364 research outputs found

    Groupoids, imaginaries and internal covers

    Full text link
    Let TT be a first-order theory. A correspondence is established between internal covers of models of TT and definable groupoids within TT. We also consider amalgamations of independent diagrams of algebraically closed substructures, and find strong relation between: covers, uniqueness for 3-amalgamation, existence of 4-amalgamation, imaginaries of T^\si, and definable groupoids. As a corollary, we describe the imaginary elements of families of finite-dimensional vector spaces over pseudo-finite fields.Comment: Local improvements; thanks to referee of Turkish Mathematical Journal. First appeared in the proceedings of the Paris VII seminar: structures alg\'ebriques ordonn\'ee (2004/5

    On finite imaginaries

    Full text link
    We study finite imaginaries in certain valued fields, and prove a conjecture of Cluckers and Denef.Comment: 15p

    Imaginaries and definable types in algebraically closed valued fields

    Full text link
    The text is based on notes from a class entitled {\em Model Theory of Berkovich Spaces}, given at the Hebrew University in the fall term of 2009, and retains the flavor of class notes. It includes an exposition of material from \cite{hhmcrelle}, \cite{hhm} and \cite{HL}, regarding definable types in the model completion of the theory of valued fields, and the classification of imaginary sorts. The latter is given a new proof, based on definable types rather than invariant types, and on the notion of {\em generic reparametrization}. I also try to bring out the relation to the geometry of \cite{HL} - stably dominated definable types as the model theoretic incarnation of a Berkovich point

    Generalizations of Kochen and Specker's Theorem and the Effectiveness of Gleason's Theorem

    Get PDF
    Kochen and Specker's theorem can be seen as a consequence of Gleason's theorem and logical compactness. Similar compactness arguments lead to stronger results about finite sets of rays in Hilbert space, which we also prove by a direct construction. Finally, we demonstrate that Gleason's theorem itself has a constructive proof, based on a generic, finite, effectively generated set of rays, on which every quantum state can be approximated.Comment: 14 pages, 6 figures, read at the Robert Clifton memorial conferenc

    Non-archimedean tame topology and stably dominated types

    Full text link
    Let VV be a quasi-projective algebraic variety over a non-archimedean valued field. We introduce topological methods into the model theory of valued fields, define an analogue V^\hat {V} of the Berkovich analytification VanV^{an} of VV, and deduce several new results on Berkovich spaces from it. In particular we show that VanV^{an} retracts to a finite simplicial complex and is locally contractible, without any smoothness assumption on VV. When VV varies in an algebraic family, we show that the homotopy type of VanV^{an} takes only a finite number of values. The space V^\hat {V} is obtained by defining a topology on the pro-definable set of stably dominated types on VV. The key result is the construction of a pro-definable strong retraction of V^\hat {V} to an o-minimal subspace, the skeleton, definably homeomorphic to a space definable over the value group with its piecewise linear structure.Comment: Final versio

    Distal and non-distal NIP theories

    Get PDF
    We study one way in which stable phenomena can exist in an NIP theory. We start by defining a notion of 'pure instability' that we call 'distality' in which no such phenomenon occurs. O-minimal theories and the p-adics for example are distal. Next, we try to understand what happens when distality fails. Given a type p over a sufficiently saturated model, we extract, in some sense, the stable part of p and define a notion of stable-independence which is implied by non-forking and has bounded weight. As an application, we show that the expansion of a model by traces of externally definable sets from some adequate indiscernible sequence eliminates quantifiers
    • 

    corecore