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defining a notion of ‘pure instability’ that we call ‘distality’ in which no such phenomenon
occurs. O-minimal theories and the p-adics for example are distal. Next, we try to
understand what happens when distality fails. Given a type p over a sufficiently saturated
model, we extract, in some sense, the stable part of p and define a notion of stable
independence which is implied by non-forking and has bounded weight.
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1. Introduction

We study one way in which stability and order can interact in an NIP theory. More precisely, we are interested in the
situation where stability and order are intertwined. We start by giving some very simple examples illustrating what we
mean.

Consider M0 |� DLO. A type of S1(M0) is determined by a cut in M0 and two types corresponding to different cuts are
orthogonal. If we take now M1 a model of some o-minimal theory, still a 1-type is determined by a cut, but in general,
types that correspond to different cuts are not orthogonal. However this is true over indiscernible sequences in the following
sense: assume 〈at : t < ω + ω〉 ⊂ M1 is an indiscernible sequence. By NIP, the sequences of types 〈tp(at/M1): t < ω〉 and
〈tp(aω+t/M1): t < ω〉 converge in S(M1). Then the two limit types are orthogonal (this follows from dp-minimality, see
Corollary 2.30). An indiscernible sequence with that property will be called distal.1 A theory is distal if all indiscernible
sequences are distal. So any o-minimal theory is distal.

Distality for an indiscernible sequence can be considered as an opposite notion to that of total indiscernibility.
Let now M2 be a model of ACVF (or any other C-minimal structure) and consider an indiscernible sequence (ai)i<ω of

elements from the valued field sort. Two different behaviors are possible: either the sequence is totally indiscernible, this
happens if and only if val(ai − a j) = val(ai′ − a j′ ) for all i �= j, i′ �= j′ , or the sequence is distal. Again, this will follow from
the results in Section 2, but could be proved directly. So M2 is neither stable nor distal; the two phenomena exist but do
not interact in a single indiscernible sequence of points.

E-mail address: pierre.simon@normalesup.org.
1 Thanks to Itay Kaplan for suggesting the name.
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Consider now a fourth structure (a ‘colored order’) M3 in the language L3 = {�, E}: M3 is totally ordered by � and E
defines an equivalence relation, each E class being dense co-dense with respect to �. Now an indiscernible sequence of
elements from different E classes is neither totally indiscernible nor distal. Given two limit types px and qy of different cuts
in such a sequence, the type px ∪ qy is consistent with xE y and with ¬xE y. Here it is clear that the ‘stable part’ of a type
should be its E-class.

The idea behind the work in this paper is that every ordered indiscernible sequence in an NIP theory should look like a
colored order: there is an order for which different cuts are orthogonal and something stable on top of it which does not
see the order (see Section 3).

1.0.1. A word about measures
Keisler measures will be used a little in this work, however the reader not familiar with them can skip all parts referring

to measures without harm. For this reason, we will be very brief in recalling some facts about them and refer the reader
to [8] and [9]. They however give some understanding of the intuition behind some definitions and results. We explain this
now.

A Keisler measure (or simply a measure) is a Borel probability measure on a type space Sx(A). Basic definitions for
types (non-forking, invariance, coheir, Morley sequence etc.) generalize naturally to measures (see [8] and [9]). Of interest
to us is the notion of generically stable measure. A measure is generically stable if it is both definable and finitely satisfiable
over some small set. Equivalently, its Morley sequence is totally indiscernible. Such measures are defined and studied by
Hrushovski, Pillay and the author in [9]. Furthermore, it is shown in [17] that some general constructions give rise to them,
and in this sense they are better behaved than the more natural notion of generically stable type.

This paper can be considered as an attempt to understand where generically stable measures come from. What stable
phenomena do generically stable measures detect? What does the existence of generically stable measures in some partic-
ular theory tell us about types? The first test question was: Can we characterize theories which have non-trivial generically
stable measures? Here “non-trivial” means “non-smooth”: a measure is smooth if it has a unique extension to any bigger
set of parameters. This question is answered in Section 2: a theory has a non-smooth generically stable measure if and only
if it is not distal.

The main tool at our disposal to link measures to indiscernible sequences is the construction of an average measure of an
indiscernible segment (see [9, Lemma 3.4] or [17, Section 3] for a more elaborate construction). Such a measure is always
generically stable. The intuition we suggest is that the ‘order’ component of the sequence is evened out in the average
measure and only the ‘stable’ component remains.

1.0.2. Organization of the paper and main results
The paper is organized as follows. The first section contains some basic facts about NIP theories and Keisler measures. We

give a number of definitions concerning indiscernible sequences and some basic results illustrating how we can manipulate
them. Section 2 studies distal theories. They are defined as theories in which every indiscernible sequence is distal, as
explained above. We show that this condition can also be seen through invariant types and generically stable measures. The
main results can be summarized by the following theorem.

Theorem 1.1. Let T be NIP. Then the following are equivalent:

• T is distal,
• Any two invariant types that commute are orthogonal,
• All generically stable measures are smooth.

Furthermore, it is enough to check any one of those conditions in dimension 1.

As a consequence, o-minimal theories and the p-adics are distal as are more generally any dp-minimal theory with no
generically stable type.

Section 3 can be read almost independently of the previous one: it contains a study of the intermediate case of an
NIP theory that is neither stable nor distal. We deal with the problem of understanding to what extend non-distality is
witnessed by stable-like interactions between tuples. If M is a |T |+-saturated model, we define a notion of s-independence
denoted a �

s
M b which is symmetric, is implied by forking-independence and has bounded weight. We use it to show that

two commuting types behave with respect to each other like types in a stable theory (we recover some definability and
uniqueness of the non-forking extension). The guiding intuition is that of the colored order where elements have a well
defined stable part (the image in the quotient) and in that case a �

s
M b means that the stable parts are independent. We

do not attempt to give any meaning to the ‘stable part’ of a type in general, and we do not even expect there to be a
possible meaning for it. We find that the intuition “s-independence corresponds to independence of stable parts” is useful
in understanding those results. Of course, it may turn out some day to be misleading.

As an application of those ideas, we prove the following ‘finite–co-finite theorem’ (Theorem 3.30) and give an application
of it to the study of externally definable sets.
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Theorem 1.2 (Finite–co-finite theorem). Assume that T is NIP. Let I = I1 + I2 + I3 be indiscernible, I1 and I3 being infinite. Assume
that I1 + I3 is A-indiscernible and take φ(x;a) ∈ L(A), then the set B = {b ∈ I2: |� φ(b;a)} is finite or co-finite.

The last section defines a class of theories — called sharp — in which (intuitively) the stable part of types is witnessed by
generically stable types. More precisely, over a |T |+-saturated model M , every tuple is s-dominated by the realization of a
generically stable type. We give a criterion for sharpness which only involves looking at indiscernible sequences of elements
(not tuples). In particular, any dp-minimal theory is sharp.

Our Bible concerning NIP theories are Shelah’s papers [11,12,10,14,13]. We will however use ideas only from the first
two. All the basic insights about indiscernible sequences were taken from there (although the important result on shrinking
indiscernible sequences originates in [2]).

In fact, we realized after having done most of this work that the idea of ‘domination’ for indiscernible sequences was
already in Shelah’s work: in Section 2 of [12] in a slightly different wording and with a very different purpose. The main
additional ingredient in Section 3 is the external characterization of domination (Proposition 3.7) which allows us to say
something about points outside of the indiscernible sequence and then to generalize to the invariant type setting.

An important property of stable theories sometimes referred to as the Shelah reflection principle says roughly that non-
trivial relationships between a realization of a type p and some other point are reflected inside realizations of p. Internal
concepts (only considering realizations of p) often imply external properties (involving the whole structure). For example
regularity implies weight one. There is some evidence now that this principle is already true in NIP theories. See [3] for an
example (weak stable embeddedness).

In this paper we will use this principle for indiscernible sequences: a property involving only the indiscernible sequence
itself or extensions of it usually implies properties of the indiscernible sequence with respect to points outside (the same
way total indiscernibility implies that the trace of every definable set is finite or co-finite). See Lemma 2.7 and Proposi-
tion 3.7.

1.1. Preliminaries

We work with a complete theory T , in a language L. We let C denote a monster model of T .
We will often denote sequences of tuples by I, J , . . . . Index sets of families or sequence might be named I,J , . . . .
If I is an indiscernible sequence and A a set of parameters, let lim(I/A) let I be the limit type of I over A defined as

follows: if I = (at)t∈I , and φ(x;d) ∈ L(A), then φ(x;d) ∈ lim(I/A) if and only if for some t0 ∈ I , |� φ(at;d) holds for all
t � t0. Recall that a theory is NIP if and only if lim(I/A) is a complete type for every I and A. By lim(I), we mean the
global type lim(I/C).

Assumption. Throughout the paper, we assume that the theory T is NIP.

Let M be a κ-saturated model (for some κ > |T |). If A ⊆ M , |A| < κ , then a type p ∈ S(M) is A-invariant if for a |� p and
any tuples b,b′ ∈ M , b ≡A b′ → ba ≡ b′a. We will sometimes say simply that p is an invariant type, without specifying A.
Note that an invariant type has a natural extension to any larger set B ⊃ M that we will denote by p|B . We use the same
notation to denote the restriction of p to B , when B ⊂ M .

Let I be a linear order. A Morley sequence indexed by I of an invariant type p over some B ⊇ A is a sequence (at)t∈I
such that at |� p|B∪a<t for every t . All Morley sequences of p over B indexed by I are B-indiscernible and have the same
type over B; when B = M , we will denote that type by p(I) .

If px and qy are two types over the κ-saturated model M and p is invariant, we can define the product px ⊗ qy as
the element of Sxy(M) defined as tp(a,b/M) where b |� qy and a |� px|Mb . If q is also an invariant type, then px ⊗ qy

is invariant. In this case, we can also build the product qy ⊗ px . When the two products are equal, we say that p and q
commute.

Note that ⊗ is associative. In particular if p and q commute with r, then r commutes with p ⊗ q.

Definition 1.3. Two types px,qy over the same domain A are weakly orthogonal if px ∪ qy defines a complete type in two
variables over A.

If px,qy ∈ S(M) are invariant over A ⊂ M (M is κ-saturated and |A| < κ ), then we say that px and qy are orthogonal if
they are weakly orthogonal. This implies that p|B and q|B are also weakly orthogonal for any B ⊇ M .

Recall the notion of generically stable type from [11] and [8]: an invariant type p ∈ S(M) is generically stable if it is both
definable and finitely satisfiable in some small model N ⊂ M . Equivalently, its Morley sequence is totally indiscernible.

1.1.1. Measures
As we mentioned in the introduction, we will not recall all definitions concerning measures. Instead, we refer the reader

to [8] and [9]. The latter paper contains in particular the definition of a generically stable measure. Also the introduction
of [17] contains a concise account of the definitions and basic results we will need, but without proofs.
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We will need to extend the definition of weakly orthogonal for a type and a measure: if μx is a measure over A and p y

a type over the same A, we say that they are weakly orthogonal if μx has a unique extension to a measure over Ab, where
b |� p y .

We also recall the following from [17]: if M is a model, a measure μ ∈Mx(M) is smooth if it has a unique extension to
any N ⊃ M . For any formula φ(x,d), d ∈ C, let ∂Mφ denote the closed subset of Sx(M) consisting of types p such that there
are a,a′ two realizations of p satisfying φ(a,d) ∧ ¬φ(a′,d).

Fact 1.4. (See Lemma 4.1 of [17].) The measure μ ∈Mx(M) is smooth if and only if μ(∂Mφ) = 0 for all formulas φ(x,d), d ∈ C.

1.1.2. Indiscernible sequences and cuts
The notation I = I1 + I2 means that the sequence I is the concatenation of the sequences I1 and I2: I1 is an initial

segment of I and I2 the complementary final segment. This operation is associative, and we will also use it to denote the
concatenation of three or more sequences. It may be the case that one of the sequences is finite. In particular, when b is a
tuple, we may write I1 + b + I2 to denote I1 + 〈b〉 + I2 where 〈b〉 is the sequence of length 1 whose only member is b.

If I = I1 + I2, we will say that (I1, I2) is a cut of I .
By the EM-type (over A) of an indiscernible sequence I = 〈ai: i ∈ I〉, we mean the family (pn)n<ω , where pn ∈ Sn(A) is

the type of (aσ(k))k<n for σ : n → I any increasing embedding.
We now introduce a number of definitions that will be useful for handling indiscernible sequences.

Definition 1.5 (Cuts). If J ⊂ I is a convex subsequence, a cut c = (I1, I2) is said to be interior to J if I1 ∩ J and I2 ∩ J are
infinite.

A cut is Dedekind if both I1 and I∗2 (I2 with the order reversed) have infinite cofinality.
If c = (I1, I2) and d= ( J1, J2) are two cuts of the same sequence I , then we write c� d if I1 ⊆ J1.
We write (I ′1, I ′2) � (I1, I2) if I ′1 is an end segment of I1 and I ′2 an initial segment of I2. A polarized cut is a pair (c, ε)

where c is a cut (I1, I2) and ε ∈ {1,2} is such that Iε is infinite. We will write the polarized cut c− if ε = 1 and c+ if ε = 2.
Given a polarized cut c• = ((I1, I2), ε) and a set A of parameters, we can define the limit type of c• denoted by lim(c•/A)

as the limit type of the sequence I1 or I∗2 depending on the value of ε.
If a cut c has a unique polarization, or if we know both polarizations give the same limit type over A, we will write

simply lim(c/A).
If c = (I1, I2) is a cut, we say that the tuple b fills the cut c if I1 + b + I2 is indiscernible. Similarly, if b̄ is a sequence of

tuples, we will say that b̄ fills c if the concatenation I1 + b̄ + I2 is indiscernible.

The following definition is from [11].

Definition 1.6. Let c = (I1, I2) be a Dedekind cut. A set A weakly respects c if lim(c+/A) = lim(c−/A). It respects c if for every
finite A0 ⊆ A, there is I ′1 cofinal in I1 and I ′2 coinitial in I2 such that I ′1 + I ′2 is indiscernible over A0.

Note that lim(c•) = lim(c•/C) is an invariant type, in fact finitely satisfiable over the sequence I .
If c1 and c2 are two distinct polarized cuts in an indiscernible sequence I then lim(c1) and lim(c2) commute: lim(c1)x ⊗

lim(c2)y = lim(c2)y ⊗ lim(c1)x . More precisely φ(x, y) ∈ lim(c1)x ⊗ lim(c2)y if and only if for some J1 cofinal in c1 and J2
cofinal in c2, φ(a,b) holds for (a,b) ∈ J1 × J2.

Definition 1.7 (Polycut). A polycut is a sequence (ci)i∈I of pairwise distinct cuts.
The definitions given for cuts extend naturally to polycuts: a polarized polycut is a family of polarized cuts. If c = (ci)i∈I

is a polarized polycut, then we define lim(c) = ⊗
i∈I lim(ci). It is a type in variables (xi)i∈I . A tuple (ai)i∈I fills c if the

sequence I with all the points ai added in their respective cut is indiscernible. Note that this is stronger than asking that
each ai fills ci .

Definition 1.8 (I-independent). Let I be a dense indiscernible sequence, c1, . . . , cn pairwise distinct cuts in I and a1, . . . ,an

filling those cuts, then a1, . . . ,an are independent over I (or I-independent) if the tuple (a1, . . . ,an) fills the polycut
(c1, . . . , cn).

We will use the notation a �I b to mean that a and b are independent over I , i.e., that I ∪ {a} ∪ {b} remains indiscernible
(where I ∪ {a} ∪ {b} is ordered so that a and b fall in their respective cuts). Note that this is a symmetric notion.

The proofs in this paper will involve a lot of constructions with indiscernible sequences. We list here the basic results
and ideas we will need for that. We tried to encapsulate in lemmas some constructions that we will use often. However,
in some cases, the lemmas will not fit exactly our needs. The reader should therefore bear in mind the principles of those
constructions more than the statements themselves. The constructions are grouped in three parts: shrinking, expanding and
sliding.
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1.2. Shrinking

We start with the very important results concerning shrinking of indiscernibles. We give the statement as in [11, Sec-
tion 3]. See also [1].

Definition 1.9. A finite convex equivalence relation on I is an equivalence relation ∼ on I which has finitely many classes,
all of which are convex subsets of I .

Proposition 1.10 (Shrinking indiscernibles). Let A be any set of parameters and (at)t∈I be an A-indiscernible sequence. Let d be any
tuple. Let φ(xd; y0, . . . , yn−1, z) be a formula. There is a finite convex equivalence relation ∼ on I such that given:

– t0 < · · · < tn−1 in I;
– s0 < · · · < sn−1 in I with tk ∼ sk for all k;
– b ∈ A|t| ,

we have φ(d;at0 , . . . ,atn−1 ,b) ↔ φ(d;as0 , . . . ,asn−1 ,b).
Furthermore, there is a coarsest such equivalence relation.

Often we will apply this with A = ∅, in which case b does not appear.
We elaborate a little bit on this statement. We fix some parameter set A, sequence I , tuple d and formula

φ(xd; y0, . . . , yn−1, z) such that I is indiscernible over A. Consider the coarsest equivalence relation ∼ satisfying the conclu-
sion of Proposition 1.10.

The relation ∼ induces a partition of the sequence I into convex equivalence classes: I = I1 + · · · + IT . We define also
the corresponding partition of I as I = I1 + · · · + IT .

The T − 1 cuts (I1 + · · · + Ik−1, Ik + · · · + IT ), for k < T , will be called the cuts induced by (d, φ) on I (over A). For the
purpose of this section, we will denote them by cutI (d, φ;0) < · · · < cutI (d, φ; T − 1). Here A is implicit to simplify the
notation. Let also TI (d, φ) = T be the number of such cuts.

Let F(n, T ) be the set of non-decreasing functions from n to T . For any f ∈ F(n, T ) and b ∈ A|t| , there is a truth value
εd,φ;I ( f ,b) such that φ(d;at0 , . . . ,atn−1 ,b) has truth value εd,φ;I ( f ,b) for any t0 < · · · < tn−1 with tk ∈ I f (k) for all k < T .

To summarize, the tuple d the sequence I and the set A being fixed, we have associated, to any formula φ(xd; y0, . . . ,

ynφ−1, z) an integer TI (d, φ), cuts cuti(d, φ; I) for i < TI (d, φ) and a function εI (d, φ) :F(n,TI (d, φ)) × A|t| → {�,⊥}. This
data completely describes the type of d over I A.

Lemma 1.11. Let I = (at)t∈I be A-indiscernible with I of cofinality at least |T |+ , then for any finite tuple d, there is an end segment
I ′ of I that is indiscernible over Ad.

Proof. Simply take I ′ to be to the right of all the cuts cutI (d, φ; i). �
Usually, when we consider the type of a tuple d over an indiscernible sequence I , we are not concerned with the exact

type, but only with the number of cuts induced by d on I and their relative position with respect to each other. We now
define a notion of similarity between types which makes this precise.

Let d be a tuple and I = (at)t∈I an indiscernible sequence. We define a structure I[d] as follows: its universe is {at : t ∈ I},
the language contains a binary relation <I interpreted as the order on I and for each formula φ(xd; y0, . . . , yn) ∈ L, a n-ary
predicate Rφ(y0, . . . , yn−1) which holds on (at0 , . . . ,atn−1 ) if and only if |� φ(d;at0 , . . . ,atn−1 ).

Definition 1.12. Let I, J be two indiscernible sequence and d,d′ two tuples of the same length. We say that tp(d/I) and
tp(d′/ J ) are similar if I[d] ≡ J [d′] .

If I and J are indiscernible over A, we say that the two types are similar over A if they are similar, in the expanded
language L(A).

Note that in particular, if tp(d/I) and tp(d′/I ′) are similar over A, then tp(d/A) = tp(d′/A) and the EM-types of I and J
over A are the same.

The structure I[d] is bi-interpretable with the structure having same universe, whose language contains the binary rela-
tion <I and for each cut cuti(d, φ; I) a unary predicate interpreted as the left-piece of the cut. When I and J are densely
ordered without endpoints (which will almost always be the case), then tp(d/I) and tp(d′/ J ) are similar over A if and only
if for all formula φ and ψ as above, the following conditions are satisfied:

– TI (d, φ) = T J (d′, φ);
– εI (d, φ) = ε J (d′, φ);
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– for all i < TI (d, φ), the cuts cutI (d, φ; i) and cut J (d′, φ; i) are either both of infinite cofinality from the left (resp. right)
or both of finite cofinality from the left (resp. right);

– for all i < TI (d, φ) and j < TI (d,ψ), we have cutI (d, φ; i) < cutI (d,ψ; j) if and only if cutI ′ (d′, φ; i) < cutI ′ (d′,ψ; j);
– there are infinitely many elements in I between the cuts cutI (d, φ; i) and cutI (d′,ψ; j) if and only if there are infinitely

many elements in J between the cuts cut J (d′, φ; i) and cut J (d′,ψ; j).

Lemma 1.13. Let I be a dense indiscernible sequence over a set A, and d a tuple, then there is I ′ ⊂ I of size at most |T | + |d| such that
tp(d/I ′) and tp(d/I) are similar over A.

Proof. This is immediate by Löwenheim-Skolem. �
1.3. Expanding

Let I be an indiscernible sequence over some set A, and d any tuple. We now study how one can extend I to some
bigger sequence I ′ maintaining the similarity type of tp(d/I) over A.

First, if I is endless, there is a limit type lim(I) as defined above. If J realizes a Morley sequence of that type over Ad,
then I + J∗ is indiscernible, where J∗ is the sequence J with the opposite order. Also tp(d/I + J∗) is similar to tp(d/I)
over A.

Consider now a cut c = (I1, I2) of I . If I1 is endless, then we can similarly consider K a Morley sequence of lim(I1) over
I A. Then I1 + K ∗ + I2 is indiscernible and tp(d/I1 + K ∗ + I2) is similar to tp(d/I1 + I2). If I2 has no first element, then we
can similarly extend by realizing a Morley sequence in lim(I∗2). Note that unless the cut c is induced by (d, φ) on I for some
formula φ, then lim(I1/I Ad) = lim(I∗2/I Ad).

If we want to extend the sequence I by adding elements in different cuts, we can iterate the above procedure. Note that
the order in which we chose the cuts does not matter since the different limit types commute with each other.

We therefore conclude the following lemma.

Lemma 1.14. Let I = (ai)i∈I be an indiscernible sequence over some set A. Assume I is dense without endpoints. Let d be any tuple and
let J ⊃ I be any linearly ordered set extending I . Then there are tuples (ai)i∈J \I such that the sequence J = (ai)i∈J is indiscernible
over A and tp(d/ J ) is similar to tp(d/I) over A.

1.4. Sliding

We are now concerned with the situation where we have A, I and d as above, and we want to produce some d′ with
the same similarity type as d, but such that the cuts induced by d′ are different from those induced by d. We see this as
sliding the point d along the sequence.

We state the result in a slightly more general form.

Lemma 1.15. Let I , J be two dense sequences, indiscernible over some set A. Assume they have no endpoints and have the same EM-
type over A. Let d be any tuple. For any formula φ such that cutI (d, φ; i) is well defined, pick a cut d(φ; i) of J such for any φ , ψ , i, j
for which this makes sense:

– the cuts cutI (d, φ; i) and d(φ; i) are either both of infinite cofinality from the left (resp. right) or both of finite cofinality from the
left (resp. right);

– we have d(φ; i) < d(ψ; j) if and only if cutI (d, φ; i) < cutI (d,ψ; j);
– there are infinitely many elements in J between the cuts d(φ; i) and d(ψ; j) if and only if there are infinitely many elements in I

between the cuts cutI (d, φ; i) and cutI (d′,ψ; j).

Then there is a point e such that tp(e/ J ) is similar to tp(d/I) over A and cut J (e, φ; i) = d(φ; i) for any φ and i.

Proof. This translates into finding e with a prescribed type p(x) over A J . Let θ(x;m̄) ∈ p(x), m̄ ⊂ J . Also we may assume
that θ(x;m̄) is a conjunction of the form

∧

j

φ
ε j

j (x;m̄,b); b ∈ A, m̄ ∈ J ,

where ε j is either 0 or 1 depending on the position of the points in m̄ with respect to the cuts d(φ j; i). We can find an
injection σ : m̄ → I such that:

– for every m0, m1 in m̄, if m0 < J m1, then σ(m0) <I σ(m1);
– for every index j and m0 ∈ m̄, the relative position of σ(m0) and the cut cutI (a, φ j; i) on I is the same as that of m0

and d(φ; i).
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Then σ is a partial isomorphism and a |� ∧
j φ j(x;σ(m̄)). Therefore θ(x;m̄) is consistent and by compactness, p(x) is

consistent. �
Corollary 1.16. Let I , J be two dense sequences with no endpoints indiscernible over some set A of same EM-type over A. Let a and
b be tuples of the same length such that tp(a/I) and tp(b/ J ) are similar over A. Let a′ be any tuple. Then there is an indiscernible
sequence J ′ ⊇ J and a tuple b′ such that tp(bb′/ J ′) is similar to tp(aa′/I) over A.

Proof. By expanding, we can find a sequence J ′ extending J such that tp(b/ J ′) is similar to tp(b/ J ) and the sequence
J ′ is indexed by a |T |+-saturated dense linear order. It is then easy to find cuts d(φ; i) in J ′ as in the previous lemma
corresponding to the cuts cutI (aa′, φ; i) in a way compatible with the cuts cut J ′ (b, φ; i) over J ′ . Lemma 1.15 gives us a
tuple b0b′

0 of same length as aa′ such that tp(b0b′
0/ J ′) is similar to tp(aa′/I). By assumption on the cuts d(φ; i), we have

tp(b0/ J ′) = tp(b/ J ′) so by composing by an automorphism over J ′ , we obtain some b′ as required. �
Corollary 1.17. Let I , J be two dense sequences with no endpoints indiscernible over A and of same EM-type over A. Let a and b be
tuples of the same length such that tp(a/I) and tp(b/ J ) are similar over A. Let I ′ ⊇ I be indiscernible and let a′ be any tuple. Then
there is an indiscernible sequence J ′ ⊇ J and a tuple b′ such that tp(bb′/ J ′) is similar to tp(aa′/I ′) over A.

Proof. Simply apply the previous corollary with a′ there equal to a′ ∪ (I ′ \ I) here. �
1.5. Weight and dp-minimality

Let (Ii)i<α be a family of indiscernible sequences and A a set of parameters. We say that the sequences (I i)i<α are
mutually indiscernible over A if for every i < α, the sequence Ii is indiscernible over A ∪ {I j: j < α, j �= i}.

The following observations are from [11].

Proposition 1.18. Let (Ii)i<|T |+ be mutually indiscernible sequences (over some set A) and let d be a tuple of size at most |T |. Then
there is some i < |T |+ such that Ii is indiscernible over Ad.

Proof. Assume not, then for every i < |T |+ , we can find two tuples āi and b̄i of increasing elements from Ii and a formula
φi(x, ȳ) such that d |� φi(x, āi) ∧ ¬φi(x, b̄i). Removing some sequences from the family, we may assume that φi = φ does
not depend on i. By mutual indiscernibility, we have tp(ai/{I j: j �= i}) = tp(bi/{I j: j �= i}) for all i < |T |+ . It follows that for
every A ⊆ |T |+ , we can find a tuple dA such that for all i < |T |+ , dA |� φ(x, āi) if and only if i ∈ A. This contradicts NIP. �
Corollary 1.19. Let M be some κ-saturated model, and let (pi)i<|T |+ be a family of pairwise commuting invariant types over M. Let
p = ⊗

i<|T |+ pi and (ai)i<|T |+ |� p. Let also q ∈ S(M) be any type and d |� q. Then there is i < |T |+ such that (ai,d) |� pi ⊗ q.

Proof. Build a Morley sequence 〈(ak
i )i<|T |+ : 0 < k < ω〉 of p over everything and set a0

i = ai for each i. Commutativity
implies that the sequences (ak

i )k<ω , i < |T |+ are mutually indiscernible. The result then follows by Proposition 1.18. �
Observe in particular that if q is an invariant type, taking b |� q|{ai: i < |T |+}, we obtain that there is i < |T |+ such that

pi and q commute.
We will occasionally mention dp-minimal theories. They are theories for which the notion of weight suggested by Propo-

sition 1.18 is equal to 1 on 1-types. This notion was introduced by Shelah in [10].

Definition 1.20 (dp-minimal). A theory T is dp-minimal if it is NIP and if for every indiscernible sequence I and element d
of the home sort, there is a subdivision I = I1 + I2 + I3 into convex sets, where I2 is either reduced to a point or empty
and I1 and I3 are both indiscernible over d.

Equivalently, for every two mutually indiscernible sequences I and J and element d, one of I or J is indiscernible over d.

See [16] for the proof of the equivalence and [5] for additional information.
Examples of dp-minimal theories include o-minimal and C-minimal theories and the p-adics.

2. Distal theories

2.1. Indiscernible sequences

We now state the main definition of this paper.



P. Simon / Annals of Pure and Applied Logic 164 (2013) 294–318 301
Definition 2.1 (Distal). An indiscernible sequence I is distal if for any dense sequence J of same EM-type as I , and any
distinct Dedekind cuts c1 and c2 of J , if a fills c1 and b fills c2, then a � J b.

An NIP theory T is distal if all indiscernible sequences are distal.

Remark 2.2. Equivalently the two types lim(c1/ J ) and lim(c2/ J ) are weakly orthogonal.

Lemma 2.3. If I is dense and has two distinct Dedekind cuts c1 and c2 , then it is distal if and only if lim(c1/I) and lim(c2/I) are weakly
orthogonal (i.e., there is no need for J in the definition).

Proof. Left to right is obvious. We show the converse. If I is not distal, then there is some dense sequence J of the same
EM-type, two distinct Dedekind cuts d1 and d2 of J , some a1 filling d1 and a2 filling d2 such that a1 �� J

a2. Let φ(a1,a2,m̄)

be a formula witnessing that, with m̄ ∈ I . Take a countable J ′ ⊆ J containing m̄ such that a1 and a2 fill Dedekind cuts of J ′ .
Replacing J by J ′ , we may assume that J is countable.

Then by expanding, we can find some J0 ⊇ J and an automorphism σ mapping J0 onto I and such that the cut d1
(resp. d2) is mapped to c1 (resp. c2) and the types tp(a1,a2/ J ) and tp(a1,a2/ J0) are similar. Then, the points σ(a1) and
σ(a2) fill respectively the cuts c1 and c2 and φ(σ (a1),σ (a2),σ (m̄)) holds. Therefore σ(a1) ��I

σ(a2) and it follows that the
two limit types lim(c1/I) and lim(c2/I) are not weakly orthogonal. �

Actually, it will follow from Lemma 2.7 that the hypothesis that I is dense can be removed.

Example 2.4. Assume I is an indiscernible sequence, f a definable function such that f (I) is totally indiscernible (non-
constant), then I is not distal. To see this, take a and b in the definition such that f (a) = f (b). See Corollary 2.15 for a more
general result.

Example 2.5. In DLO, any two 1-types concentrating on different cuts are weakly orthogonal. It is easy then to check that it
is a distal theory. We will see (Corollary 2.30) that in fact any o-minimal theory is distal.

Lemma 2.6. Assume I is a dense indiscernible distal sequence, and c0, . . . , cn−1 are pairwise distinct Dedekind cuts. If for each i < n,
ai fills ci then the family (ai)i<n is I-independent.

Proof. We prove it by induction on n. for n = 2, it is Lemma 2.3. Assume it holds for n and consider a family (ci)i<n+1
and (ai)i<n+1 as in the hypothesis. Let I ′ = I ∪ {a0} (where a0 is inserted in the cut c0). Each cut ci naturally induces a cut
c′i of I ′ . By the case n = 2, for each 0 < i < n + 1, ai fills c′i . The sequence I ′ is also distal, so by induction (ai)0<i<n+1 is
I ′-independent. Therefore (ai)i<n+1 is I-independent. �
Lemma 2.7 (External characterization of distality). A sequence I is distal if and only if the following property holds: For every set A,
tuple b and A-indiscernible sequence I ′ = I1 + I2 (I1 and I2 without endpoints, EM-tp(I ′) = EM- tp(I)), if I1 + b + I2 is indiscernible,
it is A-indiscernible.

Proof. Assume that I is distal, but the conclusion does not hold. Then there is some I ′ = I1 + I2 and formula φ(x) with
parameters from A ∪ I1 ∪ I2 which witnesses it. This means φ(b) holds and there is (I ′1, I ′2) � (I1, I2) such that ¬φ(a) holds
for a ∈ I ′1 ∪ I ′2. Restricting even more if necessary, we may assume that I ′1 + I ′2 is indiscernible over the parameters of φ. So
replacing I ′ by that latter sequence, we may assume that all the parameters are from A. Then, we may freely enlarge I ′ , so
assume that it is dense.

As I ′ is A-indiscernible, for every cut c of I ′ , there is b′ filling it such that φ(b′) holds. Fix an increasing sequence (ck)k<ω

of such cuts. For every k < ω, let bk fill ck such that φ(bk) holds. The sequence I ′ is distal (because I ′ and I have same
EM-type) so by Lemma 2.6, the sequence formed by adding all those points to I ′ is still indiscernible. Therefore φ(x) has
infinite alternation number, contradicting NIP.

The converse is easy. �
The following technical lemma will be used repeatedly.

Lemma 2.8 (Strong base change). Let I be an indiscernible sequence and A ⊇ I a set of parameters. Let (ci)i<α be a sequence of pairwise
distinct polarized Dedekind cuts in I . For each i < α let di fill the cut ci . Then there exist (d′

i)i<α such that tp((d′
i)i<α/I) = tp((di)i<α/I)

and for each i < α, tp(d′
i/A) = lim(ci/A).

Proof. Assume the result does not hold. Then by compactness, we may assume that α = n is finite and that there is a
formula φ(x0, . . . , xn−1) ∈ tp((di)i<n/I) and formulas ψi(xi) ∈ lim(ci/m) for some finite m ∈ Ak such that φ(x0, . . . , xn−1) ∧∧

i ψi(xi) is inconsistent. Let I0 denote the parameters of φ, and assume I0 ⊆ m.
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Assume for simplicity that n = 2 (the proof for n > 2 is the same) and without loss each ci is polarized as c
−
i . For i = 0,1

take ( J i, J ′
i) � ci such that ψi holds on all elements of J i and J i ∪ J ′

i contains no element of I0. Then J0 + J ′
0 and J1 + J ′

1
are mutually indiscernible over I0. So for every two cuts d0 and d1 respectively from J0 + J ′

0 and J1 + J ′
1, we can find

points e0 and e1 filling those cuts (even seen as cuts of I) such that φ(e0, e1) holds.
Take two cuts d0 and d1 of I such that they are respectively interior to J0 and J1. Fill d0 by e0 and d1 by e1 such

that φ(e0, e1) holds. By hypothesis, either ¬ψ0(e0) or ¬ψ1(e1) holds. Assume ¬ψ1(e1) holds. Now forget about e0 and set
I ′ = I ∪ {e1}. Then I ′ is indiscernible and we take it as our new I . Set J ′

0 = J0 and let J ′
1 be an initial segment of J1 not

containing d1 and make the same construction. We obtain new points (e1
0, e1

1) that fill the cuts d1
0,d

1
1 of J ′

0 and J ′
1 such

that ¬ψ0(e1
0) ∨ ¬ψ1(e1

1) holds. Without loss (as we will iterate infinitely many times) again ¬ψ1(e1
1) holds.

Iterate this ω time to obtain a sequence of points ek
1 and cuts dk

1 in J1 such that I with all the points ek
1 added in

the cuts dk
1 is indiscernible and ¬ψ1(ek

1) holds for all n. But ψ1(x) holds for all x ∈ J1 so ψ1 has infinite alternation rank,
contradicting NIP. �
Corollary 2.9 (Base change). The notion of being distal is stable both ways under base change: If I is A-indiscernible, then I is distal in
T (A) if and only if it is distal in T .

Proof. Assume I is distal in T . Notice that the property stated in Lemma 2.7 is preserved under naming parameters (because
we can incorporate them in the set A). This implies that I is distal in T (A).

Conversely, assume I is not distal in T . Increase I to some large A-indiscernible sequence J1 + J2 + J3 and take a,b
such that J1 + a + J2 + J3 and J1 + J2 + b + J3 are indiscernible, but J1 + a + J2 + b + J3 is not. By strong base change, we
may assume that a and b realize the limit types over A of the cuts they define. Then J1 + a + J2 + J3 and J1 + J2 + b + J3
are A-indiscernible, giving a counter-example to distality in T (A). �
Lemma 2.10. If T is dp-minimal and I is an indiscernible sequence of elements of the home sort which is not totally-indiscernible, then
I is distal.

Proof. Write I = (di)i∈I and assume that it is not totally indiscernible. Working over some base A if necessary, we may
assume that there is a formula φ(x, y) ∈ L(A) which orders the sequence I and such that I is indiscernible over A. So we
have φ(di,d j) ⇐⇒ i < j. (Extend the sequence I to some J1 + I + J2 and take A = J1 + J2.)

Without loss I is a dense order and can be written as I1 + I2 + I3, the three pieces being infinite without end points.
Write I = I1 + I2 + I3 in the obvious way. Let a fill the cut ca = (I1, I2 + I3) and b fill cb = (I1 + I2, I3). Assume that
a and b contradict distality of I . So there is a formula ψ(x, y) ∈ L(AI) such that ψ(a,b) holds and witnesses a ��I

b. Let

d̄ = (di1 , . . . ,din ) be the parameters of ψ coming from I with i1 < · · · < in . Let s be such that exactly i1, . . . , is are from I1
and t such that exactly is+1, . . . , it are from I2. Let I ′

1 be an end segment of I1 above is and I ′
3 an initial segment of I3

below it+1.
Let d̄1 = (di1 , . . . ,dis ) and d̄3 = (dit+1 , . . . ,din ). Consider the sequence J = 〈diˆd̄1ˆd̄3: i ∈ I ′

1 + I2〉 + 〈bˆd̄1ˆd̄3〉 + 〈diˆd̄1ˆd̄3:
i ∈ I ′

3〉. It is an indiscernible sequence. By dp-minimality applied to J and a, we know that J breaks into J1 + J2 + J3, J2
having at most one element, and such that J1 and J3 are indiscernible over a. Considering the formula φ(x,a), we know
that J1 must be equal to 〈diˆd̄1ˆd̄3: i ∈ I ′

1〉. And then J2 is empty and J3 is the rest of the sequence. In particular the
tuple bˆd̄1ˆd̄3 lies inside J3 as do all the parameters of ψ(x, y). As ψ(a,b) holds but ¬ψ(a,di) holds for i ∈ I3, we get a
contradiction to the indiscernibility of J3 over a. �
Lemma 2.11. Let T be distal, I and J are two mutually indiscernible sequences. Let c (resp. d) be a cut in the interior of I (resp. J ).
Then lim(c/I J ) and lim(d/I J ) are weakly orthogonal.

Proof. Write I = (ai)i∈I and J = (b j) j∈J . Assume the conclusion does not hold. Then there are a |� lim(c/I J ) and b |�
lim(d/I J ) and a formula φ(x, y) ∈ L(I J ) such that φ(a,b) holds, but lim(c) ⊗ lim(d) � ¬φ(x, y). Let K be a countable dense
linear order without end points. Pick embedding τ1 :K → I and τ2 :K →J such that:

– c induces a Dedekind cut on τ1(K) and d induces a Dedekind cut on τ2(K);
– identifying τ1(K) and τ2(K), those two Dedekind cuts are distinct;
– the parameters of φ(x, y) belong to {ai: i ∈ τ1(K)} ∪ {b j: j ∈ τ2(K)}.

Let K be the sequence 〈aτ1(t)ˆbτ2(t): t ∈ K〉. Let c′ and d′ denote the two cuts naturally induced by c and d on K . There
are tuples b∗ and a∗ such that aˆb∗ fills c′ and a∗ˆb fill d′ . By distality of K , aˆb∗ �K a∗ˆb and φ(a,b) holds. This contradicts
the assumption. �
Definition 2.12 (Weakly linked). Let 〈(ai,bi): i ∈ I〉 be an indiscernible sequence of pairs. We say that (ai)i∈I and (bi)i∈I are
weakly linked if for all disjoint subsets I1 and I2 of I , (ai)i∈I and (bi)i∈I are mutually indiscernible.
1 2
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Observation 2.13.

1. If 〈(ai,bi): i ∈ I〉 is A-indiscernible and (ai)i∈I and (bi)i∈I are mutually indiscernible, then they are mutually indiscernible
over A.

2. If 〈(ai,bi): i ∈ I〉 is A-indiscernible and (ai)i∈I and (bi)i∈I are weakly linked, then they are weakly linked over A.

Lemma 2.14. Let 〈(ai,bi): i ∈ I〉 be indiscernible.

1. If (ai)i∈I and (bi)i∈I are weakly linked and (ai)i∈I is distal, then (ai)i∈I and (bi)i∈I are mutually indiscernible.
2. If (bi)i∈I is totally indiscernible, then (ai)i∈I and (bi)i∈I are weakly linked.

Proof. (1) Without loss, we may assume that I is dense. Pick some finite I2 ⊂ I . Then (ai)i /∈I2 is indiscernible over
B = (bi)i∈I2 . By applying repeatedly Lemma 2.7, we obtain that (ai)i∈I is indiscernible over B . This is enough.

(2) Assume I is dense and big enough, take I1 ⊂ I finite and let A = (ai)i∈I1 . By shrinking of indiscernibles and
using total indiscernibility of (bi)i∈I , there is I2 ⊂ I of size at most |T | such that (bi)i∈I\I2 is indiscernible over A. By
indiscernibility of 〈(ai,bi): i ∈ I〉, we may take I2 = I1. Therefore (ai)i∈I and (bi)i∈I are weakly linked. �
Corollary 2.15. Let 〈(ai,bi): i ∈ I〉 be an indiscernible sequence. Assume (ai)i∈I is totally indiscernible and (bi)i∈I is distal, then
(ai)i∈I and (bi)i∈I are mutually indiscernible.

2.2. Invariant types

We prove here a characterization of distality in terms of invariant types.
If M is a κ-saturated model, by an invariant type over M , we mean a type p ∈ S(M) invariant over some A ⊂ M ,

|A| < κ . If p and q are two invariant types over M , then we can define the products px ⊗ qy and qy ⊗ px as explained in
the introduction. The types p and q commute if those two products are equal.

Lemma 2.16. Assume T is distal. Let M be κ-saturated and let p,q ∈ S(M) be invariant types. If px ⊗ qy = qy ⊗ px, then p and q are
orthogonal.

Proof. Let b |� q and let N ≺ M a model of size < κ such that p and q are N-invariant. Let I ⊂ M be a Morley sequence
of p over N . Let a realize p, and build I ′ a Morley sequence of p over Mab. The hypothesis implies that p(ω) and q
commute (as ⊗ is associative). Thus b |� q|M I ′ and in particular, I + I ′ is indiscernible over Nb. By distality, I + a + I ′ is also
Nb-indiscernible. This proves that tp(a,b/N) is determined.

As this is true for any small N over which p and q are invariant, the types p and q are orthogonal. �
Proposition 2.17. The theory T is distal if and only if any two global invariant types p and q that commute are orthogonal.

Proof. Lemma 2.16 gives one implication. Conversely, assume that T is not distal. Then there is a dense indiscernible
sequence I , two distinct Dedekind cuts c1 and c2 and a and b filling them such that a ��I

b. By Lemma 2.8 (strong base

change), we may assume that I ⊂ M , for M a large saturated model, and a |� lim(c−1 /M), b |� lim(c−2 /M). Then the types
p = lim(c−1 /M) and q = lim(c−2 /M) have the required property. �

Consider p,q ∈ S(M) and assume only that p is invariant. Then px ⊗qy is well defined, but qy ⊗ px does not make sense
a priori. We show now how to define qy ⊗ px .

Let M be κ-saturated and p ∈ S(M) an A-invariant type for some A ⊂ M of size < κ . We define an M-invariant type
p′ ∈ S(C) as follows: Fix a formula φ(x;b) ∈ L(C) and a maximal Morley sequence (a1, . . . ,an) of p over A such that
¬(φ(ai;b) ↔ φ(ai+1;b)) holds for all i < n and each ai is in M . Set φ(x;b) ∈ p′ if and only if |� φ(an;b). We will call p′ the
inverse of p over M .

Now if qy ∈ S(M) is any type, then we define qy ⊗ px to the be p′
x ⊗ qy ∈ S(M). Notice that if q was invariant to begin

with, then the two definitions of qy ⊗ px coincide. Note also that the associativity relation: px ⊗ (qy ⊗ rz) = (px ⊗ qy) ⊗ rz

holds in all possible cases (each product is well defined if and only if at least two of p,q, r are invariant).
The following generalizes Lemma 2.16, the proof is the same, using Lemma 2.19 to build the Morley sequence I of p

inside M .

Lemma 2.18. Assume T is distal. Let M be κ-saturated (κ � |T |+), p ∈ S(M) be A-invariant for some A of size < κ and q ∈ S(M) be
any type. If px ⊗ qy = qy ⊗ px, then p and q are orthogonal.
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We record the following lemma for future needs.

Lemma 2.19. Let M be κ-saturated, κ � |T |+ . Let p,q ∈ S(M), p being A-invariant for some |A| < κ . Then there is some B ⊂ M,
|B| < κ , such that A ⊆ B and for b |� q and any a,a′ ∈ M such that a,a′ |� p|B , we have tp(a,b/A) = tp(a′,b/A).

Proof. Fix a formula φ(x, y; c) ∈ L(A) and take (a1, . . . ,an) in M a maximal Morley sequence of p over A such that
¬(φ(ai,b; c) ↔ φ(ai+1,b; c)) holds for all i < n. Then for each a ∈ M , a |� p|Aa1..an we have |� φ(a,b; c) ↔ φ(an,b; c).

Take B to contain all the ai ’s obtain by letting φ(x, y; c) range in L(A). �
2.3. Generically stable measures

We prove in this section that distal theories are exactly those theories in which generically stable measures are smooth.
We consider this as a justification that distality is a meaningful notion. It was proved in [17] that o-minimal theories and
the p-adics have this property. This latter result will be generalized in the next section, where we prove that distality can
be checked in dimension 1.

We have two tools at our disposal to link indiscernible sequences of tuples to measures. In one direction, starting with
an indiscernible sequence of tuples, we can form the average measure. This construction is defined in [9], extended in [17]
and recalled below. In the opposite direction, starting with a generically stable measure μ (or in fact any invariant measure),
we can consider the product μ(ω) in variables x1, x2, . . . . We then want to realize it in some way. We do this by taking
smooth extensions; see the proof of Proposition 2.27.

Let I = (at)t∈[0,1] be an indiscernible sequence. We can define the average measure μ of I as the global measure defined
by μ(φ(x)) = λ0({t ∈ [0,1]: at |� φ(x)}), where λ0 is the Lebesgue measure. That measure is generically stable (in fact
definable and finitely satisfiable over I).

The support of a measure μ ∈ M(A) is the set of weakly-random types for μ, namely the set of types p ∈ S(A) such
that p � ¬φ(x) for every formula φ(x) ∈ L(A) such that μ(φ(x)) = 0. We will denote it by S(μ).

Lemma 2.20. Let μ be the average measure of the indiscernible sequence I = (at)t∈[0,1] (over C). Then the support S(μ) of μ is exactly
the set of limit types of cuts of I .

Proof. First, if φ(x) is satisfied by some lim(c), c a cut in I , then φ(x) holds on a subsequence, cofinal in c, and therefore
has positive measure. Conversely, let p(x) ∈ S(μ) (a global type). For each φ(x) ∈ p, the set {t ∈ [0,1]: |� φ(at)} is infinite.
By compactness of [0,1], there is r ∈ [0,1] which is in the closure of all of those sets as φ(x) varies in L(C). If I is totally
indiscernible, then μ is the unique limit type of I , so assume that this is not the case. Then I is ordered by some formula
ψ(x, y) ∈ L(C). The type p must satisfy either ψ(x,ar) or ψ(ar, x). In the first case, p is equal to the limit type to the left
of ar and in the second case, to the limit type to the right of ar . �
Proposition 2.21 (Smooth measures imply distality). Let I be an indiscernible sequence indexed by [0,1], and μ be the average
measure of I over some model M. Then μ is smooth if and only if I is distal.

Proof. Assume μ is not smooth and I is distal. Then there exists a formula φ(x,a) ∈ L(C) such that the set of p ∈ S(M) such
that p neither implies φ(x,a) nor its negation has positive measure (in other words, p ∈ ∂φ). We know that the support of
μ is exactly the limit types of cuts in I . Therefore, one can find ω such cuts (ci)i<ω in ∂φ. Remove countably many points
from I (thus not affecting any limit types) so that the cuts ci become Dedekind.

Restricting to some sub-interval of [0,1], we may assume that φ(x,a) has constant truth value on I . Without loss, it
holds on all members of I . For each index i, as lim(ci) ∈ ∂φ, there is bi filling the cut ci over I such that ¬φ(bi,a) holds.
As I is distal, the sequence formed by adding all the bi to I is still indiscernible. But then the formula φ(x,a) has infinite
alternation number.

Conversely, assume that I is not distal. If J is an indiscernible sequence, we write J ′ for the sequence J with the
endpoints removed. We can find a partition I = I1 + I2 + I3 and points b1,b2 such that I ′1 +b1 + I ′2 + I ′3 and I ′1 + I ′2 +b2 + I ′3
are indiscernible, but I ′1 + b1 + I ′2 + b2 + I ′3 is not. Without loss, assume that I1 and I2 have no last element. By strong
base change, we may assume that the types of b1 and b2 over M are respectively lim(I1) and lim(I2). There is a formula φ,
parameters ik ⊂ Ik and b′

1 realizing the same type as b1 over M such that φ(i1,b1, i2,b2, i3) ∧ ¬φ(i1,b′
1, i2,b2, i3) holds.

Then the border ∂φ of φ(i1, x, i2,b2, i3) contains all limit types of cuts between i1 and i2 and has non-zero measure. This
proves that μ is not smooth. �
Corollary 2.22. If all generically stable measures are smooth, then T is distal.

Before proving the converse, we generalize some earlier lemmas from types to measures. Recall the following fact (which
follows for example from Proposition 3.3 of [7]).
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Fact 2.23. Let μx be a measure and (ai)i∈I an indiscernible sequence. Let φ(x; y) be a formula and ε > 0. Then, for some N, there do
not exist i1 < · · · < iN such that |μ(φ(x;aik )) − μ(φ(x;aik+1 ))| � ε for all j = 1 . . . N − 1.

By a measure μx1,x2,... being indiscernible, we mean that for any formula φ(x1, . . . , xn) and any increasing map
τ : ω → ω, we have μ(φ(x1, . . . , xn)) = μ(φ(xτ (1), . . . , xτ (n))). We now state the analogue of the previous fact with an
indiscernible sequence of measures, which is Corollary 2.12 of [9].

Fact 2.24. Let μx1,x2,... be indiscernible, and b any tuple. Fix some formula φ(x; y) and ε > 0, then for some N, there do not exist
i1 < · · · < iN such that |μ(φ(xi j ;b)) − μ(φ(xi j+1 ;b))| � ε for j = 1 . . . N − 1.

In particular, if μx1,x2,... is totally indiscernible, i.e., remains indiscernible when we permute the variables, then given
φ(x; y), ε > 0 and b, for some N there do not exist i1, . . . , iN such that |μ(φ(xi j ;b)) −μ(φ(xi j+1 ;b))| � ε for j = 1 . . . N − 1.

If I = (ai)i∈I and μx is a measure over {ai: i ∈ I}, we say that I is μ-indiscernible if for all φ(x; y1, . . . , yn), for all
t1 < · · · < tn and s1 < · · · < sn in I we have μ(φ(x;at1 , . . . ,atn )) = μ(φ(x;as1 , . . . ,asn )).

Lemma 2.25. Let I1 + a + I2 be an indiscernible distal sequence, I1 and I2 without endpoints. If μx is a measure such that I1 + I2 is
μ-indiscernible, then I1 + a + I2 is also μ-indiscernible.

Proof. The proof is the same as that of Lemma 2.7 using Fact 2.23. �
Lemma 2.26. Let μx1,x2,... be totally indiscernible and let (bi)i<ω be a distal indiscernible sequence. Assume that the measure
η(x1,y1),(x2,y2),... is indiscernible, where η is defined by η(φ(x1, x2, . . . ; y1, y2, . . .)) = μ(φ(x1, x2, . . . ;b1,b2, . . .)). Then the se-
quence (bi)i<ω is μ-indiscernible.

Proof. This is the analogue of Corollary 2.15. The same proof goes through. Namely, we first use indiscernibility to increase
the index set from ω to a dense order I . Next, let φ(xt1 , . . . , xtn ,bt1 , . . . ,btn ; xs) be a formula, t1, . . . , tn ∈ I are fixed and
J ⊂ I is disjoint for those points. Then using the remark following Fact 2.24 and the indiscernibility of the η, we show that
η(φ(xt1 , . . . ,bt1 , . . . ; xs)) is constant as s varies in J . From this, we conclude that the sequences are weakly linked, namely
for any I1,I2 disjoint subsets of I , the sequence 〈bi: i ∈ I1〉 is μ′-indiscernible, where μ′ is the restriction of μ to the
variables (xi: i ∈ I2).

Finally, we show exactly as in Lemma 2.14(1), that the sequence (bi)i<ω is μ-indiscernible. �
Proposition 2.27. If T is distal, then all generically stable measures are smooth.

Proof. Assume that T is distal and take μ a generically stable measure over some |T |+-saturated model N . The unique
global invariant extension of it will also be denoted by μ. Let a be a tuple. We will show that μ and tp(a/N) are weakly
orthogonal.

Let μ′ be an extension of μ to Na. Take a smooth extension μ′′ of μ′ to some B ⊇ Na. Let (Bi)i<ω be a coheir sequence
in tp(B/N), with B0 = B . The measure μ is definable over B , and for each i < ω, we can consider the measure μi

xi
which

is defined over Bi the same way μ is defined over B (using the canonical bijection from B to Bi).
Consider the measure λ〈xi ,i<ω〉 defined as

⊗
i<ω μi

xi
(this does not depend on the order of the factors since the μi ’s are

generically stable).

Claim. The measure λx0,x1,... is totally indiscernible over N, namely for every formula φ(x0, . . . , xn−1) ∈ L(N) and any permutation τ
of ω, we have λ(φ(x0, . . . , xn−1)) = λ(φ(xτ (0), . . . , xτ (n−1))).

Proof. Note that tp(B1/B0N) is non-forking over N . In particular μ1
x1

|B0 N does not fork over N (as it is finitely satisfiable
in B1) so by Proposition 3.3 of [9] μ1|B0 N = μ|B0 N . This implies, as μ0 is invariant over B0, that μ0

x0
⊗ μ1

x1
|B0 N = μ0

x0
⊗

μx1 |B0 N . On the other hand, μ0
x0

⊗ μx1 = μx1 ⊗ μ0
x0

and as μ0|N = μ|N , we have μx1 ⊗ μ0
x0

|N = μx1 ⊗ μx0 |N . Putting it all

together, we obtain μ0
x0

⊗ μ1
x1

|N = μx0 ⊗ μx1 |N .

Iterating this we get, λ|N = μ(ω)|N . As μ is generically stable, λx0,x1,... is totally indiscernible over N . �
Now define a measure η(x0,y0),(x1,y1)... over N , where yi is a variable of the same size as B , by η(φ(x0, x1, . . . ; y0, y1, . . .))

= λ(φ(x0, x1, . . . ; B0, B1, . . .)). By construction, η is a measure of an indiscernible sequence. Lemma 2.26 yields that for any
increasing σ : ω → ω, and any φ(x0, x1, . . . ; y0, y1, . . .),

η
(
φ(x0, x1, . . . ; yσ0, yσ1, . . .)

) = η
(
φ(x0, x1, . . . ; y0, y1, . . .)

)
.

Therefore μ0|Na = μ1|Na = μ|Na . Thus tp(a/N) and μ|N are weakly orthogonal. This proves that μ is smooth. �
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2.4. Reduction to dimension 1

The goal of this section is to prove the following theorem.

Theorem 2.28. If all sequences of elements of the home sort are distal, then T is distal.

We first give an informal (and incomplete) proof using measures. Assume all sequences of elements are distal and
consider a generically stable measure μ. Then looking at the proof of Proposition 2.27 we see that μ is weakly orthogonal
to all 1-types. Then by induction, adding the points one-by-one, μ is weakly orthogonal to every n-type. One could make
this proof rigorous, but it seems to require the fact that no type forks over its base. To avoid this hypothesis and the use of
measures, we give a purely combinatorial proof.

So we start with a witness of non-distality of the following form:

• a base set of parameters A, and it what follows we work over A (even when not explicitly mentioned);
• an indiscernible sequence I = (ai)i∈I with I = (0,1) (the usual interval of R) for simplicity;
• a tuple b = (b j) j<n , some l ∈ (0,1) and tuple a such that:

– a fills the cut “l+": ((ai: i � l), (ai: i > l)) of I ,
– I is b-indiscernible,
– I with al replaced by a is not indiscernible over b.

We make some simplifications. First let m < n be the first integer such that b′ = b<m satisfies the requirements in place
of b. We can add b<m−1 as parameters to the base (by base change, or equivalently we can replace ai by a′

i = aiˆb<m−1)
and replace b by bm−1. Therefore, we may assume that |b| = 1. Next, adding again some parameters to the base, we may
assume that for i ∈ I , tp(a/b) �= tp(ai/b).

The goal of the construction that follows is to reverse the situation of a and b, i.e., to construct an indiscernible sequence
starting with b that is not distal, the non-distality being witnessed by a (or a conjugate of it).

Step 1: Derived sequence.

Let r = tp(a,b). We construct a new sequence (a′
i)i∈I such that:

• a′
i fills the cut i+ of I;

• tp(a′
i,b) = r for each i;

• The sequence 〈(ai,a′
i): i ∈ I〉 is b-indiscernible.

This is possible by indiscernibility of (ai)i∈I over b (by sliding, we may choose the a′
i s filling the cuts and then extract).

Step 2: Constructing an array.

Using Lemma 2.8 we can iterate this construction to obtain an array 〈an
i : i ∈ I,n < ω〉 and sequence 〈bn: n < ω〉 such

that:

• a0
i = ai for each i;

• for each i ∈ I , 0 < n < ω, the tuple an
i realizes the limit type of the cut i+ of I over 〈bk,ak

i : i ∈ I,k < n〉;
• for each 0 < n < ω, tp(bn, (an

i )i∈I/I) = tp(b, (a′
i)i∈I/I).

Claim. For every η : I0 ⊂ I → ω injective, the sequence 〈aη(i)
i : i ∈ I0〉 is indiscernible, of same EM-type as I .

Proof. Easy, by construction. �
Expanding and extracting, we may assume that the sequence of rows 〈bn + (an

i )i∈I : 0 < n < ω〉 is indiscernible and that
〈(an

i )0<n<ω: i ∈ I〉 is indiscernible over the sequence (bn)n<ω .

Step 3: Conclusion.

Claim. The sequences (bn)n<ω and 〈(an
i )i∈I : 0 < n < ω〉 are weakly linked (Definition 2.12).

Proof. Assume for example that some φ(bn,ak
i ) holds for all i ∈ I and any (k,n) such that k < n. Take n very large and take

η as in the first claim such that the truth value of “η(i) < n” alternates more times than the alternation number of φ. Then
we see that φ(bn,ak) must hold also for k > n (otherwise φ(bn, y) would alternate too much on the sequence (aη(i)

)). We
i i
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can do something similar if the formula φ has extra parameters from the bn ’s or an
i ’s, thus it follows that the sequences are

weakly linked. �
Choose an increasing map η : ω → I , then the sequences (bn)n<ω and (an

η(n))n<ω are weakly linked but not mutually
indiscernible. This contradicts Lemma 2.14 and finishes the proof of Theorem 2.28.

Corollary 2.29. If all generically stable measures in dimension 1 are smooth, then all generically stable measures are smooth.

This generalizes results of [17] where this was proved under additional assumptions.

Corollary 2.30. If T is dp-minimal and has no generically stable type (in M), then it is distal. In particular o-minimal theories and the
p-adics are distal.

Proof. Recall from Lemma 2.10 that in a dp-minimal theory, any indiscernible sequence of elements is either distal or totally
indiscernible. �
2.5. Appendix: strong honest definitions

In a later work [4] with Artem Chernikov, we give yet another characterization of distal theories, which is probably the
easiest one to use. In particular, one can obtain with it a much shorter proof of the fact that generically stable measures are
smooth. We give only the statement here and refer the reader to [4] for more details.

Theorem 2.31. A theory T is distal if and only if the following holds: For any φ(x, y) there is θ(x, z) such that: for any finite set C and
tuple a, there is b ∈ C such that |� θ(a,b) and θ(x,b) � tpφ(a/C).

3. Domination in non-distal theories

We have now two extreme notions for indiscernible sequences: distality and total indiscernibility. We want to understand
the intermediate case. In particular, we want to show that non-distality is witnessed by stable-like phenomena. This part is
essentially independent of the previous one but is of course motivated by it. We first concentrate on indiscernible sequences,
and then adapt the results to invariant types. A last subsection gives an application to externally definable sets.

The reader might find it useful to have in mind the example of a colored order as defined in the introduction while
reading this section.

We will sometimes work with saturated indiscernible sequences, as defined below.

Definition 3.1 (Saturated sequence). An indiscernible sequence of α-tuples is saturated if it is indexed by an (|T | + |α|)+-
saturated dense linear order without end points.

In this section, all cuts are implicitly assumed to be Dedekind (i.e., of infinite cofinality from both sides).
If ā fills a cut c of I , an extension J ⊇ I is compatible with ā if ā also fills a cut of J .
We fix a global A-invariant type p ∈ Sα(C), for some small parameter set A. The indiscernible sequences we will consider

will be Morley sequences of p. This is not a real restriction since every indiscernible sequence is a Morley sequence of some
invariant type.

The following is the main definition of this section.

Definition 3.2 (Domination). Let I be a dense indiscernible Morley sequence of p over A, a |� p|AI and c a cut of I filled
by a dense sequence ā∗ = 〈at : t ∈ I〉 of α-tuples. We say that ā∗ dominates a over (I, A) if: For every cut d of I distinct
from c, and b̄ a dense sequence filling d, we have in the sense of T (A):

b̄ � I ā∗ ⇒ b̄ � I a.

We say that ā∗ strongly dominates a over (I, A) if for every I ⊆ J compatible with ā∗ over A and such that a |� p|A J , ā∗
dominates ā over J .

We use the notation b̄ �I a introduced after Definition 1.8 which, in this situation, means a |� p|Ib̄ .

Example 3.3. Let T be the theory of colored orders, as defined in the introduction. Let p be an A-invariant type of an
element of a new color. Let I + a be a Morley sequence of p over A. Let c be a cut in I . If a∗ fills c, then a∗ dominates a
over (I, A) if and only if a and a∗ have the same color.
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Lemma 3.4. The fact that ā∗ strongly dominates a over (I, A) only depends on the similarity class of tp(a, ā∗/I) over A.

Proof. The statement means that if J is a dense indiscernible sequence, b̄∗ and b are tuples such that tp(b, b̄∗/ J ) is similar
to tp(a, ā∗/I) over A, then b̄∗ strongly dominates b over ( J , A) if and only if ā∗ strongly dominates a over (I, A). Take such
b̄∗ , b and J . Assume that tp(b̄∗,b/ J ) is similar to tp(ā∗,a/I) over A. In particular, J and I have same EM-type over A, so J
is also a Morley sequence of p over A. It also follows that b |� p| J A so its makes sense to ask for domination.

Assume that b̄∗ does not strongly dominate b over ( J , A). Then we can find a dense sequence J ′ ⊇ J compatible with b̄∗
such that b |� p| J ′ A , some cut d of J ′ and sequence b̄′ filling d such that b̄′

� J ′ b̄∗ , but b̄′ �� J ′ b (all over A). By Corollary 1.17

(sliding), we may find I ′ ⊇ I and ā′ such that tp(b̄′, b̄∗,b/ J ′) is similar to tp(ā′, ā∗,a/I ′) over A. This implies the following
facts:

– I ′ is compatible with ā∗ and a |� p|I ′ A ;
– ā′ fills a cut of I ′ distant from the cut of ā∗;
– ā′

�I ′ ā∗ and ā′ ��I ′ a.

Therefore ā∗ does not strongly dominate a over (I, A). �
Lemma 3.5. If ā∗ strongly dominates a over (I, A), then there is a subsequence I ′ ⊆ I of size at most |T | + |α| such that ā∗ strongly
dominates a over (I ′, A).

Proof. This follows from the previous lemma and Lemma 1.13 (shrinking). �
Proposition 3.6. Let I be a dense Morley sequence of p over A and a |� p|AI , c a cut of I then there is a sequence of α-tuples ā∗ of
length at most |T | + |α| such that ā∗ fills c and ā∗ strongly dominates a over (I, A).

Proof. Recall the notation TI (a, φ) from Section 1.2. If J ⊆ J ′ are two sequences, indiscernible over A, then for any formula φ

for which this is well defined, we have: T J (a, φ)� T J ′ (a, φ). We will write J � J ′ if for some φ, this inequality is strict.
Let I be the class of indiscernible sequences J such that one can find dense sequences J1 and J2 satisfying:

– J1 + J + J2 is a Morley sequence of p over A;
– a |� p|A J1 J2 .

If we have a family (Ii)i<λ of indiscernible sequences such that Ii ⊆ I j and Ii � I j hold for all i < j, then taking Iλ to be⋃
i<λ Ii , we have Ii � Iλ for all i. Notice in addition that if each Ii belongs to I, then it is also the case for Iλ (we can find

J1 and J2 by compactness). As the numbers T J ′ (a, φ) are finite, it follows that we can find some sequence J in the class
I such that there is no J ′ ⊃ J in this class with J � J ′ . By shrinking, we may assume that J is of size |T | + |α|. Take J1
and J2 as in the definition of I. Write c = (I1, I2). Without loss, J1 and J2 have same order types as I1 and I2 respectively.
Composing by an automorphism over Aa, we may assume that J1 = I1 and J2 = I2. Then J fits in the cut c. Set ā∗ = J .

Assume that ā∗ does not strongly dominate a over (I, A). Then there is a dense sequence I ′ ⊇ I a cut d of I ′ and a
sequence b̄ filling d such that:

– ā∗ fills a cut c′ of I ′ (over A);
– a |� p|AI ′ ;
– b̄ �I ′ ā∗ , and b̄ ��I ′ a.

The sequence K = I ′ ∪ ā∗ ∪ b̄ (where ā∗ and b̄ are placed in their respective cuts) belongs to I. Also b̄ ��I ′ a implies that
ā∗ � K . This contradicts maximality of ā∗ and proves that ā∗ strongly dominates a over (I, A). �
3.0.1. External characterization and base change

Similarly to what we did in the distal case, we give an external characterization of domination.

Proposition 3.7 (External characterization of domination). Let I be a dense Morley sequence of p over A, a |� p AI . Let ā∗ fill a cut c of
I over A such that ā∗ strongly dominates a over (I, A). Let also d ∈ C. Assume:

� There is a partition I = J1 + J2 + J3 + J4 such that J2 and J4 are infinite, c in interior to J2 , J2 ∪ {ā∗} is indiscernible over
Ad + J1 + J3 + J4 and J4 is a Morley sequence of p over Ad + J1 + J2 + J3 .

Then a |� p|AId.
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Proof. Let I , a, ā∗ , d, J1, . . . , J4 be as in the statement of the proposition. We may freely enlarge the sequence J2, so we
may assume that it is saturated (for example, add realizations of limit types of cuts in J2 over everything. This maintains
the hypothesis).

Assume a does not realize p over AId. Then there is some finite ī ⊂ I and a formula φ(y, z̄; x) ∈ L(A) such that
|� φ(d, ī;a), but p � φ(d, ī; x). Incorporating ī in d and changing the partition so that J2 ∪ J4 contains no point from ī,
we may assume that ī = ∅. Pick a sequence of cuts of J2 c0 < c1 < · · · . Let 〈āk∗: k < ω〉 fill the polycut 〈ck: k < ω〉 over
Ad ∪ { Jl: l �= 2}, where each āk∗ is a sequence of same order type as ā∗ . Let I ′ denote the sequence I with the points āk∗ ,
k > 0, placed in their respective cuts.

Then tp(ā0∗,d/I ′) is similar to tp(ā∗,d/I). By sliding (Corollary 1.16; note that our sequence is already large enough, so
we do not need to increase it), we find a0 such that: a0 |� p|AI ′ , φ(d;a0) holds and ā0∗ strongly dominates a0 over (I ′, A).

Let K1 realize an infinite Morley sequence of p over everything considered so far. Let I1 = I ∪ {āk∗: k > 1} + K1 (where
the tuples āk∗ are placed in their respective cuts). As above, we may find a1 |� p|AI1 such that ā1∗ strongly dominates a1 over
(I1, A) and φ(d;a1) holds. Now as a0 �I1

ā1∗ , by the domination assumption we have a0 �I1
a1. We iterate this construction

building an indiscernible sequence Iω = I + K1 + K2 + · · · and points 〈ak: k < ω〉 filling the cuts between the Ki ’s and
independent over Iω such that φ(d;ak) holds for each k. As by assumption ¬φ(d; x) holds for every x ∈ Iω , φ has infinite
alternation rank, contradicting NIP. �
Proposition 3.8 (Base change). Let p be A invariant and A ⊂ B. If I is a dense Morley sequence of p over B, a |� p|B I and ā∗ fills a
cut of I in the sense of T (B), then if ā∗ strongly dominates a over (I, A) it does so over (I, B).

Proof. Assume that ā∗ fills a cut c of I in the sense of T (B) and dominates a over (I, A). Then let d̄ fill a cut c′ of I over
B with c′ distinct from c. Assume that d̄ �I ā∗ over B . Then � holds with d there replaced by d̄B . By domination over (I, A)

and the previous proposition, a |� p|I ∪ d̄B . This proves that ā∗ dominates a over (I, B). This remains true if we first increase
I so ā∗ strongly dominates a over (I, B). �
3.1. Domination for types

We now have all we need to state domination results for types over |T |+-saturated models, instead of cuts in indis-
cernible sequences.

We work over a fixed κ-saturated model M . By an invariant type we mean here a type over M , invariant over some
A ⊂ M of size less than κ .

For the following definition, recall the construction of px ⊗ qy when q is invariant (Lemma 2.19 and the paragraph
following it).

Definition 3.9 (Distant). Let p,q ∈ S(M) be two types, assume that at least one of them is invariant, then we say that p and
q are distant if they commute: px ⊗ qy = qy ⊗ px .2 If a,b ∈ C, we will say that a and b are distant over M if tp(a/M) and
tp(b/M) are.

Keep in mind that the notion “a and b are distant over M” only depends on tp(a/M)∪ tp(b/M) and does not say anything
more about tp(a,b/M). In particular, in a stable theory, any a is distant from itself. So distant should not be confused with
independent as defined now.

Definition 3.10 (Independent). Given two distant types p,q ∈ S(M) and a |� p, b |� q we say that a and b are independent
over M if tp(a,b/M) = p ⊗ q. We write a �M b. This is a symmetric relation.

Definition 3.11 (S-domination). Let p ∈ S(M) be any type, a |� p. A tuple b s-dominates a over M if:

� For every invariant type r ∈ S(M) distant from p and tp(b/M), and d |� r, if d �M b, then d �M a.

The reader might be concerned by the fact that this definition depends on the choice of κ (taking a smaller κ we have
less invariant types to check). However, we will see later that we get an equivalent definition if we add in � the condition
that r is invariant over a subset of size ℵ0.

Example 3.12. Taking again the example of a colored order, if p and q are two invariant types (of tuples), ā |� p and b̄ |� q,
then b̄ s-dominates ā over M if and only if, for every point a0 in range(ā), there is a point b0 in range(b̄) ∪ M of the same
color.

2 Recall the definition of commuting for non-invariant given after Lemma 2.19.
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3.1.1. The moving-away lemma

Lemma 3.13. Let p ∈ S(M) be any type, and a |� p. Then there is some a∗ s-dominating a over M and furthermore a∗ realizes some
invariant type over M.

Proof. This is similar to Proposition 3.6. Start with some a∗ realizing an invariant type. If it does not dominate a, there
is an invariant type r distant from a∗ and a over M and b |� r|Ma∗ such that b ��M

a. Replace a∗ by a∗b and iterate. By
Corollary 1.19, this construction must stop after less than (|T | + |a|)+ steps. �

For applications we will also need to show that we can find such a dominating tuple distant from any given type.

Lemma 3.14. Let I ⊂ M be a dense indiscernible sequence of α-tuples and (Ii)i<λ a family of distinct initial segments of I , with
λ� (|T | + |α|)+ . For i < α, let pi = lim(Ii/M). Then given a type q ∈ S(M), there is i < λ such that pi is distant from q.

Proof. Observe that the types pi pairwise commute. Then use Corollary 1.19 (and the remark after it). �
Lemma 3.15. Let p,q ∈ S(M), be types of α-tuples (|α| < κ ) with p invariant over some small A. Let a |� p. Then there is r ∈ S(M)

invariant over some B of size ℵ0 , distant from p and q and b̄ |� r such that |b̄| � |T | + |α| and b̄ s-dominates a over M.

Proof. By Proposition 3.6 (and Lemma 3.5) we can find I ′0 a dense Morley sequence of p over A of size |T | + |α| and ā′∗
such that a |� p|AI ′0, ā′∗ fills a cut c of I ′0 and ā′∗ strongly dominates a over (I ′0, A). Let b̄′ be the sequence I ′0 ∪ ā′∗ where ā′∗
is placed in its cut.

Let I ⊂ M be a saturated Morley sequence of p over A, let c be a polarized cut of I of cofinality ℵ0 such that lim(c) is
distant from q and p (using Lemma 3.14). We may find some b̄ ≡Aa b̄′ such that b̄ fills the cut c of I . Let also I0, ā∗ be such
that (b̄, I0, ā∗) ≡ (b̄′, I ′0, ā′∗). So b̄ = I0 ∪ ā∗ .

Let I∞ realize an infinite Morley sequence of p over everything. The strong base change lemma (Lemma 2.8) works
equally well if instead of considering points di filling the cuts ci , we take sequences d̄i . We apply this modified version with
M as set of parameters, I + I∞ as indiscernible sequence, d̄0 = b̄ and d̄1 = a. We conclude that we may assume that b̄ is a
Morley sequence of lim(c) over M .

Set r = tp(b̄/M) and let B ⊂ M be of size ℵ0 such that r is B-invariant. Note that r is a power of lim(c), so it also
commutes with p and q.

Let d realize any invariant type s ∈ S(M) distant from p and r. Assume that d �M b̄. Let C ⊂ M be a subset of size < κ
such that p, s and r are invariant over C . Let I ′ ⊂ M be a Morley sequence of p over C indexed by some dense order I . Then
dˆb̄ realizes s ⊗ r over C I ′ (indeed over M). As p is distant from both r and s, by associativity of ⊗, p(I) commutes with
s ⊗ r. Therefore, I ′ realizes p(I) over Cdb̄. Similarly, b̄ realizes r over C I ′d, and in particular, b̄ is indiscernible over C I ′d.

Furthermore, as I ′ ⊂ M , b̄ realizes r over C I ′ . As r commutes with p, I ′ realizes p(I) over Cb̄, a fortiori over Ab̄. But b̄ is
a Morley sequence of p over A. Therefore b̄ + I ′ is a Morley sequence of p over A.

The hypothesis of Proposition 3.7 are satisfied with J1 = J3 = ∅, J2 = I0, J4 = I ′ and d there equal to Cd. We conclude
that a |� p|Cd. As this is true for every small C , d and a are independent over M . This proves that b̄ s-dominates a
over M . �
Remark 3.16. The tuple b̄ constructed in the previous lemma has the following additional property:

(D) For every d ∈ C such that tp(d/Mb̄) does not fork over M , and such that tp(b̄d/M) commutes with p, we have a �M d.

This assumption is satisfied in particular when d is distant from a and b̄, and b̄ �M d (although d might not realize an
invariant type).

Proof. We indicate how to modify the proof above. First, we take C such that p and r are invariant over C . Next take C1,
C ⊆ C1 ⊂ M , such that for any J , J ′ ⊂ M Morley sequences of p over C1 indexed by ω, we have tp( J/Cb̄d) = tp( J ′/Cb̄d).
This is possible using Lemma 2.19. Build I ′ as a Morley sequence of p over C1. By definition of commuting, I ′ is a Morley
sequence of p over Cb̄d. Also because tp(d/Mb̄) does not fork over M , b̄ is indiscernible over Md. Finally, the proof that
b̄ + I ′ is a Morley sequence of p over A does not change. So as above, we may apply Proposition 3.7 to conclude that d and
a are independent over M . �
Corollary 3.17. Let p,q ∈ S(M) be any two types of α-tuples (|α| < κ ) and let a |� p. Then there is a∗ a tuple of length � |T | + |α|,
distant from q over M and such that a∗ s-dominates a over M. Furthermore, we may assume that tp(a∗/M) is invariant over a subset
of size ℵ0 .
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Proof. By Lemma 3.13, there is some a∗∗ s-dominating a over M and realizing some invariant type. By Lemma 3.15, there
is a tuple a∗ s-dominating a∗∗ over M with the required size, whose type over M is invariant over a subset of size ℵ0 and
distant from q.

We check that a∗ s-dominates a over M . Let r ∈ S(M) be an invariant type distant from a∗ and a. Let b |� r with b �M a∗ .
By Lemma 3.15, there is b∗ s-dominating b and distant from q = tp(aˆa∗ˆa∗∗/M). Furthermore assume that b∗ satisfies
property (D). Composing by an automorphism over Mb, we may further assume that b∗ �M a∗ . Then as a∗ s-dominates a∗∗
over M , we have b∗ �M a∗∗ and as a∗∗ s-dominates a over M , b∗ �M a. By property (D) this implies b �M a. �
Lemma 3.18 (Transitivity of s-domination). Let a ∈ C and let a∗ s-dominate a over M. Let also a∗∗ s-dominate a∗ over M. Then a∗∗
s-dominates a over M.

Proof. Let d ∈ C be distant from a and a∗∗ with d �M a∗∗ . By Corollary 3.17, let d∗ s-dominate d over M and distant from
aˆa∗ˆa∗∗ . Composing by an automorphism over Md, we may assume that d∗ �M a∗∗ . Then we have d∗ �M a∗ and d∗ �M a and
finally d �M a. �
Example 3.19. If p ∈ S(M) is generically stable, and a |� p, then a is s-dominated by itself. In the opposite situation, if p is
invariant and its Morley sequence is distal, then a is s-dominated by the empty set.

3.1.2. S-independence

Definition 3.20 (S-independence). Let p,q be any types over M , let a |� p and b |� q. We say that a and b are s-independent
over M and write a �

s
M b if there is a tuple a∗ realizing an invariant type, s-dominating a and distant from b such that

a∗ �M b.

Note that if a and b are distant, then a �
s
M b if and only if a �M b.

Proposition 3.21 (Existence). Let p,q ∈ S(M) be any two types and a |� p. Then there is b |� q such that a �
s
M b.

Proof. Let a∗ be s-dominating a such that a∗ realizes some invariant type p∗ distant from q. Take b such that tp(a∗,b/M) =
p∗ ⊗ q. Then by definition a �

s
M b. �

Proposition 3.22 (Symmetry of s-independence). S-independence is symmetric: if a and b are two tuples, then a �
s
M b if and only if

b �
s
M a if and only if there are a∗ , b∗ s-dominating a and b respectively, distant from each other such that a∗ �M b∗ .

Proof. It is enough to prove the last equivalence. To see right to left, let a∗∗ s-dominate a∗ and be distant from b∗ and b
over M . Assume also that a∗∗ �M b∗ , then by Lemma 3.18, a∗∗ s-dominates a over M . As it is independent from b∗ over M ,
we have a∗∗ �M b as required.

Conversely, assume that a �
s
M b. Let a∗ be a tuple s-dominating a, realizing an invariant type over M , and distant from b

such that b �M a∗ . We can find a tuple b′∗ s-dominating b distant from a,a∗ and b. As a∗ �M b, there is b∗ ≡Mb b′∗ such that
a∗ �M b∗ . �
Proposition 3.23 (Weight is bounded). Let (bi)i<|T |+ be a sequence of tuples such that bi �

s
M b<i for each i, and let a ∈ C. Then there

is i < |T |+ such that a �
s
M bi .

Proof. By Lemma 3.17, we can find a family (b∗
i )i<|T |+ such that: For each i < |T |+ , b∗

i realizes an invariant type ri distant
from q := tp(a/M) and r j , j �= i, b∗

i s-dominates bi over M and b∗
i �M b∗

<i . By Corollary 1.19, there is i < |T |+ such that
tp(b∗

i ,a/M) = ri ⊗ q. By definition, a �
s
M bi . �

The following special case of this proposition makes no reference to s-domination.

Corollary 3.24. Let q ∈ S(M) be A-invariant and, for i < |T |+ , let pi ∈ S(M) be an invariant type. Assume that pi commutes with q,
for each i. Let (bi) |� ⊗

pi and a |� q. Then there is i < |T |+ such that tp(bi,a/N) = pi ⊗ q.

Corollary 3.25. Let a,b ∈ C such that a ��
s
M

b, then tp(b/Ma) forks over M.

Proof. Otherwise, we could find a global M-invariant extension p̃ of tp(b/Ma). Take (ai)i<|T |+ to be a sequence of re-
alizations of tp(a/M) with a0 = a and ai �

s
M a<i for each i. By invariance, if b∗ |� p̃ over everything, for each i < |T |+ ,

tp(b∗,ai/M) = tp(b∗,a/M) and b∗ ��
s
M

ai . This contradicts Proposition 3.23. �
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Corollary 3.26. Let a and b be distant over M, then tp(a/Mb) forks over M if and only if tp(b/Ma) forks over M if and only if a ��M b.

Proposition 3.27. Let p ∈ S(M) be an invariant type and q ∈ S(M) be distant from p. Let I = (ai)i<ω be a Morley sequence of p
over M and b |� q. Then lim(I/Mb) = p|Mb.

Proof. This follows easily from Proposition 3.23 by making the sequence I of large cardinality. �
Example 3.28 (ACVF). Take T to be ACVF, and M a model of T . Let p ∈ S(M) be an invariant type of a field element. By
[6, Corollary 12.14], there are definable functions f and g respectively into the residue field k and the value group Γ such
that letting pk = f∗(p) and pΓ = g∗(p), we have:

For any a |� p and b ∈ C, tp(a/Mb) = p|Mb if and only if tp( f (a)/Mb) = pk|Mb and tp(g(a)/Mb) = pΓ |Mb .
Take such an invariant type p and a |� p. Then a is s-dominated by f (a) since if b ∈ C is distant from a over M , then by

distality of Γ , tp(b/M) and tp(g(a)/M) are weakly orthogonal.

3.2. The finite–co-finite theorem and application

We prove now an analog of Proposition 3.23 which does not require to work over a model. We prove it by reproducing
the proof of that proposition in the context of domination for indiscernible sequences.

Proposition 3.29. Let A be any set of parameters and let p be some global A-invariant type. Let a ∈ C. Let I be an infinite Morley
sequence of p over Aa and J be an infinite Morley sequence of p over AI . Let φ(x; y) ∈ L(A), then the set {b ∈ J : |� φ(b,a)} is finite
or co-finite in J .

Proof. Assume not. Then we may expand I to a saturated sequence. Without loss, the formula φ(x,b) is true for x ∈ I and
pruning J , we may assume that it is false for x ∈ J . Finally, we may expand J so that J = 〈bi: i < |T |+〉.

We can find sequences 〈b̄i∗: i < |T |+〉 such that:

– Each b̄i∗ fills some cut of I , the cuts being distinct from one another, and the b̄i∗ are placed independently over I;
– for each index i, b̄i∗ strongly dominates bi over (I, A).

(Why? First take d̄0∗ strongly dominating b0 over (I, A). Let 〈b′
i: 0 < i < |T |+〉 be a Morley sequence of p over everything.

There is an automorphism σ fixing AIb0 sending 〈b′
i: 0 < i < |T |+〉 to 〈bi: 0 < i < |T |+〉. Let b̄0∗ = σ(d̄0∗). Then take d̄1∗

strongly dominating b1 over (I, A) with d̄1∗ �I b̄0∗ . And iterate.)

Let I ′ be the sequence I with all the b̄i∗ added in their respective cuts. It is an A-indiscernible sequence. By shrinking of
indiscernibles, there is I ′′ ⊆ I obtained by removing at most |T | of the tuples b̄i∗ from I ′ such that I ′′ is indiscernible over
Aa. Without loss, assume we have not removed the tuple b̄0∗ . Then by Proposition 3.7 (External characterization), b0 |� p|Aa .
This contradicts the hypothesis. �
Theorem 3.30 (Finite–co-finite theorem). Let I = I1 + I2 + I3 be indiscernible, I1 and I3 being infinite. Assume that I1 + I3 is A-
indiscernible and take φ(x;a) ∈ L(A), then the set B = {b ∈ I2: |� φ(b;a)} is finite or co-finite.

Proof. This follows from the previous proposition by setting p to be the limit type of I∗3 (I3 in reverse order). �
Note that necessarily, B in the statement of the theorem is finite if ¬φ(b;a) holds for b ∈ I1 + I3 and co-finite otherwise

(because you can incorporate some parts of I1 and I3 to I2, also it follows from the proof). This will be used implicitly in
applications.

Corollary 3.31. Let I = I1 + I2 + I3 be indiscernible, I1 and I3 being infinite with no endpoints and I2 densely ordered. Assume that
I1 + I3 is A-indiscernible. Write I2 = (ai)i∈I . Then given some linear order J ⊇ I , one can find tuples ai , i ∈J \ I such that:

– I1 + 〈ai: i ∈J \ I〉 + I3 is indiscernible over A,
– I1 + 〈ai: i ∈J 〉 + I3 is indiscernible.

Proof. We construct the points ai , i ∈ J \ I simply by realizing limit types of cuts of I2 over everything. More precisely,
given c a cut of I , identify c with the corresponding cut of I2. Assume for simplicity that c has infinite cofinality from the
right and let pc be lim(c+) (seen a global type). Note that if c �= c′ , then the types pc and pc′ commute. Let Jc be the
convex subset of J formed by elements falling in the cut c. Finally take 〈ai: i ∈J \ I〉 to realize

⊗
c p(Jc)

c over I A.
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The second condition is obviously satisfied, so we have to check the first one. We start by considering a cut c, and show
that I1 +〈ai: i ∈Jc〉+ I3 is indiscernible over A. The fact that for i ∈Jc, and a ∈ I1, tp(ai/A) = tp(a/A) follows immediately
from the finite–co-finite theorem (Theorem 3.30). Now consider i < j ∈ Jc and φ(x1, x2) ∈ L(A) a formula. Assume that for
a ∈ I1, b ∈ I3 we have |� φ(a,b). Write c = (K1,K2), seen as a cut of I . By construction of (ai)i∈Jc

and shrinking of
indiscernibles (Proposition 1.10), we have:

|� φ(ai,a j) ⇐⇒ for some coinitial K ⊂ K2, φ(as,at) holds for s < t ∈ K.

Assume we have ¬φ(ai,a j). So easily, we can find points s1 < t1 < s2 < t2 < · · · ∈ K2 such that ¬φ(ask ,atk ) holds for
each k < ω. Let L2 = 〈ask ˆatk : k < ω〉. Take also L1 to be any sequence of increasing pairs of members of I1, so that L1 + L2
is indiscernible, and pick similarly L3. Then the finite–co-finite theorem applied to the sequence L1 + L2 + L3 gives us a
contradiction.

We can do the same reasoning if φ(x1, x2) has parameters in AI1 I2 (by adding parts of I1 I2 to A and decreasing them).
Also one sees at once that the construction generalizes to formulas φ(x1, . . . , xn) with more variables and we obtain than
I1 + 〈ai: i ∈Jc〉 + I3 is indiscernible over A.

Next, we look at two cuts c1 < c2 and we want to see that I1 + 〈ai: i ∈Jc1 +Jc2 〉 + I3 is indiscernible over A. We know

that 〈ai: i ∈ Jc2 〉 realizes p
(Jc2 )
c2 over everything else. We may assume that Jc1 is without endpoints. Take some finite

K0 ⊂ Jc1 and let K1 be {i ∈ Jc1 : i > K0}. Then the sequence 〈ai: i ∈ K1〉 + I3 is indiscernible over A ∪ {ai: i ∈ K0}. The
same reasoning as above shows that the sequence 〈ai: i ∈ K1〉 + 〈ai: i ∈ Jc2 〉 + I3 is indiscernible over A ∪ {ai: i ∈ K0}. It
follows that I1 + 〈ai: i ∈Jc1 +Jc2 〉 + I3 is indiscernible over A.

Iteratively, we prove that I1 +〈ai: i ∈Jc1 +· · ·+Jcn 〉+ I3 is indiscernible over A and finally, that I1 +〈ai: i ∈J \I〉+ I3
is indiscernible over A. �
Corollary 3.32. Let I1 + I2 + I3 be an indiscernible sequence of finite tuples, with I1 and I3 infinite without endpoints. Assume that
I1 + I3 is indiscernible over A. Then we can find some subsequence I ′2 ⊂ I2 with I2 \ I ′2 of size at most |T | + |A| such that I1 + I ′2 + I3
is indiscernible over A.

Proof. Without loss, we may assume that I2 is densely ordered. Write I2 = 〈ai: i ∈ I〉 and take some |I|+-saturated linear
order J ⊃ I . By Corollary 3.31 we can find tuples 〈ai: i ∈J \ I〉 such that:

– I1 + 〈ai: i ∈J \ I〉 + I3 is indiscernible over A,
– I1 + 〈ai: i ∈J 〉 + I3 is indiscernible.

By shrinking of indiscernibles, there is J0 ⊂J of size at most |T | + |A| such that I1 + 〈ai: i ∈J \J0〉 + I3 is indiscernible.
Then set I ′2 = 〈ai: i ∈ I \J0〉. �

We now give an application of this result to externally definable sets.
We will use the following notation: if M |� T , M ≺ N is an elementary extension and A ⊆ N containing M , then M[A] is

the structure with universe M with language composed of a predicate for every subset of Ml (any l) of the form φ(M; c̄),
c̄ ∈ Ak for any φ(x̄; ȳ) ∈ L(M), interpreted the obvious way.

Shelah proved in [12] that M[C] eliminates quantifiers. We refer the reader to [3] for a slightly different approach, that
we will use (and recall) here. If p ∈ S(M) is any type and a |� p, then it is not true in general that M[a] eliminates quantifiers
(see [3, Example 1.8] for a counterexample). However it is conjectured in [3] that M[I] does, where I is a coheir sequence
starting with a. We prove a special case of this when p is interior to M . See the definition below.

We will need some notions from [3] that we recall now. If X is an externally definable subset of X (i.e., a subset of the
form φ(M, c) for some tuple c ∈ C), then an honest definition of X is a formula θ(x,d) ∈ L(C) such that (1) θ(M,d) = X and
(2) for every formula ψ(x) ∈ L(M) such that X ⊆ ψ(M) then C |� θ(x) → ψ(x).

Lemma 3.33. If A ⊂ C containing M is such that for every formula φ(x; c) ∈ L(A), φ(M; c) has an honest definition with parameters
in A, then M[A] eliminates quantifiers.

Proof. Let φ(x, y; c) ∈ L(A) and let θ(x, y;d) ∈ L(A) be an honest definition of X := φ(M; c). Let π : M |x|+|y| → M be the
projection on the first |x| coordinates. Let ψ(x;d) = ∃yθ(x, y;d). Then ψ(M;d) = π(X): it is clear that ψ(M;d) ⊆ π(X), and
if a ∈ M|x| \ π(X), then the set {(x, y) ∈ M |x|+|y|: y �= a} contains X and by honesty C |� θ(x, y;d) → y �= a which gives the
reverse inclusion. �
Definition 3.34. Let p be an M-invariant global type. We say that p is interior to M if p(ω) is both an heir and a co-heir of
its restriction to M .

An example of an interior type is given by the following situation: let I ⊂ M be indiscernible and c a cut interior to I
such that M respects c. Then the type p = lim(c+) is interior to M .
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Lemma 3.35. Let p be a global M-invariant type interior to M. Let I0 + I1 + I2 be a Morley sequence of p over M. For i < 3 let āi ⊂ Ii

be a finite tuple. Assume that ā1 |� φ(x̄; ā0, ā2), φ ∈ L(M), then there are two tuples b̄0, b̄2 ⊂ M such that ā1 |� φ(x̄; b̄0, b̄2).

Proof. First find b̄2 such that ā1 |� φ(x̄; ā0, b̄2) by the coheir hypothesis. Then find b̄0 by the heir hypothesis. �
Theorem 3.36 (Shelah expansion for interior types). Let p be a global M-invariant type interior to M. Let I be a Morley sequence of p
over M. Then M[I] eliminates quantifiers.

Proof. Take a saturated extension M[I] ≺ N∗ of size κ > |M|. The model N∗ can be seen as a reduct to the language of M[I]
of some N[ J ] for M ≺ N and J ≡M I , J indiscernible over N . Without loss I = J . Notice that N∗ and N[I] have the same
definable sets.

Claim. There is an indiscernible sequence I1 + I2 ⊂ N such that N respects the cut c = (I1, I2) and I |� lim(c+)(ω) .

Proof. Write N = ⋃
i<κ Ai with |Ai | < κ . Let i < κ . By Lemma 3.35 and saturation, we can find sequences Ki, Li ⊂ N of

order type ω such that Ki + I + Li is indiscernible over Ai . Let I1 = K1 + K2 + · · · and I2 = · · · + L2 + L1, the sums ranging
over i < κ . The required property is then easy to check. �

Let φ(x; y) be a formula and a0 |� p, a0 ∈ I . We consider the pair (M, N) and show that φ(a0; M) has an honest definition
with parameters in M + I1 + I2.

By Theorem 3.30 and compactness, there are integers n, N and a finite set of formulas δ such that for every finite
sequence J1 + J3 + J2, satisfying:

– J1 and J2 are of size at least n,
– J1 + J3 + J2 is indiscernible,
– J1 + J2 is δ-indiscernible over b and
– φ(x;b) holds on all elements of J1 and J2,

¬φ(x;b) holds on at most N elements of J3.
Let I ′1 ⊂ I1 and I ′2 ⊂ I2 be finite of size n such that I ′1 + I ′2 is M-indiscernible. Consider the formula θ(y) ∈ L(M I) such

that if b |� θ(y), then I ′1 + I ′2 is δ-indiscernible over a, and φ(ā0; y) holds on all elements of I ′1 + I ′2. Define analogously
θ1(y) using ¬φ instead of φ.

Then, for every b ∈ M , θ(b) holds if and only if φ(a0;b) holds. Also, if b ∈ N , and θ(b) holds, then φ(a0;b) holds. (Why?
Only finitely many elements a from I1 + I2, with I ′1 < a < I ′2 can satisfy φ(a;b).) This easily implies that θ is an honest
definition of φ(a0; M).

To conclude the theorem, notice that we can do the same thing replacing p by p(n) for any n, which takes care of
formulas φ(ā; y) with ā a finite subset of I instead of one element. �
4. Sharp theories

In this last section, we study theories in which types are s-dominated by generically stable types. We show that this is
implied by the existence of some form of decomposition of indiscernible sequences into “stable by distal”. Our goal is to
give a criterion which we can check in dimension 1 and conclude that dp-minimal theories are sharp. One could probably
introduce stronger notions, and ask for example that types are s-dominates by types living in a stable sort, but we do not
pursue this here.

Definition 4.1. The theory T is sharp if for every |T |+-saturated model M and p ∈ S(M) an invariant type realized by a,
there is some generically stable type q ∈ S(M) and a∗ |� q such that a∗ s-dominates a over M .

Definition 4.2. Let I = 〈ai: i ∈ I〉 be a dense indiscernible sequence. A decomposition of I is an indiscernible sequence
K = 〈aiˆbi: i ∈ I〉 where the sequence J = (bi)i∈I is totally indiscernible and such that:

For every K ′ of same EM-type as K , c a Dedekind cut of K ′ , d ∈ C such that K ′ is indiscernible over d and aˆb filling c;
if there is a′ such that a′ˆb fills c over dK ′ , then aˆb fills c over dK ′ .

By usual sliding argument, if K is dense and contains some Dedekind cut c, it is enough to check the condition for
K ′ = K .

An indiscernible sequence I = 〈ai: i ∈ I〉 is decomposable if it admits a decomposition K = 〈aiˆbi: i ∈ I〉. In this case, we
will say that I is decomposable over 〈bi: i ∈ I〉.
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Remark 4.3. There are two trivial cases of decomposability: If I is distal, then it is decomposable over the sequence of
empty tuples, if I is totally indiscernible, it is decomposable over itself.

Lemma 4.4 (Internal characterization). An indiscernible sequence of pairs I = (aiˆbi)i∈I is a decomposition, if and only if the following
holds:

� For every J , K , L infinite indiscernible sequences without endpoints of same EM-type as I and aˆb, a′ˆb′ , if J + aˆb + K + L,
J + K + a′ˆb′ + L are indiscernible, and there exist a0,a′

0 such that J + a0ˆb + K + a′
0ˆb′ + L is indiscernible, then J + aˆb +

K + a′ˆb′ + L is indiscernible.

Proof. Assume that I is a decomposition. Then taking d = a′
0ˆb′ + L in the definition, we see that J +aˆb + K is indiscernible

over a′
0ˆb′ + L. Then taking d = J + aˆb, we get that K + a′ˆb′ + L is indiscernible over J + aˆb, so J + aˆb + K + a′ˆb′ + L is

indiscernible.
Conversely, assume � holds and without loss I is a dense order. Notice that the analog of � where we fill n cuts instead

of 2 follows from � by easy induction (as in Lemma 2.6). Let d ∈ C, c, aˆb and a′ be as in the definition of decomposition.
Assume that aˆb does not fill c over Ad. Adding parameters to d if necessary, we may assume that for some formula φ(x, y),
and all a∗ˆb∗ ∈ I , we have φ(a∗ˆb∗,d) ∧ ¬φ(aˆb,d). Fix some increasing sequence (ck)k<ω of Dedekind cuts of I . For each
k < ω, we can find ak,a′

k,bk such that tp(ak,a′
k,bk,d/I) is similar to tp(a,a′,b,d/I) and akˆbk fills the cut ck . By � and the

remark above, the sequence obtained by adding all the tuples akˆbk to I in their respective cuts is indiscernible. Then the
formula φ(x, y) has infinite alternation rank. �

We will need the following strengthening of Lemma 2.8.

Lemma 4.5 (Strong base change 2). Let I = (aiˆbi)i∈I be an indiscernible sequence and A ⊃ I a set of parameters. Let (ci)i∈J be a
sequence of pairwise distinct polarized Dedekind cuts in I . Call c′i the corresponding cut in the sequence (bi)i∈I . For each i let diˆei fill
the cut ci . Assume also that the sequence (ei)i∈ J realizes

⊗
lim(c′i) over I . Then there exist (d′

iˆe′
i)i∈J such that:

– tp(〈d′
iˆe′

i: i ∈J 〉/I) = tp(〈diˆei: i ∈J 〉/I),
– for each i, tp(d′

iˆe′
i/A) = lim(ci/A),

– (e′
i)i∈J realizes

⊗
i lim(c′i) over A.

Proof. The proof is essentially the same as that of Lemma 2.8.
Assume the result does not hold. Then by compactness, we may assume that J = {1, . . . ,n} and that there is a formula

φ(x1ˆy1, . . . , xnˆyn) ∈ tp(〈diˆei: i〉/I), a formula θ(y1, . . . , yn) ∈ ⊗
lim(t′

i/m) and formulas ψi(xi, yi) ∈ lim(ci/m) for some
finite m ∈ A such that φ(x1ˆy1, . . . , xnˆyn) ∧ θ(y1, . . . , yn)

∧
i ψi(xi, yi) is inconsistent. Let I0 denote the parameters of φ.

Assume for simplicity that n = 2 (the proof for n > 2 is the same) and without loss ci is polarized as c
−
i . For i = 1,2 take

(Ii, I ′i) � ci such that ψi holds on all elements of Ii , θ(y1, y2) holds for each (x1ˆy1, x2ˆy2) ∈ I1 × I2, and Ii ∪ I ′i contains no
element of I0. Then I1 + I ′1 and I2 + I ′2 are mutually indiscernible over I0. So for every two cuts d1 and d2 respectively from
I1 + I ′1 and I2 + I ′2, we can find points d1ˆe1 and d2ˆe2 filling those cuts (even seen as cuts of I) such that φ(d1, e1,d2, e2)

holds and there are d′
1,d′

2 such that (d′
1ˆe1,d′

2ˆe2) fills the polycut (d1,d2) over I .
Take a cut d1 inside I1 and d2 inside I2 and see them as cuts of I . Fill d1 by d1ˆe1 and d2 by d2ˆe2 as above. By

hypothesis, either ¬θ(e1, e2), ¬ψ1(d1, e1) or ¬ψ2(d2, e2) holds. In one of the latter two cases, proceed as in Lemma 2.8. In
the first case, keep e1 and e2 and add points (d′

1,d′
2) such that I with d′

1ˆe1 and d′
2ˆe2 added is indiscernible. Then iterate

with I ∪ {d′
1ˆe1,d′

2ˆe2} instead of I .
After iterating this ω times, either ψ1, ψ2 or θ has infinite alternation rank. �

Lemma 4.6 (Base change). The notion of being a decomposition is stable both ways under base change: If (aiˆbi)i∈I is A-indiscernible,
then it is a decomposition in T if and only if it is a decomposition in T (A).

Proof. Assume I = (aiˆbi)i∈I is a decomposition, then it follows immediately from the definition that it is a decomposition
from the point of view of T (A).

For the converse, use the internal characterization and strong base change 2 (Lemma 4.5) as in the proof of Corol-
lary 2.9. �
Lemma 4.7. Assume that K = (aiˆbi)i∈I is a decomposition of I = (ai)i∈I . Let c be a cut of K filled by a sequence L and denote by c′
the corresponding cut in (bi)i∈I . Let L2 be the projection on L on the second factor (so L2 is a totally indiscernible sequence). Let d ∈ C

be such that K is indiscernible over d and L2 is a Morley sequence of the limit type of c′ over Kd. Then K ∪ L is indiscernible over d
(where L is placed in the cut c).



316 P. Simon / Annals of Pure and Applied Logic 164 (2013) 294–318
Proof. Assume L is dense of size |T | and using Corollary 3.31, increase L to some saturated sequence L′ filling c and
such that the sequence K0 = K ∪ (L′ \ L) is indiscernible over d. Let now a1ˆb1 ∈ L. This tuple fills a Dedekind cut of K0.
By domination in the sequence K0, we see that K1 = K0 ∪ {a1ˆb1} is indiscernible over d. Then we can take some other
a2ˆb2 ∈ L. It fills a Dedekind cut of K1 and by domination in K1, K2 = K1 ∪ {a1ˆb1} is indiscernible over d. Iterating, we see
that K ∪ L′ is indiscernible over d and therefore K ∪ L is indiscernible over d. �
Lemma 4.8. Let M be a |T |+-saturated model and p,q ∈ S(M) be two commuting invariant types. Take I |� p(ω) and any b |� q.
Then we may find two sequences I1, I2 such that I1 + I + I2 is a Morley sequence of p over M and I1 + I2 is a Morley sequence of p
over Mb.

Proof. Let r be the inverse of p over M (recall the definition as stated after Lemma 2.19). We take I2 to be a Morley
sequence of p over M Ib and then I1 to be a Morley sequence of r, indexed in the opposite order, over M I I2b. Over M ,
the Morley sequence of r is the opposite of the Morley sequence of p so the first statement follows. To see the second
statement, recall that if s ∈ S(M) is any invariant type, then rx ⊗ sy|M = sy ⊗ px|M . In particular,

rx ⊗ (
qy ⊗ p(n)

x1,...,xn

)∣∣
M = (

qy ⊗ p(n)
x1,...,xn

) ⊗ px
∣∣

M = qy ⊗ p(n+1)
x,x1,...,xn |M .

The result follows. �
Proposition 4.9. Assume that all sequences are decomposable, then T is sharp.

Proof. Let M be |T |+-saturated and p ∈ S(M) be an A-invariant type. Let a |� p. Let I ⊂ M be a small dense Morley
sequence of p over A and let K ⊂ M be a decomposition of I . Let c be a Dedekind cut of K and c1 the corresponding cut
of I . As in the proof of the moving away Lemma 3.15, construct some dense sequence d̄ realizing a power of lim(c+1 /M) and
such that d̄ s-dominates a over M . Extend d̄ to c̄ realizing a power of lim(c+/M). So c̄ is the union of d̄ and some totally
indiscernible sequence ē. The type of ē over M is generically stable.

Claim. ē s-dominates a over M.

Proof. Let u ∈ C be distant from a and independent from ē over M . Let u∗ realize an invariant type distant from ac̄ over
M such that u∗ s-dominates u and is independent from c̄ over M . If we show that u∗ �M d̄, then as d̄ s-dominates a it will
follow that u∗ �M a and therefore u �M a. Replacing u by u∗ , we may now assume that u is distant from ac̄ over M and
realizes an invariant type.

Call r = lim(c+) (a global invariant type). By Lemma 4.8, let I1 and I2 be two sequences such that I1 + I2 is indiscernible
over Mu and I1 + c̄ + I2 is indiscernible over M . Also as u is independent from ē over M , the hypotheses of Lemma 4.7 are
satisfied (where L2 there is ē here). We conclude that u is independent from d̄ over M and therefore u is independent from
a over M . �
4.1. Reduction to dimension 1

We prove here the following proposition.

Proposition 4.10. Assume that all sequences of elements are decomposable, then every sequence is decomposable.

Assume from now on that all indiscernible sequences of elements of C are decomposable. We will take an arbitrary
indiscernible sequence and build a decomposition for it adjoining totally indiscernible sequences to it one-by-one. The proof
is an adaptation of the one from Section 2.4. We start with a base set of parameters A that we allow to grow freely during
the construction. In what follows, we work over A, even when not explicitly mentioned. We have an indiscernible sequence
I = 〈aiˆαi: i ∈ I〉, where I = (0,1) for simplicity and such that the sequence 〈αi: i ∈ I〉 is totally indiscernible.

For every i ∈ I , call ci the cut “i+” of I and c′i the associated cut in the sequence 〈αi: i ∈ I〉.

Step 1: Derived sequence.

Assume we have a witness of non-decomposition in the following form:

• A tuple b ∈ C, some j ∈ (0,1) and a pair (a,α) such that:
• aˆα fills the cut c j of I ,
• I is b-indiscernible,
• α realizes the type lim(c′j) over Ib,
• I with a jˆα j replaced by aˆα is not indiscernible over b.
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As in Section 2.4, adding parameters to the base, we may assume that b is a single point, and that tp(aˆα/b) �=
tp(a jˆα j/b). Let r = tp(aˆα,b).

We construct a new sequence 〈a′
iˆα′

i : i ∈ I〉 such that:

• a′
iˆα′

i fills the cut ci of I ,
• tp(a′

iˆα′
i ,b) = r for each i,

• The sequence (α′
i)i∈I realizes

⊗
i∈I lim(c′i) over Ib,

• The sequence 〈aiˆαiˆa′
iˆα′

i : i ∈ I〉 is b-indiscernible.

This is possible by indiscernibility of (aiˆαi)i over b (first pick the points α′
i then choose the ai filling the cuts and then

extract).

Step 2: Constructing an array.

Using Lemma 4.5, iterate this construction to obtain an array 〈an
i ˆαn

i : i ∈ I,n < ω〉 and sequence 〈bn: n < ω〉 such that:

• a0
i ˆα0

i = aiˆαi for each i,
• For each i ∈ I , 0 < n < ω, the tuple an

i ˆαn
i realizes lim(ci) over 〈bk,ak

i ˆαk
i : i ∈ I,k < n〉,

• For each 0 < n < ω, the sequence (αn
i )i∈I realizes the type

⊗
i∈I lim(c′i) over 〈bk,ak

i ˆαk
i : i ∈ I,k < n〉,

• For each 0 < n < ω, tp(bn, 〈an
i ˆαn

i : i ∈ I〉/I) = tp(b, 〈a′
iˆα′

i : i ∈ I〉/I).

Claim. For every η : I0 ⊂ I → ω injective, the sequence 〈aη(i)
i ˆαη(i)

i : i ∈ I0〉 is indiscernible, of same EM-type as I .
The sequence U = 〈αn

i : (i,n) ∈ I × ω〉, where I × ω is ordered lexicographically, is totally indiscernible.

Proof. Easy, by construction. �
Expanding and extracting, we may assume that the sequence of rows 〈bn + (an

i ˆαn
i )i∈I : 0 < n < ω〉 is indiscernible. By

assumption all sequences of points are decomposable. So let (bnˆβn)n<ω be an decomposition of (bn)n<ω . Expanding and
extracting again, we may assume that the new sequence of rows 〈bnˆβn + (an

i ˆαn
i )i∈I : 0 < n < ω〉 is indiscernible and that

the sequence of columns 〈(an
i ˆαn

i )0<n<ω: i ∈ I〉 is indiscernible over {bnˆβn: n < ω}.

Step 3: Conclusion.

Claim. The sequences (bnˆβn)n<ω and 〈(an
i ˆαn

i )i∈I : 0 < n < ω〉 are weakly linked.
The sequences (bnˆβn)n<ω and U are mutually indiscernible.

Proof. For the first statement, the proof is the same as in Section 2.4.
The second statement is similar. If for example we have φ(bn, βn,αn

i ), then φ(bn, βn,αn
j ) must hold for all j ∈ I , and

therefore by total indiscernibility of U and NIP, φ(bn, βn,αm
j ) must hold for every ( j,m) ∈ I × ω. �

Let (cn, γn) = (an
1− 1

n
,αn

1− 1
n
), then:

1. The sequence (cnˆγn)n<ω is indiscernible, with same EM-type as I;
2. The sequences (γn)n<ω and (bnˆβn)n<ω are mutually indiscernible;
3. The sequences (cnˆγn)n<ω and (bnˆβn)n<ω are weakly linked;
4. We have tp(cnˆδn,bm) = r if and only if n = m.

Consider the indiscernible sequence (cnˆγnˆbnˆβn)n<ω . We may increase it to an indiscernible sequence (cnˆγnˆbnˆβn)n∈I .
Take some n0 ∈ I and set I = I1 +{n0}+I2. Then by point 3 above, the sequence 〈bnˆβn: n ∈ I1 +I2〉 is indiscernible over
cn0 ˆγn0 . Therefore point 4 and the definition of decomposition imply that βn0 does not realize the limit type of 〈βn: n ∈ I1〉
over {bnˆβn: n ∈ I1 +I2} ∪ {cn0 ˆγn0 }. Adding parameters to the base, we may assume that it does not realize that limit type
over cn0 ˆγn0 .

We then iterate the construction, starting with the sequence (cnˆγnˆβn)n∈I . Assume that we can do this |T |+ steps.
We have at the end some base set of parameters A, an A-indiscernible sequence 〈cnˆ(αi

n: i < |T |+): n < ω〉 (we replaced
the index set I by ω for convenience) such that for each i < |T |+ , the sequence (αi

n)n<ω is totally indiscernible over

A ∪ {α j
n: n < ω, j �= i} but not indiscernible over A ∪ {cn,n < ω} ∪ {α j

n: n < ω, j < i}. By Fodor’s lemma, removing some
sequences (αi

n)n<ω and adding them to A, we may assume that for every i, (αi
n)n<ω is not indiscernible over A ∪{dn,n < ω}.

But this contradicts Proposition 1.18.
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Therefore this construction must stop after less than |T |+ stages. At the end, we obtain a decomposition of the sequence
we started with. This proves Proposition 4.10.

Corollary 4.11. Every dp-minimal theory is sharp.

Example 4.12 (Non-sharp theory). Let L0 be the language {Rn(x, y): n < ω} and construct an L0 structure M0 as follows: the
universe of M0 is Q, the ordinary rational numbers, and for every x, y ∈ M0, M0 |� Rn(x, y) if and only if x < y ∧ |x − y| < n
holds in Q. Let T0 = T h(M0). Non-realized 1-types over M0 satisfying Rn(x,a) for some n < ω and a ∈ M are in natural
bijection with cuts of (Q,<). In addition to these, there is just one non-realized type p ∈ S1(M0) which satisfies ¬Rn(x,a)

for every n < ω and a ∈ M . This type p is generically stable (and ∅-invariant). One can check easily that T0 is dp-minimal.
Now consider L1 = L0 ∪{≺} where ≺ is a new binary relation. We expand M0 to an L1-structure M1 by making ≺ into a

generic order (i.e., every L0-infinite definable set of M1 is dense co-dense with respect to ≺. See for example [15]). A 1-type
over M1 is determined by its reduct to L0 plus its ≺-cut. Let T1 = T h(M1). Easily, T1 eliminates imaginaries so there are
no generically stable types (because the structure is linearly ordered). However T1 is not distal: consider I = (ai)i∈I to be
a dense ≺-increasing sequence of points such that ¬Rn(ai,a j) holds for every n < ω and i, j ∈ I . Then this sequence is
indiscernible and not distal. To see this, take two cuts c1 and c2 of I . Then there is a filling c1 and b filling c2 such that
R1(a,b) holds. The generically stable type p in the reduct is detected by the non-distality of I .

We see however, that there is a natural ultra-imaginary stable sort: the quotient of M by the
∨

-definable relation
E = ∨

n<ω Rn . And every point is in some sense s-dominated by its definable closure in that sort. It would be interesting to
know if something like this is always true.
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