRT - is NP-hard [20, 15],
even under severe restrictions. For example, NP-hardness holds even if each hospital
has capacity 1, each resident’s list is strictly ordered, and each hospital’s list is either
strictly ordered or is a tie of length 2 [20]. Also, MAX-HRT is NP-hard even if each
hospital has capacity 1, each preference list is of length at most 3, and each resident’s
list is strictly ordered [15]. Given that NP-hardness for MAX-HRT holds in each of these
two cases when every hospital has capacity 1, it follows that MAX-SMTI, the problem of
finding a maximum stable matching given an SMTT instance, is also NP-hard for the same
restrictions involving the location and length of the ties, and the preference list lengths.



Approximation algorithms and heuristics

In this study, because of its relevance in practical applications, we focus on the variant
of HRT in which all residents’ preference lists are strict, and hospitals’ lists may con-
tain arbitrary ties. We refer to this restricted version of HRT as HR with one-sided ties
(HROST). The correspondingly restricted version of SMTI, where all men’s lists are strict
and women’s lists may contain arbitrary ties, is referred to as SM with one-sided ties
and incomplete lists (SMOSTI). We use the terms MAX-HROST and MAX-SMOSTTI for
the problems of finding a maximum stable matching, given an instance of HROST and
SMOSTT respectively. The remarks in the previous subsection indicate that each of these
problems is NP-hard.

The likely intractability of finding maximum stable matchings in these situations leads
to interesting questions regarding approximation algorithms and heuristics. The challenge
in solving instances of these problems can be viewed as that of finding an appropriate
way of breaking all of the ties in the preference lists. This follows from the observation
that there must be some way of breaking the ties, followed by application of the classical
Gale-Shapley algorithm, that will yield a maximum stable matching.

Given an instance of HRT, any two stable matchings differ in size by at most a factor
of 2 [20], and hence it trivially follows that MAX-HRT is approximable within 2 (simply
by breaking ties arbitrarily and applying the Gale-Shapley algorithm). A number of
improved approximation algorithms for versions of MAX-SMTI were proposed prior to
2008 [16, 11, 17, 10, 18] and are surveyed in more detail in [14]. In many cases these
approximation algorithms can also be applied to instances of MAX-HRT and will yield
the same performance guarantee (see [14] for more details). The best of these [18] achieves
a performance guarantee of 15/8 for arbitrary instances of MAX-SMTI and MAX-HRT.

Considering the MAX-HROST case in particular, Irving and Manlove [14] gave a 5/3
approximation algorithm for the restricted version of the problem in which each tie can only
occur at the end of some preference list. Recently, Kirdly [19] described an approximation
algorithm for MAX-HROST with a performance guarantee of 3/2. He also gave an ap-
proximation algorithm for the general MAX-HRT problem with a performance guarantee
of 5/3, which was subsequently improved by McDermid, who described an approximation
algorithm with a performance guarantee of 3/2 for the same problem [21].

However, none of the approximation algorithms mentioned above appears to have
been evaluated empirically. Nor has there been any investigation into how the sizes of
stable matchings vary, in practice, for instances with different characteristics, and as a
consequence there is no understanding of how much may be lost by insisting on strict
preferences, or employing naive tie-breaking strategies, in practical matching schemes.

The contribution of this paper

In this paper, we develop two original heuristics for the MAX-HROST problem (both of
which, of course, can also be applied in the SMOSTI context). One of the heuristics can
be seen as being based upon the hospital-oriented version of the Gale-Shapley algorithm
and the other on the resident-oriented version. Heuristic strategies, based on maximum
cardinality bipartite matching and network flow respectively, are used to break any impasse
reached because of the presence of ties in the preference lists.

We present an empirical analysis of these two heuristics together with Kiraly’s al-
gorithm (the approximation algorithm with by far the strongest worst-case performance
guarantee for MAX-HROST) and two simple approaches based on random tie-breaking.
One key objective of this analysis is to determine if any one of the three algorithms con-
sistently produces the largest stable matchings. As will be reported fully in Section 5,



our results indicate that, at least with respect to our data sets, the new resident-oriented
heuristic out-performs the other algorithms in the vast majority of cases.

We also use this empirical study to accumulate evidence, hitherto entirely absent from
the literature, on variations in stable matching sizes for instances of HROST. Versions of
the heuristics studied here have been successfully incorporated into the Scottish Founda-
tion Allocation Scheme (SFAS), the centralized matching scheme for allocating graduating
medical students to Foundation positions (as junior doctors) in Scottish hospitals [27]. We
report on experience with the algorithms as applied to anonymized real-world data arising
from previous runs of SFAS as well as with artificially generated instances having a range
of values for various problem parameters.

The structure of this paper

The remainder of this paper is structured as follows. In Section 2 we describe a hospital-
oriented heuristic, with appropriate motivation for the approach embodied in it. A similar
treatment of an alternative resident-oriented heuristic is given in Section 3. Section 4
summarises the recent elegant approximation algorithm for MAX-HROST due to Kirdly
[19]. Section 5 describes the empirical studies that we undertook using both real and
artificial data, and summarises the outcome of these studies, focusing on a comparison of
the effectiveness of the three algorithms as compared to two variants of an approach based
on random tie breaking. As a by-product of these comparisons we gain some feel for the
variation in the sizes of stable matchings for problem instances with various parameter
values, which gives an indication of the significance of the performance of the heuristics.

2 Hospital-oriented heuristic

In what follows, we assume that each resident’s preference list is strict, and each hospital’s
preference list contains arbitrary ties. In this section we present Algorithm HROST-
Heuristic-H, a hospital-oriented heuristic for MAX-HROST that is a development of the
approximation algorithm of Irving and Manlove [14].

2.1 Procedure Hospitals-offer

At the heart of this first heuristic is a procedure that is based on the hospital-oriented
version of the Gale-Shapley algorithm. In most matching schemes, it is the resident-
oriented version of the algorithm that is used, and our approach need not violate such
a policy — a hospital-oriented heuristic is used in determining how tie-breaking should
be carried out, but once this is established, the resident-oriented version of the Gale-
Shapley algorithm can be applied to the resulting strict preference lists to determine the
final matching. (Note that this procedure would not result in any change to the size of
the stable matching that would be obtained by using the hospital-oriented version of the
Gale-Shapley algorithm throughout, since, as noted in Section 1, all stable matchings for
a given HR instance have the same size.)

Each hospital offers posts to residents on its preference list, but stops when it reaches
a tie with size greater than the number of posts it still has left to offer. When a resident r;
receives an offer from a hospital h;, she accepts it, and becomes (provisionally) assigned
to that hospital, rejecting any offer that she already holds. In addition, all successors of
hj in r;’s list are deleted, and r; is deleted from their lists; such pairs play no further part
in the algorithm, as they could not be part of a stable matching for the current instance,
nor could they form a blocking pair for any matching obtained by breaking ties in the
current preference lists and running the Gale-Shapley algorithm. (The current instance



while (there is a hospital h; such that v; > ¢; > 0)
for (each resident r; in Tj) {
if (r; is already assigned)
unassign r;;
assign r; to hy;
for (each hospital hy that is a successor of h; in r;’s list)
delete the pair (r;, hy) from the preference lists;

Figure 1: Procedure Hospitals-offer

will in general be a refinement of the original instance, in which some tie breaking has been
carried out, but any matching that is stable for this refined instance will automatically be
stable for the original instance.)

Rejections and deletions that take place during this process may allow additional hos-
pitals to offer places further down their preference lists, so the procedure continues until
no hospital is in a position to make further offers, in other words, until every hospital has
either reached a tie containing a number of residents that exceeds the number of remaining
places that it has to offer (which may, of course, be zero in some cases), or has offered a
post to every resident remaining on its list.

To give a more formal description of this procedure, we introduce some additional
terminology and notation. For a hospital hj;, the active tie, denoted by T}, is the tie,
of length 1 or more!, that immediately follows, in h;’s current preference list, the least
preferred resident that is currently assigned to hj, should such a tie exist. If such a tie
does not exist, we define T; = 0. If T; # (), we let ¢; denote the length of T}, otherwise we
let t; = 0. It follows that ¢; = 0 if and only if all residents in h;’s current list are assigned
to h;. Note that ¢; is the length of T} in the current preference list; because of deletions,
this may be less than the length of that tie in the original preference list. The number
of vacancies v; for hospital h; is equal to the difference between its capacity c¢; and the
number of residents currently assigned to it. A hospital h; is full or undersubscribed at
a given time according as v; = 0 or v; > 0 respectively. Hospitals can alternate between
being full and undersubscribed as the algorithm proceeds.

A pseudocode description of this procedure, referred to as procedure Hospitals-offer,
appears in Figure 1. It is well known that the outcome of the classical hospital-oriented
Gale-Shapley algorithm is independent of the order in which hospitals offer posts. It is
straightforward to show that this independence applies in this context also, whenever
procedure Hospitals-offer is invoked.

Procedure Hospitals-offer will be re-activated repeatedly during the execution of
the heuristic, typically after a decision has been made as to how some ties are to be (at
least partially) broken. Hence, whenever the procedure is invoked, it is operating on an
HROST instance — we call it the current instance — that is a refinement of the original
instance, and any matching that is stable for the current instance must also be stable
for the original instance. (Of course, the converse is not necessarily true; by resolving or
partially resolving just one tie, we may render unstable some matchings that are stable
for the original instance.)

The following lemma motivates our tie-breaking strategy for Algorithm HROST-Heur-
istic.

Lemma 2.1. (i) If a pair is deleted during an execution of procedure Hospitals-offer, then
that pair cannot belong to any stable matching for the current instance.

Here, and henceforth, we make the simplifying assumption that a single element in a given preference
list that is not tied with any other element constitutes a “tie” of length 1.



(ii) If a resident r; becomes assigned at some point during an execution of procedure
Hospitals-offer, then r; is matched in every stable matching for the current instance.

Proof. (i) Suppose, for a contradiction, that (r;, h;) is a pair that belongs to a matching
M that is stable for the current instance, and that it was the first such pair deleted by
the algorithm. The deletion must have taken place because r; received an offer from a
hospital, say hj, that she prefers to hj. Now hj could only have made that offer to r;
because there were at most ¢, residents at least as preferable as r; in its current preference
list. So, in M, hj must either be undersubscribed, or must be assigned a resident lower
in its list than r; — for, by our assumption, none of the previously deleted residents on
the list of hj can be assigned to hy in any stable matching. Hence (r;, hi) blocks M, a
contradiction.

(ii) Suppose that resident r; becomes assigned to hospital h; at some point during the
algorithm’s execution, and that there is a stable matching M for the current instance in
which r; is unmatched. Then to avoid (r;, hj) being a blocking pair for M, h; must be
matched in M to ¢; residents, none of which is inferior to r;. However, in order for h; to
have offered a post to 7;, at least one of these residents must have been deleted from h;’s
list, contradicting (i). O

We refer to the residents who are assigned at a given point during the execution
of Algorithm HROST-Heuristic-H as the X-residents and the other residents as the Y-
residents, and we denote these sets by X and Y respectively. Note that, once a resident
enters the set X she will never again be in the set Y. So one way of viewing the progress
of the algorithm is that it gradually transfers residents from set Y to set X, and the key
objective is to transfer as many residents as possible into X.

2.2 Procedure Match-Y-residents

Following an execution of procedure Hospitals-offer, we have to decide what happens
next. We say that a hospital h; is open if it is undersubscribed and not all of the residents
in its current preference list are assigned to it. We let Z denote the set of open hospitals.
From the terminating condition for procedure Hospitals-offer, we deduce that an open
hospital h; is one for which ¢; > v; > 0. The difficulty is that we need to make a decision
on breaking the active tie of at least one open hospital in order to make progress, and the
question is how this should be done.

Given our strategy of seeking to transfer residents from set Y to set X, the obvious
thing to do at this point is to promote, if possible, one or more Y -residents from the active
tie T} of each open hospital h;, so that offers can be made to these Y-residents, thereby
converting them to X-residents. In order to maximise the number of such promotions
and subsequent offers, we should find a maximum cardinality matching M between Y-
residents and open hospitals, where the pair (r;, h;) can be in M if r; is in T;. Moreover,
each Y-resident r; can appear at most once in M, and each open hospital h; can appear
at most v; times in M; we say that the matching capacity of r; is 1 and that of h; is v;.
Such a matching, in which the capacity of some of the participants is greater than 1, is
more properly called a degree-constrained subgraph [6]. Once such a maximum cardinality
degree-constrained subgraph has been identified, the appropriate promotions can be made
from the relevant active ties, allowing procedure Hospitals-offer to be re-activated.

Procedure Match-Y-residents is summarised in Figure 2. Procedures Hospitals-
offer and Match-Y-residents are invoked repeatedly until the graph G constructed in
the latter procedure has no edges, in other words, until no Y-resident appears in the
active tie of an open hospital. Notice that Match-Y-residents returns the matching M,
allowing us to detect this terminating condition by virtue of the fact that M is empty.



G = (Y UZ, E), where (r;,h;) € E if and only if (r;,h;) €Y x Z and r; € Tj;
for (each resident r; € Y')
assign 7; to have matching capacity 1;
for (each hospital h; € Z)
assign h; to have matching capacity vy;
M = a maximum cardinality degree-constrained subgraph in G;
for (each pair (r;, hj) € M)
promote r; ahead of the tie T};
return M;

Figure 2: Procedure Match-Y-residents

2.3 The complete heuristic

At this point, in general, we need to make some further decisions on (partial) tie resolution.
Further progress can be made only by breaking one or more of the active ties of open
hospitals. We cannot promote any more Y -residents from any of these ties, so we simply
break all of these ties randomly?. This allows a further round of iterations of procedures
Hospitals-offer and Match-Y-residents. This whole process is then repeated until no
open hospitals remain, in other words, until every hospital is either full or has assigned to it
all of the residents remaining on its preference list. The complete algorithm is summarised
in Figure 3.

do {
do {
Hospitals-offer;
M = Match-Y-residents;
} while (M # 0);
for (each hj € Z)  // Z is the set of open hospitals
break the active tie T} randomly;
} while (Z # 0);

return the current assignment;

Figure 3: The overall HROST heuristic, Algorithm HROST-Heuristic-H

Theorem 2.1. The matching returned by the above heuristic is a stable matching for the
original HROST instance 1.

Proof. In reality, Algorithm HROST-heuristic-H merely breaks ties, in very particular
ways, during an application of the classical Gale-Shapley algorithm. It is clear that the
assignment M returned by the algorithm is a stable matching in the final HR instance,
so no pair (r;, h;) € M that was not deleted can block M in I. What remains is to show
that M is stable in the original HROST instance I. To show this, we require to prove
that no pair (7, h;) that was deleted could block M in I. Such a pair (r;, h;) was deleted
because r; received an offer from some hospital hj, that she prefers to h;. At that point r;
is transferred to X, and by part (ii) of Lemma 2.1, r; is matched in M. Since all hospitals
inferior to hy on r;’s list were deleted, it follows that r; is matched to a hospital at least
as good as hy, in M. Hence (r;, h;) does not block M in I. O

2Tt might be asked whether there could be an advantage in choosing just one open hospital at random,
and breaking just that one active tie before invoking procedure Hospitals-offer again. Empirical evidence
suggests that there is no consistent benefit in so doing.



2.4 Complexity of Algorithm HROST-Heuristic-H

To derive a bound on the worst-case complexity of Algorithm HROST-Heuristic-H, we
first observe that the total work done during all calls to procedure Hospitals-offer is
O(a), and a similar bound holds for all the work done during random tie-breaking. It
remains to consider procedure Match-Y-residents. It is immediate that this procedure
can be called at most n times, since at least one resident is moved out of set Y after each
call. Suppose that the number of edges in the subgraph M on the ith call is p;. During
each call, the construction of the graph G and the execution of the various for loops can be
done in O(a) time, and therefore these operations summed over all calls of the procedure
require O(na) time. As far as finding the subgraph M is concerned, this can be achieved
in O(p;a) time by a straightforward augmenting path algorithm, or in O(,/p,a) time using
Gabow’s algorithm [6]. In either case, summing over 4, and using the fact that Y p; <n,
we obtain a O(na) bound on the total number of operations required to find the subgraph
M, summed over all calls of the procedure. Hence the overall worst-case complexity is
O(na) (though a tighter analysis may be possible).

3 Resident-oriented heuristic

As mentioned earlier, our second heuristic, Algorithm HROST-Heuristic-R, is based on
the resident-oriented version of the Gale-Shapley algorithm. The idea is that each resident
r; applies to the hospitals on her list, in order. Hospital h; rejects resident r; only when
it holds applications from at least c¢; residents that it strictly prefers to r;, and as a
consequence it is possible for more than c; residents to be simultaneously (but temporarily)
assigned to hj;. To describe this algorithm we require some additional terminology.

We define an allocation to be an assignment of each resident to at most one hospital
so that, if a hospital h; has a; assignees and a; > c¢; then there is a positive integer
uj > a; — c¢; such that the least preferred u; assignees of hospital h; are all tied in that
hospital’s list. (So such a hospital h; needs a tie-breaking strategy to decide which of
these u; residents should be rejected.)

The concept of a blocking pair is defined for an allocation exactly as for a matching,
and an allocation is stable if it admits no blocking pairs. We shall see that Algorithm
HROST-Heuristic-R, in general, finds a sequence of stable allocations, terminating with
a stable matching. (A stable matching is, of course, a stable allocation that respects the
capacity restrictions of all of the hospitals.)

3.1 Procedure Residents-apply

Each resident applies, in turn, to the first hospital on her preference list. (As was the
case with hospitals offering posts, the order in which residents apply does not affect the
eventual outcome.) Each hospital initially has no assignees. At any stage during the
application of the algorithm, a hospital h; with a; assignees is said to be over-subscribed
if aj > ¢j, full if a; = ¢;, and under-subscribed if a; < c;.

When resident r; applies to hospital h; she is assigned (at least temporarily) to that
hospital, and a; is incremented. If, as a result, h; is full or over-subscribed, then all strict
successors, in h;’s preference list, of its ¢t choice assignee®, are deleted (and h; is deleted
from their lists), where ¢ = ¢;. If a resident r, currently assigned to h; is thereby deleted
from h;’s list, then it follows that the first hospital on r;’s (current) list, namely h;, is
also deleted from that list, the assignment of r; to h; is broken, and a; is decremented.

3For the purposes of determining h;’s ¢** choice assignee we may randomly order the members of any
tie containing h;’s worst assignees, if necessary.



while (some resident r; is free and has a non-empty list) {
h; = first hospital on r;’s list;
assign r; to hy;
increment a;;
if (a; > ¢j) { /] hj is full or over-subscribed
Ty = one of h;’s cth-choice assignees, where ¢ = cj;
for each strict successor r; of ry in h;’s list {
if (r; is assigned to h;) {
break the assignment;
decrement a;;

}

delete the pair (1, hyj);

Figure 4: Procedure Residents-apply

Resident r; will then subsequently apply to the hospital, if any, that is now at the head
of her (reduced) list.

This algorithm is formally described in Figure 4. In fact, this procedure will typically
be called several times during the execution of the heuristic; prior to the first call, each
resident is assigned to be free, each hospital is assigned to be empty, and a; is set to zero
for each hospital h;.

Note that a hospital h; can have a; > c¢;, but if this is the case then the number u; of its
least preferred assignees must be greater than a; —c;, so that procedure Residents-apply
produces an allocation, as defined earlier.

For a hospital that is full or over-subscribed, we refer to the tie containing its u; least
preferred assignee(s) as the tail of its current list. The terminology is chosen because any
strict successors of the tail must have been deleted from the list during the application of
procedure Residents-apply.

The overall resident-oriented heuristic consists of a sequence of applications of this
procedure, interleaved with certain tie-breaking decisions. As in Section 2, we refer to
the refinement of the original problem instance obtained by tie-breaking decisions taken
up to a given point in the algorithm’s execution as the current instance. As before, any
matching that is stable for the current instance is automatically stable for the original,
but not necessarily vice-versa.

The following lemma, somewhat analogous to Lemma 2.1, motivates our tie-breaking
strategy for Algorithm HROST-Heuristic-R.

Lemma 3.1. (i) If a hospital becomes full during the application of procedure Residents-
apply then it never again becomes under-subscribed.

(1) If a pair is deleted during an execution of procedure Residents-apply, then that pair
cannot belong to any stable matching for the current instance.

(i7i) Procedure Residents-apply terminates with a stable allocation.

() If a hospital hj is assigned to a; residents at some point during an execution of
procedure Residents-apply, then h; has at least min(aj,c;) assigned residents in every
stable matching for the current instance.

Proof. (i) This is immediate from the condition governing the ‘unassignment’ of residents.
(ii) Suppose, for a contradiction, that the pair (r;, h;) was the first pair belonging to a sta-
ble matching, say M, that was deleted during an execution of procedure Residents-apply.
This deletion took place because h; had at least ¢; assignees, say r;,, ... T, s that it prefers
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to r;. At that point, h; must have been at the head of the list of each of these residents
Ti;, 80 that, by our assumption, none of these residents can be matched in M to a hospital
that they prefer to h;. Hence, since r; is matched to h; in M, at least one of the residents
73, is matched in M to an inferior hospital (or is unmatched), and it follows that (7, , h;)
form a blocking pair for M — a contradiction.

(iii) It follows at once from the condition for the deletion of pairs that, for an over-
subscribed hospital hj, the number a; of residents assigned to h;, and the number u; of
these that are in h;’s tail, satisfy u; > a; — ¢;, so that we do indeed have an allocation.
In this allocation A, every resident is matched to the hospital at the head of her list.
Suppose that (7, h;) is a blocking pair for A. Since r; prefers h; to her assigned hospital
(or is unassigned in A), the pair (7, h;) must have been deleted, so that, h; must prefer
all of the surviving residents in its list to r;. Furthermore, h; must have been full when
the deletion took place, and therefore by part (i), is also at least full in A with assignees
whom it prefers to r;, a contradiction.

(iv) Suppose that hospital h; is assigned residents r;,,...,r;, at some point during the
execution of procedure Residents-apply. Then, at that point, each of these residents
has h; at the head of its list, and so, by part (i), none of them can have a better partner
than h; in any stable matching. It follows that, if M is a stable matching, then, to avoid a
blocking pair, h; is either full, or has all of r;,,...,7;, as assignees, from which the result
follows. O

From Lemma 3.1(iv) we immediately deduce a lower bound on the size of any stable
matching, as indicated in the following theorem.

Theorem 3.1. Suppose that on termination of an execution of procedure Residents-apply,
hospital hj has a; assignees. Then any stable matching for the current instance has size s
satisfying

s> Zmin(aj,cj)

where the sum is taken over all hospitals h;.

For a given stable allocation A, we define the bound of A, denoted by b(A), as

b(A) = Z min(aj, Cj),

and the excess of A, denoted by e(A), as

e(A) =Y d(a; —¢p),

where 6(x) = z if x > 0 and d(z) = 0 otherwise, and each sum is taken over all hospitals
hj. So a stable allocation of excess zero is a stable matching.

3.2 Procedure Partially-resolve-ties

On termination of procedure Residents-apply, a stable matching can be found as follows
(a method essentially equivalent to breaking remaining ties in an arbitrary way). For
each over-subscribed hospital h;, demote from the tail a; — ¢; randomly chosen assignees.
Then re-activate procedure Residents-apply. Continue in this way until the algorithm
terminates with a matching. It is not hard to show that the resulting matching must be
stable.

Of course, the arbitrary choices of deletions will, in general, affect the size of the sta-
ble matching generated. Algorithm HROST-Heuristic-R takes a more intelligent approach,
and attempts to make tie-breaking decisions that increase, as far as possible, the number of
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applications to under-subscribed hospitals. These decisions are made on the basis of a max-
imum flow in a network constructed from the current stable allocation. Once partial tie-
breaking, based on this maximum flow, has been carried out, procedure Residents-apply
is re-activated, leading to an amended stable allocation whose bound is increased over that
of the previous allocation by the value of a maximum flow in the network. Successive it-
erations of procedures Residents-apply and Partially-resolve-ties are carried out
until the network generated has a maximum flow of zero.

Constructing the flow network

From the current preference lists and current stable allocation A, in which each resident
is assigned to the hospital at the head of her list, the corresponding flow network N4 is
constructed as follows:

e There is a single source node s and a single sink node ¢.
e There is a node for each hospital h;

— for each over-subscribed hospital, node h; has an incoming edge from the source
s of capacity a; — c¢;. This represents h;’s excess number of assignees.

— for each under-subscribed hospital, node h; has an outgoing edge to the sink ¢
of capacity ¢; — a;. This represents the number of unfilled posts at h;.

e There is a node for each resident r; who is a tail assignee of a full or over-subscribed
hospital h;, and who has at least one other hospital on her current list. Let the
sequence of consecutive entries following h; on r;’s current list be h,1,hy2,. .., by g,
where h, j is the first of these hospitals such that (a) h, j is under-subscribed, or (b)
r; is not in the tail of h, x, or (c) h,j is the last hospital in ;s list.

The node representing r; has an incoming edge from h; of capacity 1, and for each
s (1 < s < k), an outgoing edge to h, s of capacity 1. The intuition here is that we
are prepared to switch r; from h; to any such h, s, because no blocking pair could
result, but not, at least for now, to any hospital lower than h, ; on her list.

In what follows, we refer to the node representing hospital h; (respectively resident r;)
simply as the node h; (respectively the node r;).

Consider a maximum (integral) flow F' in network N4. Relative to this maximum flow,
we call a resident r; movable if there is a flow of 1 through the node r; in N. The flow must
reach r; along an edge from a hospital node h; and must leave r; along an edge to another
hospital node hy; we denote this hospital hy by F(r;). The flow is used to partially resolve
some of the ties in the preference lists by demoting such a movable resident r; from the
tie in the list of any hospital preceding hj, on her list, including that of h;. By demoting
r; from a tie T that contains it, we mean moving r; to be a non-tied entry immediately
following T'. Multiple residents demoted from the same tie will appear in arbitrary strict
order immediately following that tie. Note that a demotion of resident r; within the list
of hospital h; can only happen when h; is either full or over-subscribed, and r; appears in
the tail of h;.

Procedure Partially-resolve-ties is summarised in Figure 5. The procedure re-
turns a boolean value to indicate whether any ties were, in fact, resolved.

Following these preference list demotions, reactivation of procedure Residents-apply
will lead to the rejection of the ‘moved’ residents by the hospitals in question, so that
these residents apply to, and become assigned to, hospitals that were previously under-
subscribed.
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construct network N4 from the current preference lists and allocation A;
find a maximum flow F' in Ng;
if F' has value > 0
for each movable resident r; relative to F'
demote r; from the tail of each predecessor of F(r) on r;’s list;
return true;
else
return false;

Figure 5: Procedure Partially-resolve-ties

Theorem 3.2. If a maximum flow in network N4 has value f then application of proce-
dure Partially-resolve-ties followed by procedure Residents-apply leads to a stable
allocation with bound b(A) + f and excess e(A) — f.

Proof. After applying the two procedures, it is clear that each movable resident r; relative
to the maximum flow will be assigned to F(r;) in the new allocation. Every unit of flow
passes through a unique resident vertex, and causes a previously oversubscribed hospital
to have one fewer assignee and each undersubscribed hospital to have one additional as-
signee. Furthermore, the capacities on the edges from the source ensure that no previously
oversubscribed hospital can become undersubscribed, and the capacities on the edges to
the sink ensure that no previously undersubscribed hospital can become oversubscribed.
Also, Kirchhoff’s law (the fact that the flow into each vertex is equal to the flow out of
that vertex) ensures that each full hospital remains full. Hence every unit of flow adds one
to the bound, and subtracts one from the excess, of the allocation. The stability of the
allocation follows by an argument analogous to that of the proof of Lemma 3.1(iii). U

Using a maximum flow in network N4 to produce a new stable allocation may actually
reduce the excess of the allocation to zero, giving a stable matching, and resulting in
termination of Algorithm HROST-Heuristic-R.

Otherwise we can repeat the whole process, since it is feasible that the network con-
structed from the new stable allocation might have a non-zero flow. This may be the case,
for example, if an undersubscribed hospital becomes full, so that residents in the tail of
that hospital will give rise to vertices that were not previously present in the network. In
fact, the process can be iterated until an allocation of excess zero results, or a network
with zero flow is obtained.

3.3 The overall algorithm

If successive applications of procedures Residents-apply and Partially-resolve-ties
lead to a network with zero flow and a stable allocation that is not a matching, in other
words that has positive excess, we must decide how to proceed. In order to allow the
two procedures to make further progress towards a stable matching, we have to make
some additional intervention in terms of breaking ties. The simplest possibility is merely
to break the tail ties of oversubscribed hospitals randomly, and then restart the whole
process. This sequence of operations can be continued until, finally, we have an allocation
of zero excess, in other words a stable matching.
The overall algorithm is summarised in Figure 6.
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while (true) {
do {
Residents-apply;
Partially-resolve-ties;
} while (flow in network > 0);
if (current allocation has excess > 0)
break randomly tail ties of oversubscribed hospitals;
else
return current allocation;  // which is a stable matching

Figure 6: The overall HROST heuristic Algorithm HROST-Heuristic-R

3.4 Complexity of Algorithm HROST-Heuristic-R

For a bound on the worst-case complexity of Algorithm HROST-Heuristic-R, we first ob-
serve that the total number of steps summed over all calls to the Residents-apply pro-
cedure is O(a). Likewise, the total number of steps in all random-tie breaking operations
is O(a).

That leaves the Partially-resolve-ties procedure. Because the number of edges
in the network is always O(a), any call of this procedure that results in a flow of f > 0
can be achieved by breadth-first search augmentation in O(fa) time — f augmentations
costing O(a) time each. Construction of the graph can also be achieved in O(a) time.
Now, the sum of the f’s is bounded by n, since each unit of flow results in an increase
of 1 in the bound of the current allocation. So summing these contributions over all calls
gives a bound of O(na).

Finally, we account for calls of the Partially-resolve-ties procedure that yield zero
flow. Consider the edges in the network in such a call. There are at most m edges incident
from the source and to the sink, and every other edge has a resident vertex as one of its
end-points. Of the edges incident to or from a resident vertex, all but one correspond to
an entry in a tie in a preference list that will be broken immediately after the flow of zero
is returned. So the total number of edges is at most n + m + x, where at least = tied
entries become untied as a consequence of the zero flow. It follows that the sum of the z’s
over all such calls of the procedure is bounded by a. Since there cannot be more than a
such calls, the total number of steps summed over all of these calls is O((n + m)a), and
this is O(na) if we make that natural assumption that m = O(n).

In summary, the contributions of all of these components to the worst-case complexity
is O(na) so this is an overall complexity bound for the heuristic.

4 Kiraly’s approximation algorithm

Recently, Kiraly [19] described ingenious approximation algorithms for MAX-SMTI and
MAX-HRT with improved performance guarantees. The algorithm for the case of one-
sided ties, the problems MAX-SMOSTI and MAX-HROST, has a performance guarantee
of 3/2. In this section we summarise the algorithm for the HRT case, using our tie-breaking
terminology in place of the concept of ‘extra scores’ favoured by Kiraly.

The algorithm is based on ‘proposals’ from residents to hospitals. A hospital accepts a
proposal if it is undersubscribed or if it is full but strictly prefers the proposer to its least
favoured assignee — according to its current preference list, which may be a refinement of
the original. In the latter case, the least favoured assignee is rejected. This assignee is
chosen at random if two or more least favoured assignees are tied.
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while (3 resident r;: r; is unmatched and (unpromoted or unexhausted)) {
if (r; is exhausted) {
promote r;; // r; must have been unpromoted
set r; to be unexhausted; // r; will restart proposals from the start of her list

}

h; = next hospital on r;’s list; // the next one in line for a proposal
r; proposes to hj;
if (h; is undersubscribed)
assign r; to hy;
else if (h; prefers r; to its least favoured assignee r) { // according to its current list
h; rejects ry;
unassign r from hy;
assign r; to hy;

}

else
hj rejects ;3 // and r; remains unassigned

}

return the current matching; // which is a stable matching

Figure 7: Kiraly’s approximation algorithm for HROST

If a resident is rejected by all of the hospitals on her list — we say that the resident
is exhausted — she is then promoted; this means that every tie that currently contains her
is partially broken by moving her strictly ahead of the other members of the tie. On
entering the promoted state, a resident is allowed to re-start her proposal sequence from
the beginning of her preference list. Only if and when she has been rejected by all the
hospitals in her list, after having been promoted, does she cease to play any further part
in the algorithm and is doomed to be unmatched in the final matching. A pseudocode
description of Kiraly’s algorithm appears in Figure 7.

For full details of the algorithm, and a proof of the 3/2 performance guarantee, see
[19]. As far as complexity is concerned, Kirély’s algorithm can be viewed as an extension
of the resident-oriented version of the Gale-Shapley algorithm in which each resident may
traverse his preference list twice rather than once. With appropriate data structures, book-
keeping details such as promotion can be handled with no adverse effect on the complexity,
so that, like the Gale-Shapley algorithm, Kirdly’s algorithm can be implemented to run
in time that is linear in the sum of the lengths of the preference lists.

5 An Empirical Study

The empirical study is based on the limited examples of real-life data that we have —
namely, those for the 2006, 2007 and 2008 runs of the SFAS matching scheme — together
with a range of examples of artificially generated data with various combinations of pa-
rameter values.

The main objective in conducting this study was to ascertain the effectiveness of the
two heuristics presented in this paper, together with Kirdly’s algorithm, in diverse sets
of circumstances, as compared to two algorithms based on random-tie breaking followed
by execution of the classical Gale-Shapley algorithm, bearing in mind our focus on the
sizes of stable matchings found. A subsidiary aim was to collect evidence on the spread of
stable matching sizes as we varied the values of certain problem parameters.

It is clear from the description of the algorithms given in Sections 2, 3 and 4 that
random tie-breaking does form a component of all three of the algorithms presented here.
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Depending on how ties are broken whenever these steps of the algorithms are invoked,
a stable matching of greater or lesser size may result. Obviously, the same observation
applies to algorithms based exclusively on random tie-breaking followed by execution of
the classical Gale-Shapley algorithm. The question arises as to how to obtain a fair and
reasonable comparison between the various algorithms. One possibility would have been
to allow each algorithm the same fixed number of iterations, and to report the distribution
of stable matching sizes across the iterations, highlighting the maximum, minimum and
average sizes. However, this could be construed as favouring the more complex algorithms,
in particular Algorithm HROST-Heuristic-R, which in practice executes significantly more
slowly than all of the others. It seemed to be a fairer alternative to give each algorithm
the same amount of time on each problem instance, allowing the algorithm to iterate as
many times as possible within that time span®. In reality, as elaborated further below,
allowing an algorithm longer and longer execution times beyond a modest base value
appears to extend only very marginally the range of sizes of stable matchings generated.
All implementations were in Java version 6.0 and were run on a 2.6 GHz PC with 500 Mb
of RAM.

5.1 Real data

In the SFAS data for 2006 the numbers of residents, hospitals® and posts were 759, 53 and
801 respectively. In 2007, the corresponding figures were 781, 53 and 789, and in 2008 they
were 748, 52 and 752. In all three cases, residents had (strictly ranked) preference lists of
length 6 and the posts were fairly uniformly distributed across the hospitals. Hospitals had
quite varied patterns of ties in their lists — ranging from strictly ranked lists in a few cases,
to others where the residents were grouped in just two or three ties. As is to be expected in
such circumstances, some hospitals, and some residents, were more popular than others.
A plot of hospitals against number of applicants (i.e., the number of residents ranking
each hospital) revealed that the the most popular had around five times the number of
applicants as compared to the least popular, and the plot was close to linear between these
two extremes. (This observation influenced the way that hospital popularity was modelled
in the artificial data.)

We report the results of running each algorithm for the same length of time, namely
1 minute, on these three sets of data. This may seem like an unduly short time. In fact
we also ran each algorithm on each set of data for 5 minutes, and for 25 minutes. Only
in a very few cases did the observed distribution of stable matching sizes change and only
in one case (Algorithm I — see below — on the 2006 data) did the size of the largest stable
matching increase by as much as 2. In every case, the average size of stable matching
found, rounded to one decimal place, did not change at all.

The results are summarised in Tables 1, 2 and 3. Here, H and R represent Algorithms
HROST-Heuristic-H and HROST-Heuristic-R respectively, and K represents Kirdly’s al-
gorithm. These abbreviations are used throughout this section. Algorithms I and C are
both random tie-breaking algorithms; in Algorithm I, each tie is broken randomly and
independently, whereas in Algorithm C, the residents are strictly ordered in a random
way and every tie is broken consistently according to this ordering. For each algorithm
and each data set, the table shows the number of residents involved, together with the
maximum, minimum, mean and mode of the stable matching sizes found, and the number

4Further justification is provided by noting that any organisation running a matching scheme would
seek to ensure that the matching program completed its execution within a reasonable, and preferably
predictable, time frame.

5In SFAS, the terms ‘students’ and ‘programmes’ are used, rather than ‘residents’ and ‘hospitals’.
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of repetitions® in the allowed time. The spread of sizes of stable matchings found is also
reported. In all tables, the highest value(s) in each column is highlighted in bold.

2006 (759 residents)
Algorithm || Max | Min | Mean | Mode | Iterations
H 753 | 745 | 748.8 | 749 4512
R 754 | 744 | 749.3 | 749 594
K 753 | 743 | 7485 | 749 13366
I 744 | 726 | 736.5 736 14710
C 744 | 727 | 735.1 735 13961
Spread 726 - 754

Table 1: Results on the SFAS data for 2006

2007 (781 residents)
Algorithm || Max | Min | Mean | Mode | Iterations
H 740 | 731 | 735.6 | 736 5838
R 744 | 737 | T41.4 | T42 766
K 742 | 732 | 736.9 | 737 13008
I 736 | 723 | 729.3 | 729 14538
C 736 | 722 | 728.9 | 729 14132
Spread 722 - 744

Table 2: Results on the SFAS data for 2007

2008 (748 residents)
Algorithm || Max | Min | Mean | Mode | Iterations
H 705 | 695 | 699.5 699 33200
R 705 | 694 | 700.2 | 700 4120
K 705 | 695 | 700.1 | 700 61475
I 697 | 681 | 689.3 689 75470
C 697 | 680 | 688.5 689 75888
Spread 680 - 705

Table 3: Results on the SFAS data for 2008

Commentary on the results

Perhaps not surprisingly, Algorithms H, R and K fare better than the random tie-breaking
algorithms, with Algorithm R giving the best results overall, albeit by a small margin over
the other two. The performance of Algorithm K is impressive, given its relative simplicity,
and of course that algorithm has the additional advantage of a performance guarantee.
There is very little to choose between the two random strategies, though independent tie-
breaking seems to lead to slightly larger matchings. Also, the naive tie-breaking algorithms
give a significantly greater range of different matching sizes than Algorithms H, R and
K. The differences may not seem dramatic. However, even if a sophisticated algorithm
succeeds in matching only a handful of additional residents compared to the number
matched by random tie-breaking, it could be a highly significant improvement for those

SNote that Algorithm R completes substantially fewer iterations than any of the other algorithms,
presumably reflecting a worse average-case complexity.
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individuals concerned, bearing in mind the impact that their assignment could have on
their future careers. Moreover, for practical purposes, one could argue that an important
comparison is between the mode size of stable matching found, say, by Algorithm I, and
the maximum size found by, say, Algorithm R. This could be viewed as a measure of
the potential benefit of, on the one hand allowing or encouraging ties in the hospitals’
preference lists and employing a good heuristic with a moderate number of iterations, and
on the other hand prohibiting ties (effectively forcing each hospital to break its own ties
randomly) and using the classical Gale-Shapley algorithm. This difference averages 16.3
over the three sets of data.

Table 4 gives a more detailed breakdown of the numbers of stable matchings of various
sizes found by the various algorithms for the 2006 data. The patterns for the 2007 and
2008 data sets were very similar.

Finally, we note that the only upper bounds that we have, with which to compare our
results, are obtained merely by dropping the stability requirement and finding the size of
a maximum cardinality matching of residents to hospitals. This size turns out to be 759,
781 and 745 for 2006, 2007 and 2008 respectively. In other words, in the first two years,
all residents could have been matched in this way, and in 2008, all but three. However,
evidence presented below (in the subsection “How close to optimal?”) leads us to believe
that the largest stable matchings found are a much closer approximation to optimal than
suggested by these bounds.

2006 743 | 744 | 745 | T46 | 747 748 749 750 751 752 753 754
H - - 15 105 | 454 1119 | 1505 996 273 42 3 -
R - - 5 18 61 104 152 130 78 37 8 1
K 1 12 110 | 602 | 2040 | 3897 | 4048 | 2131 484 39 2 -

2006 727 | 728 | 729 | 730 | 731 732 733 734 735 736 737 738
I 1 2 11 41 122 322 755 1411 | 2147 | 2481 | 2680 | 2185
C 4 21 64 | 200 | 469 974 1583 | 2216 | 2478 | 2336 | 1731 | 1076

739 | 740 | 741 | 742 | 743 744
I 1421 | 721 | 294 | 93 21 2
C 529 | 202 | 60 14 3 1

Table 4: Matching size distributions for the SFAS data for 2006

5.2 Artificial data

In generating artificial data, a whole range of parameters and data characteristics can be
varied, including

e the numbers of residents, hospitals, and posts;

e the lengths of residents’ preference lists;

e the way in which posts are distributed among hospitals;
e the variation in hospital and resident popularity;

e the number, length and distribution of ties;

e whether, as in some real contexts, there is a ‘master’ preference list of residents
(i.e., a global ranking of all residents) based on scores such as examination results;
each hospital’s preference list, as always, contains only the residents on whose list it
appears, and the rank ordering of that subset of the residents is inherited from the
rank ordering in the master list.
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The number of possible combinations of these parameters and factors is huge, so we
made a selection of test cases with a view to ascertaining how the variation of certain
key factors would affect the performance of the algorithms and the variability of stable
matching sizes. We fixed some parameters for reporting purposes — in all cases 1000
residents, 100 hospitals, 1000 posts and residents’ preference lists of length 5. Further
experiments showed that allowing these parameters to vary did not yield substantially
different results, except in one respect — increasing (respectively decreasing) the ratio of
posts to residents, or the lengths of preference lists, caused the sizes of stable matchings to
increase (respectively decrease) across the board, with no significant differential behaviour
among the various algorithms.

We allowed the posts either to be randomly or uniformly distributed among the hospi-
tals. We allowed both residents and hospitals either to be uniformly popular or to exhibit
a skewed popularity. Skewed hospital popularity was intended to simulate the variation
observed in hospital popularity in SFAS (see above), with the most popular hospitals
attracting about five times the number of applicants as the least popular, and the distri-
bution approximately linear between these two extremes. Skewed resident popularity was
envisaged to reflect the reality that some applicants are more sought after than others,
and was implemented by introducing bias into the random number generation process that
produced rank orderings of the hospitals’ preference lists.

As far as ties were concerned, in the case of individual hospital preference lists, we
varied the tie pattern by allowing the probability that an entry be tied with its successor
to be either medium (0.5) or high (0.9). Note that, as might be expected, the closer the
preference lists are to being strictly ordered, the less variation there is in the size of stable
matchings, so that with low tie probability, the distinctions between the results of the
different algorithms become less significant, and are not reported here. In the case of a
master list of residents, a set of distinct ‘scores’ was fixed, and a random score allocated
from this set to each resident. The master list was constructed on the basis of these scores,
with equal scoring residents tied. Sets of 5 scores and 50 scores were used to correspond
to high and medium tie probability, respectively.

In fact, it turned out, perhaps a little surprisingly, that skewed hospital popularity led
to quite significant differences in outcomes, whereas skewed resident popularity (relevant
only in the case of individual hospital preferences) merely reduced slightly the sizes of
stable matchings observed, and appeared to affect all algorithms in more or less the same
way. Of course, this may simply reflect the way that we chose to skew resident popularity
during the data generation process. However, to reduce the volume of results reported
here, only results for uniform resident popularity are presented. As in the case of the
real data, each algorithm was given the same amount of time, again one minute, on each
problem instance generated.

Individual hospital preference lists

Tables 5 and 6 show matching sizes for the five algorithms on sets of artificial data for
the case of individual hospital preference lists. In each case the sizes represent an average
taken over ten instances” generated with the parameter values in question. For each set of
parameters, the spread shows the maximum, minimum and average difference between the
largest and smallest stable matchings found over the ten instances. Note that the spread
values shown in the various tables may well be underestimates of the true values, since it
is likely that our algorithms often fail to find the largest and, more especially, the smallest

"This may seem like a small number of cases. However, even this small number of cases led to quite
consistent results that would not have differed substantially had a larger number of cases been used.
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stable matchings. Indeed, algorithms analogous to Algorithms H, K and R but designed to
find smaller, rather than larger, stable matchings, could have been implemented, and had
this been done, significantly smaller stable matchings than those returned by our random
tie-breaking algorithms might well have been found.

Master list of residents

Tables 7 and 8 show matching sizes for the five algorithms on sets of artificial data for
the case of a master list of residents, constructed on the basis of scores assigned to the
residents. Table 7 summarises the case where scores were assigned randomly from 50
possibilities, and Table 8 for the case of just 5 possibilities (so that ties were typically
much longer in the latter case). Again, in each case the size represents an average taken
over ten instances generated with each set of parameter values, and the spread values
indicate the maximum, minimum and average range of stable matching sizes found, taken
over the ten instances. As before, each algorithm was run for one minute on each generated
instance.

Random post distrib. Random post distrib. Uniform post distrib. Uniform post distrib.
Uniform hos. pop. Skewed hos. pop. Uniform hos. pop. Skewed hos. pop.

Alg Max Min Ave Max Min Ave Max Min Ave Max Min Ave
H 990.0 | 983.9 | 986.9 961.5 954.6 | 958.2 996.3 991.3 | 993.9 975.0 | 968.7 | 971.7
R 989.8 | 986.1 | 988.1 || 961.8 | 958.1 | 960.1 || 996.6 | 993.0 | 994.9 || 975.2 | 971.8 | 973.5
K 989.9 | 983.6 | 986.9 961.5 954.3 | 958.1 996.4 | 991.1 994.0 975.0 968.5 971.7

I 989.2 981.5 | 985.4 960.2 951.2 | 955.7 996.0 989.5 992.8 974.3 965.7 | 969.9

C 989.1 981.6 | 985.3 960.5 951.0 | 955.7 995.8 | 989.5 992.8 974.2 965.6 | 969.9

Spread 11 7 8.4 15 8 11.0 8 6 7.1 13 5 9.6

Table 5: Matching size distributions for HROST artificial data I: medium tie probability

Random post distrib. Random post distrib. Uniform post distrib. Uniform post distrib.
Uniform hos. pop. Skewed hos. pop. Uniform hos. pop. Skewed hos. pop.

Alg Max Min Ave Max Min Ave Max Min Ave Max Min Ave
H 998.2 990.9 994.7 986.5 976.2 981.5 999.6 995.3 997.9 990.0 979.8 985.0
R 998.3 | 994.7 | 996.7 || 988.3 | 980.7 | 984.5 || 999.9 | 998.2 | 999.3 || 993.2 | 986.3 | 990.2
K 998.0 990.3 994.6 986.2 974.2 980.5 999.9 | 994.9 997.9 990.1 978.9 984.7

I 992.3 977.4 985.3 972.1 952.5 962.5 998.2 986.8 993.0 979.4 961.2 970.8

C 991.3 974.3 983.2 969.8 949.4 959.7 997.3 984.9 991.4 977.5 959.0 968.6
Spread 30 20 24.0 50 32 39.0 18 12 15.0 44 30 34.2

Table 6: Matching size distributions for HROST artificial data II: high tie probability

Random post distrib. Random post distrib. Uniform post distrib. Uniform post distrib.
Uniform hos. pop. Skewed hos. pop. Uniform hos. pop. Skewed hos. pop.

Alg Max Min Ave Max Min Ave Max Min Ave Max Min Ave
H 966.7 | 962.7 964.7 931.1 927.6 929.2 977.5 | 973.5 975.6 944.4 | 940.3 942.3
R 966.3 | 965.8 | 966.0 930.4 | 929.3 | 929.9 976.9 | 976.6 | 976.7 944.0 | 943.4 | 943.7
K 966.7 | 962.7 964.7 931.2 | 9274 929.1 977.5 | 973.1 975.4 944.4 | 940.1 942.3

I 966.6 959.5 963.1 931.0 924.1 927.6 977.4 970.7 974.0 944.3 938.0 941.0

C 966.7 | 959.6 963.1 930.8 924.1 927.6 977.4 970.7 974.0 944.3 938.0 941.0

Spread 9 5 7.1 11 3 6.3 10 3 6.8 8 2 6.4

Table 7: Matching size distributions for HROST artificial data III: master list of residents,
high number of scores
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Random post distrib. Random post distrib. Uniform post distrib. Uniform post distrib.
Uniform hos. pop. Skewed hos. pop. Uniform hos. pop. Skewed hos. pop.

Alg Max Min Ave Max Min Ave Max Min Ave Max Min Ave
H 987.0 975.3 981.5 958.2 944.0 951.3 997.1 988.8 993.3 966.8 953.0 959.9
R 993.5 | 993.0 | 993.1 || 966.5 | 961.3 | 963.9 || 998.9 | 998.9 | 998.9 || 975.8 | 973.2 | 974.4
K 987.5 974.6 981.3 958.2 943.6 951.0 998.0 988.3 993.3 967.5 952.9 960.2

I 973.0 953.5 963.6 945.3 923.8 935.1 985.5 966.2 976.2 955.0 934.7 945.0

C 972.1 951.5 961.8 934.6 923.4 933.8 983.1 962.7 973.3 953.3 933.2 943.6
Spread 52 35 42.0 52 38 43.1 41 31 36.2 50 36 42.6

Table 8: Matching size distributions for HROST artificial data I'V: master list of residents,
low number of scores

Empirical results for the Stable Marriage problem

Although of less practical significance, it is still of interest to investigate the behaviour
of the various algorithms on instances of the Stable Marriage problem. We studied the
special case, SMOSTI, corresponding to instances of HROST in which each hospital has
capacity 1, and in which men (respectively women) play the role of residents (respectively
hospitals).

Tables 9 and 10 show empirical results for this special case based on the same five
algorithms. As in the HROST case, varying the popularity pattern of the agents appearing
in ties (in this case the men) had a barely perceptible effect on the results, so we do not
include this information in the tables. In all cases, we assumed 1000 men, 1000 women,
and men’s preference lists of length 5. As before, each algorithm was run for one minute
on each generated instance.

How close to optimal?

One obvious key question arises from this empirical study, namely how close to optimal
are the stable matchings produced by our various algorithms? Of course, not knowing
the size of a maximum stable matching makes it hard to answer this question, and as
mentioned earlier, the only upper bound is that obtained from a maximum cardinality
matching, which in many cases we suspect to be a weak bound.

We carried out some additional experiments to investigate this issue. We generated
artificial instances of both HROST and SMOSTI in which a complete stable matching
(i.e. a stable matching including all of the participants) was ‘planted’. As in our earlier
experiments, the HROST instances had 1000 residents, 100 hospitals, and 1000 posts, with
the posts either uniformly or randomly distributed among the hospitals, and residents’
preference lists of length 5. The SMOSTT instances had 1000 men and 1000 women with
men’s preference lists of length 5. We were again able to vary hospital popularity and
tie structure, though we handled the latter aspect in a slightly different way as compared

Medium tie prob. Medium tie prob. High tie prob. High tie prob.
Uniform woman pop. Skewed woman pop. Uniform woman pop. Skewed woman pop.

Alg Max Min Ave Max Min Ave Max Min Ave Max Min Ave
H 947.6 933.1 940.2 924.0 910.7 917.4 991.4 | 990.7 | 991.0 || 973.8 | 973.2 | 973.5
R 959.9 | 955.9 | 957.6 931.9 | 936.5 | 928.9 989.3 987.6 988.0 971.6 967.5 969.3
K 948.4 930.9 940.0 924.6 906.5 915.6 981.4 964.8 973.6 964.3 944.6 954.9

I 924.7 897.2 910.7 898.7 870.9 884.9 925.0 892.6 909.0 904.3 869.3 887.0

C 922.1 894.0 908.0 895.5 869.5 882.5 908.9 874.4 892.5 887.6 851.0 870.5
Spread 72 59 66.0 67 55 62.4 127 113 117.0 129 113 122.8

Table 9: Matching size distributions for SMOSTTI artificial data I: individual preference
lists
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High number of scores High number of scores Low number of scores Low number of scores
Uniform woman pop. Skewed woman pop. Uniform woman pop. Skewed woman pop.

Alg Max Min Ave Max Min Ave Max Min Ave Max Min Ave
H 884.6 | 880.3 882.4 863.2 858.6 860.9 905.7 888.8 896.9 881.5 865.1 873.1
R 884.6 | 884.5 | 884.5 || 863.3 | 863.3 | 863.3 || 919.4 | 917.8 | 918.4 || 894.4 | 891.1 | 892.5

K 884.6 | 880.1 882.4 863.2 858.6 860.9 907.8 889.0 898.5 883.2 864.9 874.3

I 884.6 | 877.6 881.1 863.1 855.7 859.4 895.0 870.7 883.2 871.1 848.3 860.1

C 884.4 877.7 881.1 863.1 855.7 859.3 894.1 870.5 882.4 870.9 847.8 859.4
Spread 10 3 7.0 14 4 7.7 53 44 49.1 54 42 46.8

Table 10: Matching size distributions for SMOSTT artificial data II: master preference list

to our earlier experiments. In order to ensure the stability of the planted matching,
it was easier to construct each hospital’s preference lists as a sequence of ties, each tie
corresponding to a numerical ‘score’. The score range therefore gives an upper bound on
the number of ties per list. Entries were distributed among the ties randomly, subject to
preservation of the stability of the planted matching. An additional parameter that can be
varied here is the expected rank in a resident r;’s preference list of her assigned hospital h
in the planted matching (the rank of h; in r;’s list is the k& such that h; is r;’s kth choice).
The value of this parameter determines how residents’ preferences are constructed — the
planted matching is inserted first, then the other entries are placed before or after it with
appropriate probabilities.

As before, we found that uniform popularity, uniform post distribution and fewer tied
entries led to less distinction among the algorithms, so we focused on cases of skewed
popularity, random post distribution and relatively small score ranges.

Tables 11 and 12 show the maximum, minimum and average size of stable matchings
found by the five algorithms for the various combinations of score range and expected
matching rank. These are averages of ten generated HROST instances in each case, and
every run was of one minute’s duration. Tables 13 and 14 give the corresponding results
for instances of SMOSTI.

Discussion

A number of general conclusions can be drawn from these experiments, including the
following:

e Algorithms H, R and K consistently find larger stable matchings than Algorithms I
and C. This is more noticeable when the tie probability is high, and is accentuated
when hospital popularity is skewed and when posts are distributed randomly rather
than uniformly. The rationale for this observed behaviour is that the first three
algorithms all use tie-breaking strategies that, in some way, give priority to residents
who would otherwise have a higher likelihood of being left unmatched.

e Algorithm R typically finds slightly larger stable matchings than Algorithms H and
K, especially when tie probability is high. For every single set of artificial test data,
Algorithm R performed best in terms of the average and smallest size of stable
matchings. The superiority of Algorithm R is most marked in the case of master
lists with a low number of scores; in these cases the smallest matching found by
Algorithm R is larger than the largest matching found by Algorithms H or K, and
the range of matching sizes found by Algorithm R is often very small. Algorithm R
appears to be marginally less successful at finding a largest matching when there is a
master list based on a high number of scores, but in any case the spread of matching
sizes in these circumstances is quite small.
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score range = 10 score range = 5
expected rank = 2 expected rank = 3 expected rank = 2 expected rank = 3
Alg Max Min Ave Max Min Ave Max Min Ave Max Min Ave
H 1000 997.0 999.5 1000 | 998.9 | 1000 1000 997.8 999.8 1000 | 998.4 | 1000
R 1000 | 999.4 | 999.9 || 1000 | 1000 | 1000 || 1000 | 999.9 | 1000 || 1000 | 1000 | 1000
K 1000 996.9 999.5 1000 | 998.5 | 1000 1000 997.6 999.8 1000 | 998.2 | 1000
1 1000 | 994.7 | 998.1 999.9 | 991.6 | 996.7 || 999.9 | 992.6 | 997.3 || 999.4 | 987.4 | 994.1
C 1000 | 993.9 997.8 999.7 | 989.6 | 995.2 || 999.7 | 991.2 | 996.3 || 997.6 | 983.2 | 991.1
Table 11: HROST instances with a planted stable matching of size 1000
score range = 3 score range = 2
expected rank = 2 expected rank = 3 expected rank = 2 expected rank = 3
Alg Max Min Ave Max Min Ave Max Min Ave Max Min Ave
H 1000 | 998.2 | 999.9 1000 | 998.9 | 1000 1000 | 998.8 | 1000 1000 | 999.0 | 1000
R 1000 | 1000 | 1000 1000 | 1000 | 1000 1000 | 1000 | 1000 1000 | 1000 | 1000
K 1000 | 997.8 | 999.9 || 1000 | 998.2 | 1000 || 1000 | 998.0 | 999.9 || 1000 | 998.2 | 1000
1 999.8 | 989.5 | 995.5 || 997.7 | 981.9 | 990.5 || 998.7 | 985.0 | 992.8 || 995.0 | 976.1 | 986.6
C 998.5 | 985.2 | 992.8 | 993.1 | 974.1 | 984.3 || 994.8 | 977.0 | 986.5 || 987.8 | 962.7 | 975.8
Table 12: HROST instances with a planted stable matching of size 1000
score range = 10 score range = 5
expected rank = 2 expected rank = 3 expected rank = 2 expected rank = 3
Alg Max Min Ave Max Min Ave Max Min Ave Max Min Ave
H 981.2 965.6 973.3 975.7 958.8 967.3 979.4 | 963.2 971.3 974.5 958.2 966.6
R 994.0 | 992.0 | 992.9 989.9 | 984.9 | 987.4 995.1 | 993.6 | 994.3 993.3 | 988.5 | 990.6
K 982.0 965.8 974.1 977.0 958.8 968.2 982.2 964.3 973.5 977.6 957.8 967.9
I 972.7 950.2 961.4 956.2 930.1 943.4 963.1 938.6 951.0 949.2 919.4 934.3
C 972.0 948.6 960.5 956.2 930.1 943.4 960.8 935.3 948.4 944.7 915.2 929.9
Table 13: SMOSTI instances with a planted stable matching of size 1000
score range = 3 score range = 2
expected rank = 2 expected rank = 3 expected rank = 2 expected rank = 3
Alg Max Min Ave Max Min Ave Max Min Ave Max Min Ave
H 982.3 967.3 974.7 980.7 | 965.7 | 973.3 990.3 978.9 984.8 990.9 981.0 985.7
R 997.8 | 996.1 | 996.7 994.8 | 991.4 | 992.8 999.1 | 998.8 | 998.8 997.2 | 994.8 | 995.7
K 984.3 966.3 975.8 980.8 961.8 971.5 987.6 970.8 980.0 983.5 965.3 974.9
I 957.9 930.2 943.9 941.9 910.3 926.2 950.9 920.8 936.5 935.7 903.0 919.6
C 952.1 924.0 938.8 932.8 903.0 918.4 942.6 910.6 926.5 923.3 890.5 907.4

Table 14: SMOSTI instances with a planted stable matching of size 1000
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Algorithm K performs remarkably well, and has the advantage of conceptual sim-
plicity as well as a performance guarantee. All the same, for none of the sets of test
data that we used did this guarantee provide more information than could have been
deduced from knowing that the size of a maximum stable matching cannot exceed
the number of applicants.

It is hard to come up with an explanation as to why Algorithm R appears to be
marginally superior to the others. However, in comparison with the cardinality
matching approach of Algorithm H, it could be argued that the construction of the
network and the exploitation of network flow allows Algorithm R to look further
ahead in considering the consequences of a particular tie-break.

Algorithm C is usually marginally less effective than Algorithm I. But the differ-
ence is quite noticeable in the case of SMOSTI with individual preference lists and
high tie probability. Some intuition for this comes from observing that uniform tie-
breaking leads to strictly ordered preference lists that are somewhat more correlated
than those resulting from independent tie-breaking, and greater similarity among
preferences can be expected to reduce the size of a stable matching.

Not surprisingly, the spread of matching sizes appears to be greater when there are
longer ties, and can be very substantial in such cases. The more tied entries there
are, the higher will be the proportion of all possible matchings that are stable.

The outcomes for SMOSTT shown in Tables 9 and 10 are broadly similar to those for
HROST shown in Tables 5-8. An exception is in the case of individual preference lists
when tie probability is high, Algorithm H being clearly the most effective strategy
in this case. This can be explained by observing that many women’s preference
lists in this case will consist of a single tie, and the cardinality matching strategy of
Algorithm H will be very effective in this situation. The spread of matching sizes
appears to be typically greater for SMOSTI.

In the case where we planted a complete stable matching, and therefore knew the
size of the optimal solution, for all of the instances of HROST that we generated, at
least one of Algorithms H, R or K (in most cases all three of them) found a stable
matching of maximum size. On the other hand, Algorithms I and C hardly ever
found such a stable matching, often falling well short, depending on the parameter
values. Of course, it may be that planting a complete stable matching somehow
distorts the problem instance, and it may not be entirely valid to extrapolate this
observed behaviour to other instances of HROST. Nonetheless, we are left with some
increased confidence that, at least in the case of our SFAS examples, the largest stable
matching that we found may be quite close to optimal.

However, in this respect, instances of SMOSTT revealed a strikingly different story.
The range of sizes of stable matchings found was much greater, and in most cases
none of the algorithms found a complete stable matching. For example, in one of the
more extreme instances, the ranges of stable matching sizes produced by algorithms
H, R, K, I and C were 957-974, 990-991, 961-978, 933-956 and 922-954 respectively. It
is quite noticeable here that, in every single instance that we generated, Algorithm
R found a larger stable matching than any of the other algorithms, often by a
considerable margin.
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6 Summary and open problems

This paper has presented an empirical investigation of heuristics for finding a maximum
stable matching in instances of the Stable Marriage and Hospitals/Residents problems
with ties on one side. Two new heuristics have been proposed and their performance
compared with Kiraly’s approximation algorithm, the algorithm for these problems with
the best known performance guarantee, and with two random tie-breaking strategies. The
performance of these various algorithms has been studied on some limited real data, and
on artificial data generated according to a number of models. One of these new heuristics,
Algorithm HROST-Heuristic-R, which combines the classical Gale-Shapley algorithm with
a step based on network flow, was found in most cases to be the most effective method.
Evidence of the considerable spread of possible stable matching sizes was a by-product of
these experiments.

As mentioned in Section 2, the hospital-oriented heuristic is an extension of the ap-
proximation algorithm appearing in [14]. The latter has a performance guarantee of 5/3
when ties are restricted to one per list, and can occur only at the end of the list, so
the guarantee for that special case applies also to the hospital-oriented heuristic. This
paper is primarily concerned with the performance of the algorithms for MAX-HROST
and MAX-SMOSTT in practice, however it would be worth carrying out a closer analy-
sis of Algorithms HROST-Heuristic-H and HROST-Heuristic-R, to determine whether a
concrete worst-case performance guarantee better than 2 can be established for either.
In addition, it would be interesting to try to construct instances for which the heuristics
perform particularly badly, perhaps approaching the worst-case approximation ratio of 2.

It could be argued that it is inappropriate to focus exclusively on the size of a stable
matching while ignoring other possibly desirable properties. It is worth observing that
Erdil and Ergin [5] have recently introduced the concept of a stable improvement cycle
in an attempt to improve the quality of a stable matching from the residents’ viewpoint.
Locating and applying stable improvement cycles allows an arbitrary stable matching to
be transformed to another of the same size which is Pareto optimal for the residents.
Hence this process, which is straightforward to implement efficiently, could form a final
step in any heuristic employed in a practical setting.
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