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Abstract 

It is known that discrete element method modelling (DEM) of rock size reduction can be achieved by 

two approaches: the population balance model (PBM) and the bonded particle model (BPM).  

However, only PBM has been successfully used in DEM modelling cone crusher in the literature. The 

aim of this paper is to explore the feasibility of using the BPM to represent the size reduction of rock 

experienced within the cone crusher chamber. The feed rock particles were represented by isotropic 

dense random packing agglomerates. The simulation results were compared with the PBM simulation 

results, and it was shown that the BPM cone crusher model was able to satisfactorily replicate the 

performance of a cone crusher as well and it can provide more accurate prediction of the percentage 

of the fine products. In addition, the novel contribution here is that the rock feed material comprises 

particles of realistic shapes which break into more realistically shaped fragments compared with the 

fragments with defined shapes in the PBM model. 

 

Introduction 

The cone crushers is the most common type of mineral comminution machine that is used widely in 

the minerals and aggregates extractive industries to crush medium or above medium sized rocks. The 

use of an incremental build and the testing of alternative design prototypes is expensive, often 

requiring the production and several models to identify the required an economic improvement in the 

crusher performance. The development of a validated computational simulation mode of a cone 

crusher could significantly reduce the required lead time and costs. The discrete element method 

(DEM) (Cundall and Strack, 1979) provides a potential method to investigate the mechanical 

behaviour of the flow and breakage of granular material on both the micro and macro scales. The 

PBM approach replaces the predicted failed parent particle by a number of new and smaller fragments 

while the BPM approach represents individual particles as an assembly of bonded micro-spheres, with 

breakage simulated by the failure of some of the bonds. The Population Balance Model (PBM) 

(Herbst et al, 2003) has already successfully been applied in DEM modelling cone crusher 

performance (Lichter et al, 2009; Li et al, 2014). However, as the progeny fragments have to be 
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formed and located at the position of the parent particle, the PBM approach cannot replicate the 

movement of the original parent and the subsequent progeny particles formed post failure. In contrast, 

BPM can consider the particle movement as a result of a crushing sequence as the agglomerate is 

directly broken into smaller particles. The research results presented in this paper explore the 

feasibility of the use of BPM to simulate the performance of a cone crusher using DEM, the feed rock 

particles are represented by a collection of dense randomly packed agglomerates of bonded micro-

spheres, and the simulation results will be compared with the PBM simulation results provided by Li 

et al (2014). 

The construction of DEM cone crusher model 

The program PFC3D (Itasca, 2008) and the prototype cone crusher constructed by Li et al (2014) 

were used in this study. Figure 1and Figure 2 illustrate typical vertical and horizontal cross-sectional 

views through a cone crusher. Table 1 shows the scale of the prototype cone crusher and the 

corresponding parameters are illustrated in Fig 1. The reader is referred to the work of Li et al (2014) 

for the details of the geometry of the cone crusher. Figure 3 shows an illustration of the representative 

3D rendered surfaces of the mantle and concaves formed within a typical DEM cone crusher model.  

 

Table 1. Parameter values used to construct the DEM cone crusher model 

F(mm) CSS(mm) s(mm) (˚) (˚) (˚) (mm) Dc(mm) 

55 12-18 4.5 18-22 45 2 50 300 
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Figure 1. A vertical cross-section view through a typical cone crusher. 

 

Figure 2. A horizontal cross-section view through a typical cone crusher 
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Figure 3The DEM cone crusher model 

Agglomerate calibration 

Various types of agglomerates has been used for DEM modelling of particle breakage: hexagonal 

closed packing agglomerate (Cheng et al, 2003; Lim, 2004; Lim and McDowell, 2007), agglomerates 

generated by the radius expansion method (Cil and Alshibli, 2012; Potyondy & Cundall, 2004) and 

dense random packing agglomerates (Li et al, 2013). As a dense and isotropic particle is desired, the 

dense random agglomerate generated by Li et al (2013) was used in this study which is achieved by 

inserting particles to fill the voids in the agglomerate. The generation detail is given in detail by Li et 

al (2013).  

Li et al (2014) diametrically crushed granite ballast particles of three sieve size fractions and found 

that for each size fraction the tensile strengths of 30 particles followed the Weibull distribution 

(Weibull, 1951). The tensile strengths were then used as the breakage criterion their PBM modelling 

of the cone crusher performance. In order to compare with Li et al (2014)’s PBM simulation results, 

the agglomerates are calibrated to have same tensile strengths distribution with granite ballast 

particles crushed in Li et al (2014)’s diametrical compression tests. The spherical dense random 

packing agglomerate used here is an isotropic particle (Li et al, 2013); in this case it is expected that 

the strength of the agglomerate is proportional to the bond strength (Cil et al, 2013; Li, 2013).Thus, 

the modelling of the variation of particle strengths can be achieved by simply giving each agglomerate 

a single value of bond strength which is taken from the relevant distribution of the experimental 

results. The calibration process is as following̟ 

 The Young͉ s modulus was chosen with a Poisson ratio of 0.2, to give an initial elastic 

response which matched the experiments.  

 The agglomerate was given a random bond strength, assuming a Weibull modulus equal to 

that for the Weibull distribution of particle strengths in the experiments.  
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 This agglomerate was then crushed to obtain its strength j. 

 The bond strength was then scaled by (
ɐɐo ) to obtain the assumed 37% bond strength Bo.  

 The agglomerates were then assumed to have a bond strength given by a Weibull distribution 

with the chosen m and a 37% bond strength Bo.  

McDowell and Li showed in the discussion Cil et al (2013) that the crushed agglomerates had 

approximately the same distribution of strengths as the assumed bond strength distribution, if the 

average bond strength is scaled to give the correct average agglomerate strength, and the reader is 

referred to Figure 6 of that discussion. The calibrated micro input parameters were shown in Table 2.  

Further explanations of the definitions of the parameters are given by Itasca (2008).  

Table 2 Input values of micro parameters of the agglomerate used in BPM DEM cone crusher model 

Parameter values 

micro-ball radius 0.0025m 

micro-ball density 2700 kg/m
3
 

friction coefficient 0.5 

Young's Modulus 70GPa 

Poisson's ratio 0.2 

parallel bond radius multiplier 1 

parallel bond normal stiffness 5*10
12 

N/m 

parallel bond shear stiffness 2*10
12

 N/m 

37% normal/shear bond strength, Bo 60MPa 

Simulation procedure 

The DEM simulation models used 100 particles as the feed material. The sizes of the particles were 

chosen to be in the range 14-28mm, which is smallest size fraction of the ballast particles crushed 

experimentally (to save computational time).The number of spheres in each agglomerate ranges from 

1,328 to 1,512 and the total number of the spheres forming the 100 particles is 141,368.The particle 

shape was also considered and this is a unique feature of the approach presented in this paper. Figure 

4 details the modelling stages used to generate the irregular agglomerate shapes.  

 Generate a spherical random dense packing agglomerate of radius ratio 4 (the ratio of 

the radii of the largest and smallest spheres in the agglomerate); a radius ratio of 4 is 

lowest ratio required to generate a dense isotropic particle using the filling void 

method proposed by Li et al (2013). The radius of the agglomerate should be at least 

equal to the measured sieve size of the real particle.  
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 Calculate the three dimensional external profile of the real particle. The tool used 

here was a 3D laser digitizer. 

 Check the centres of all the spheres in the agglomerate to reject the spheres whose 

centres lie outside the boundary.  

 

Figure 4The modelling procedure used to generate irregular particle shapes 

 

The simulation procedure was shown in Figure 5, which depicts animation stills of the sequential 

stages of the solution of the model. The procedure is as follows: 

 100 particles of radius 28mm were randomly generated inside the artificial cylinder 

wall above the mantle - see Figure 5(a). 

 The spheres are replaced by agglomerates - see Figure 5(b).  

 The agglomerates are deposited into the feed bin by gravity. The bonds of the 

agglomerates are given an artificially high bond strength to avoid breakage during the 

deposition process. A flat artificial wall is constructed above the concave to avoid the 

particles dropping into the chamber directly- see Figure 5(c). 

 The bonds in the agglomerates are re-allocated their normal values. The flat artificial 

wall is then deleted to allow the particles to flow into the chamber - see Figure 5(d).  
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 The mantle is rotated– see Figure 5(d)-(e). 

 

Figure 5Snapshots of the crusher simulation in action using BPM approach  

Results 

The sizes of the fragments were calculated as the equivalent radius, expressed as: 

 

Equation 1 

where represents the equivalent radius of the fragment and M denotes the cumulative mass of all 

the spheres included in the fragment, is the density of micro spheres which is 2700kg/m3 shown in 

Table 2, and P is the porosity of the initial agglomerate which is 0.31(Li et al, 2013).  

The stills shown in Figure 5 show that some fragments are projected upwards out of the crusher 

chamber or bin, this dynamic phenomenon is caused by particle collisions and may also occur in the 

operation of real cone crushers. Figure 66 shows a graphical comparison of the predicted cumulative 
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product size distributions for the two breakage models using the same cone crusher model geometry 

and operational conditions. The PBM curve is replotted based on Li et al (2014)’ simulation result in 

which there are the same geometry of the cone crusher, the same eccentric speed and the same particle 

strengths. The CSS and eccentric speed were 15mm and 300rpm, respectively. An examination of the 

data presented shows that for any sieve size, the cumulative mass percentage produced by the BPM is 

always higher than that computed by the PBM. The largest differences between the predicted 

solutions occur at the finest size 2mm. The cumulative mass of products finer than 2mm for the BPM 

and PBM models are 9.8% and 0.5%, and this makes the BPM curve more consistent with a 

traditional product curve of cone crusher, Figure 7 (Hulthen, 2010) shows an example of product 

curves of cone crusher of various eccentric speeds in industry. The difference between the predicted 

distributions decreases for the largest particles sizes.  It should be noted that the simulation of the 

crushing of the agglomerate feed in the cone crusher took 150 days on a PC with a specification of 

Intel(R) Core(TM)2 Q9650 up to 3.0GHz.  The BPM method is therefore seen to be computationally 

very time consuming – the equivalent simulation using the PBM particle replacement method only 

took up to 20 days.  However, the purpose of this paper has been a feasibility study to establish 

whether it is possible to model the crushing of particles of realistic shapes in a cone crusher and this 

has found to be possible and to give realistic results.  This makes it possible to run simulations with 

different feeds and models and crusher geometries to establish which parameters can be adjusted to 

increase comminution efficiency and therefore inform design of new prototypes. 

 

Figure 6 Comparison of BMP cone crusher and PBM cone crusher 
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Figure 7 Traditional product curve of cone crusher (Data source: Hulthen, 2010) 

 

Conclusions 

A prototype DEM cone crusher model has been successfully constructed using the bonded particle 

model. The feed particles were represented by dense random packing agglomerates. The agglomerates 

were calibrated to have the same tensile strengths distribution with experimental diametrically 

crushed granite ballast particles. The comparison with PBM simulation results in literature shows the 

BPM cone crusher model was able to satisfactorily replicate the performance of a cone crusher. Thus 

it has been possible to model rock breakage in a comminution machine with an eccentrically rotating 

cone using alternative and complimentary methods, and modelling the fracture of irregular shaped 

particles using agglomerates of bonded particles has been shown to be possible. Based on the fact that 

the BPM model considers the particle flow as a result of crushing sequence and it provides more 

accurate results of fine products, it can be very useful even it consumes more computation time than 

PBM model.    
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