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A B S T R A C T

Stereotactic body radiotherapy (SBRT) for lung tumours has been gaining wide acceptance in lung cancer. Here,
we review the technological evolution of SBRT delivery in lung cancer, from the first treatments using the
stereotactic body frame in the 1990’s to modern developments in image guidance and motion management.
Finally, we discuss the impact of current technological approaches on the requirements for quality assurance as
well as future technological developments.

1. Introduction

Radiotherapy has changed dramatically during the last decades,
following advances in information technology and the wide progress in
computer power and processing. Yet, there is a wide discrepancy in the
distribution of technology not only between countries and institutions,
but also among patient groups. Stereotactic body radiotherapy (SBRT)
for lung tumours, also referred to as stereotactic ablative radiotherapy
(SABR), is perhaps unique in the sense that it was originally targeted to
patients with poor performance status (inoperable stage I lung cancer),
but due to its success it is now gaining acceptance in operable patients.
A large part of this success is attributable to technological advances in
image guidance and motion management: increased precision in
radiotherapy delivery enabled treatment of more challenging cases,
which in turn meant that more patients became candidates for SBRT.

As the pool of patient candidates increases, the delivery of SBRT for
lung cancer can no longer be limited to high-throughput academic
centres. In this context, we observe the trend that SBRT is adopted by
smaller and non-academic centres. We also observe that many tech-
nological solutions are available (see Table 1) and the investment in
terms of equipment cost and human resources varies widely.

Lung SBRT is delivered in few fractions, typically 3–5.
Hypofractionated treatment has benefits of preventing repopulation of
neoplastic cells, a better cost effectiveness and is more convenient for
patients compared to compared to conventional fractionation [1].
Bauman et al. [1] were the first to introduce the idea of cornerstones of
SBRT in 2006; in a modern context these would be: 1) target

localisation, 2) treatment planning and dose calculation, 3) hypo-
fractionation and 4) motion management during treatment delivery. In
this review, we aim to present the evolution of SBRT practice from the
earliest clinical trials to today’s practice. We will review the impact of
the progressive technological advances on each cornerstone in terms of
clinical workflow and patient outcome, where appropriate. In addition,
we provide a discussion on patient selection and which technologies
are, in today’s perspective, considered a minimum standard (“must
have”) and which offer incremental improvements (“nice to have”).

2. Target localization

Target localisation encompasses patient immobilisation, imaging for
SBRT treatment planning, and in-room imaging for image guidance and
verification. The choices made for each of these steps will have an
impact on inter- and intra-fractional accuracy of dose delivery, and
should be mirrored with appropriate treatment margins and a dose
prescription level adapted to the target localisation method.

2.1. Patient immobilisation

Proper immobilisation permits reproducible positioning of the pa-
tient during the course of treatment, and is of crucial importance in
highly precise treatments such as SBRT. Lax et al. developed a so-called
stereotactic body frame enabling the first lung SBRT treatments [2].
This specially developed frame (see Fig. 1) served two purposes: it
ensured the reproducible position of the patient through a head-to-
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thighs vacuum pillow and provided an external coordinate system to
localise the tumour inside the patient (similar to the head frames used
in cranial treatment). In practice, it meant that target localisation for
treatment was performed in two steps: first finding the CT-image co-
ordinates of the tumour in the stereotactic frame and, second, aligning
the isocentre of the linac with the treatment isocentre using these co-
ordinates.

Today, several commercial versions of the stereotactic body frame
are available [3], but with the advent of in-room imaging possibilities,
the tumour can be visualised in one single step with the patient on the
treatment couch. While some institutions retained the stereotactic
frame for its immobilising properties combined with abdominal com-
pression, others have phased it out and replaced it with devices with a
lesser degree of immobilisation (such as chest boards or vacuum
cushions). Frameless stereotactic treatments combined with daily image
guidance [4,5] showed residual uncertainties in tumour localisation
similar to that of the stereotactic body frame [6,7].

2.2. Imaging for treatment planning

SBRT also requires high quality imaging for treatment planning,
with excellent visualisation of the tumour to enable precise target de-
lineation. When the first patients receiving SBRT were treated at the
Karolinska Institute in Stockholm, Sweden in 1994 [2], treatment
planning based on computed tomography (CT) was used though it was
not a standard procedure at the time. In addition, CT scans were ac-
quired before each fraction in order to assess the reproducibility of the
position of the tumours and baseline shifts> 5mm in the CC direction
were observed [8].

Awareness of interfraction tumour motion, combined with faster
scan acquisition times, increased concerns about the reliability of
conventional CT scans performed under quiet respiration: Shimizu et al.
recommended the use of sequential CT scans for a more accurate esti-
mate of the tumour localisation and appropriate treatment margins [9].
The use of slow CT scans was suggested as an alternative in the early
2000’s: images are acquired with a gantry rotation of several seconds’
duration, and the tumour is imaged throughout most of the breathing
cycle, resulting in a larger (blurred) target volume and a more re-
producible target visualisation than with a single conventional CT [10].
In addition, the range of tumour motion can be assessed using fluoro-
scopy, if the contrast between the tumour and surrounding tissue is
sufficient or if fiducial markers are used (see “in-room image guidance”
section below.

Respiratory correlated four dimensional CT (4DCT) was developed
in the early 2000’s [11], using externally measured respiratory signal
coupled to an oversampled CT acquisition. Use of 4DCT for lung SBRT
was first reported by Underberg et al. [12]: they found 4DCT ad-
vantageous over sequential 3D CTs for correct evaluation of the extent
of individual tumour motion. Motion-related image artefacts were also
reduced compared to regular 3D CT acquisitions [13,14]. However it
should be remembered that the 4DCT remains just a snapshot of the
tumour motion and position: the respiratory pattern may change with

time [13] and in-room image guidance is required to verify the tumour
position (and possibly, the position of the organs at risk) before each
treatment fraction.

In order locate and delineate the tumour with high precision, high
spatial resolution imaging is also necessary. The slice thickness of the
CT images used for SBRT for the very first patients was 10mm [2]. It
has since been shown using phantom studies that the size of a small
lesion is increasingly overestimated by large slice thickness [15], and
for modern lung SBRT a slice thickness of ≤2mm is desirable [16]
(Table 2). Positron emission tomography (PET) for radiotherapy treat-
ment planning is becoming increasingly available. Though it has been
suggested that 4D PET/CT images (compared to 3D PET/CT) improve
the inter-observer target delineation agreement for centrally located
lesions [17], the primary role of PET imaging in lung SBRT remains to
confirm the absence of disease spread, prior to referral [18]. Delinea-
tion uncertainties for the gross tumour volume (GTV) in lung SBRT of
the order of 2mm have been estimated by Persson et al. [19], when
combining 3D PET/CT and 4DCT information. Although small, these
uncertainties should still be included in the margins to be applied for
treatment, to avoid geographical miss of part of the tumour.

Lung tumours can have a complex and irregular respiratory motion
pattern. As a result, respiratory motion can degrade image quality in all
imaging modalities, even respiratory-related ones. This needs to be
evaluated and taken account for during imaging, or during registration
of multiple images. Most tumours move predominantly in the cranio-
caudal direction [20] and have moderate peak-to-peak amplitude of
≤5mm [21]. The degree and complexity of motion cannot be predicted
from the anatomical tumour position, although in general, tumours in
the lower lobes move more than those in the upper lobes of the lung.

2.3. In-room image guidance and management of geometrical uncertainties
in the position of the tumour

In-room imaging for treatment guidance for lung SBRT was first
reported using in-room CTs [22]. It became more widely available with
the development of electronic portal imaging devices (EPID), enabling
2D MV imaging of either treatment fields beam's eye view or orthogonal
setup images. However, MV image quality is poor, and visualisation of
lung tumours is often not possible [23,24]. Planar 2D kV imaging de-
creases imaging dose and improves image quality of the bony anatomy.
In a selected group of patients (e.g., patients presenting with peripheral
and well defined tumours), 2D kV imaging can be used to directly vi-
sualize the tumour[25]. However, using bony anatomy as a surrogate
for tumour position does not match the high precision requirements of
modern lung SBRT and should be avoided [26,27] (see Table 2). 2D
image registration based exclusively on bony anatomy is unfortunately
still applied at a range of institutions, despite the well documented
inter-fractional deviations between the bony anatomy and the SBRT
lung target, ranging as high as 3 cm [6,28].

Visualising the tumour position is of paramount importance for
daily verification in order to avoid geographical miss[3,29]. Percuta-
neously implanted fiducials can be used as an adequate surrogate for

Fig. 1. The stereotactic body frame, as designed by the
Karolinska institute. The coordinate system consists of a set
of graduated scales, visible on CT images and is used to
position the isocentre before each fraction. Abdominal
compression was used if the motion of the diaphragm was
estimated to be over 5mm as assessed under quiet re-
spiration fluoroscopy. Image courtesy of Kristin Karlsson,
Karolinska institute.
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the position of the tumour, since it was shown that markers with non-
smooth surfaces are stable within the tumour throughout the treatment
course [30–32]. However the implementation process comes with a
high risk of pneumothorax [33–35]. This risk may be reduced by using
endovascular coils [36] or bronchoscopy-guided implantation [37] but
it remains present. In contrast, volumetric imaging is a non-invasive
procedure where the tumours and the adjacent organs at risk can vi-
sualised. The use of in-room CT scanners on rails [28] and, more widely
available, on-board kV cone beam CT (CBCT) resulted in improved
geometrical precision of lung SBRT [5,6,38,39] and reduced inter-
fractional uncertainties.

Typical CBCT acquisition takes around one minute and hence con-
sists of several breathing cycles, which may impact visibility and in-
crease interobserver variation during registration. In the presence of
substantial respiratory motion, time resolved 4D CBCT has been shown
to improve image quality [40] and reduce the inter-observer variability
associated with manual image registration [41]. In order to reduce the
dose associated with 4D CBCT, O’Brien et al. have proposed reducing
the number of projections acquired by using the breathing signal as an
input [42]. At the time of writing, online pre-treatment 4D CBCT is not
yet commercially available from all vendors of medical linear accel-
erators (linacs), but it is nonetheless gaining acceptance where avail-
able. The development and utilisation of 4D CBCT should be en-
couraged, especially in patients with small and very mobile tumours
which can “disappear” on 3D CBCT image (Fig. 2a). Further work on
the clinical implementation of 4D CBCT is required in order to make
this form of in-room guidance available as a routine option for lung

SBRT patients. As an alternative, compliant patients with small mobile
tumours can be imaged and treated in deep inspiration breath-hold
(DIBH) (Fig. 2b).

Respiratory motion management strategies were used from the first
implementations of lung SBRT. The most commonly reported strategy
was abdominal compression[8,22,43,44], but Japanese groups in-
troduced breath hold, gating and even tracking in the early 2000s
[45–48]. The efficiency of abdominal compression has been questioned:
it may result in increased inter-fractional variation[49] and, while re-
spiratory motion is decreased in some tumours, it is actually increased
in others [50]. Strategies for gating and voluntary or controlled breath
hold are covered in detail in Caillet et al. (this issue)[51] but it is im-
portant to remember that none of them completely eliminates
breathing-related uncertainties. In addition, respiratory management
strategies may only be applicable in patients who are relatively fit and
compliant, either because they can create discomfort (active breathing
control, abdominal compression), require active patient cooperation
(voluntary breath hold) or increase the treatment delivery time
(gating). Hence, appropriate patient selection is crucial for the im-
plementation of those techniques which should be limited to compliant
patients who get a substantial benefit in terms of improved accuracy.

In patients treated in free-breathing, remaining intra-fractional un-
certainty of the tumour position, evaluated from a pre- and post-
treatment CBCT would result in systematic and random errors within
∼2mm [5,6,52]. A mid-point (e.g. half way through a SBRT treatment)
CBCT can be acquired to ensure minimal intra-fraction baseline shifts
[53].

Table 2
Technological recommendations for lung SBRT anno 2017. These should be interpreted as general guidelines and not as strict requirements.

Routine and standard requirements Advanced options Comment

Treatment preparation CT slice thickness* 2mm CT slice thickness* 1mm This requirement is stronger for smaller tumours
(< 1 cm)

4DCT 4D viewer for contouring Evaluation of tumour motion & optimal baseline for
RT planning (via either midventilation or ITV
concept)

PET/CT For correct staging (for all patients) PET/CT co-registered with planning CT for
treatment planning

Especially for the treatment planning of central lung
lesions

Treatment planning and
delivery

Patient-specific/institution specific PTV
margin

The patient specific part is due to respiratory motion;
institution specific margins should include an
estimate of the geometrical uncertainties

Dose calculation algorithm Type B (AAA,
Collapsed Cone or similar)

Dose calculation algorithm Type C (MC,
Acuros), especially for very small targets

Calculation grid size 2mm Calculation grid size1mm Recommended by AAPM TG 101 [3]
Small field dosimetry Use of appropriate size dosimeter [3]
Stereotactic linac/treatment machine
commissioned for field sizes < 3 cm
MLC leaf width ≤3mm for lesions < 3 cm;
otherwise≤ 5mm

MLC leaf width ≤3mm Recommended by AAPM TG 101 [3]

Beam energy 6–10MV FF Beam energy 6–10MV FFF to reduce
beam-on time (especially valuable if DIBH
is used)

3D conformal with at least 7 beam directions Non coplanar 3D CRT.VMAT/IMRT with
caution for interplay issues
4D CT contour propagation toolsDose
accumulation for 4D planning

In room image guidance and
motion management

Daily Intra-fraction imaging (additional CBCT or
planar imaging with fiducial markers)

CBCT or Alternatively, kV planar imaging
with fiducial marker inside the tumour (or
within∼ 1 cm)

4D CBCT for small very mobile tumours

DIBH for very small tumours (ø < 1 cm)
with large motion (>∼1 cm), especially if
no 4D CBCT available
Respiratory gating or tracking for tumours
with large motion or near critical
structures

Quality assurance QA – end to end test
QA – patient specific pre-treatment
dosimetry for IMRT/VMAT
Special SBRT training for staff [3]
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Surprisingly, intra-fractional uncertainties do not seem related to
the degree of immobilisation [38] or extent of tumour motion [5] but it
has been suggested that they are substantially increased with longer
treatment duration (exceeding 34min) [6]. However, tracking the im-
planted fiducials during beam-on time revealed substantial intra-frac-
tional base-line shifts occurring at an earlier time point [54]. Intra-
fraction monitoring is desirable and might reveal otherwise undetected
shifts in some patients.

Acquisition of intra-fraction CBCT images for lung SBRT has also
been described [55–58] by reconstructing CBCT images from planar kV
images acquired during VMAT irradiation. This allows verification of
the tumour position and movement during free-breathing, whilst the
treatment beam is on, although there is a minimum treatment arc an-
gular range of around 80° required in order to generate useful CBCT
images. Current clinical implementation requires the kV fluoroscopy
beam to be on during the entire treatment arc, so there may also be
scope to reduce the imaging dose, e.g. by gating the kV fluoroscopy.
These techniques are currently being introduced and commissioned by
large academic centres, and some further development is required be-
fore they become widely available for routine implementation from all
vendors.

2.4. Treatment margins

While GTV and clinical target volume (CTV) in lung SBRT are often
considered to coincide [3], the planning target volume (PTV) should
take into account all other uncertainties. The ITV concept, introduced
in ICRU 62 was to account for internal organ motion separately from
set-up or geometrical errors, which are then added to the PTV margins.
However, it has been pointed out that the uncertainties should not be
added linearly [59] and that use of ITV resulted in an “unnecessarily
large volume” for random respiration variability. The ITV concept is
still widely used in lung SBRT, but with slightly different approaches,
resulting in a smaller treated volume: a simple fusion of GTV volumes
delineated in inhale and exhale phases, delineating the GTV on the
maximum intensity projection (MIP) images and fusion of GTVs from
all respiratory phases of a 4DCT [60]. Another motion management
approach is the use of midventilation or midposition [61,62], re-
presenting the time-averaged tumour position combined with a prob-
ability-based margin strategy.

Margins typically prescribed for SBRT were 10mm in CC and 5mm
in AP and LR directions [3,63,64], based on tumour position deviations
as measured in the first report on SBRT [2]. The reproducibility of
target positioning was evaluated from several CT scans, which were co-
registered according to the stereotactic body frame, and these margins
corresponded roughly to the deviations seen between repeat CT scans.
The first study using 4DCT for lung SBRT demonstrated that use of a
standard PTV margin (10mm) on 3D CT based treatment plan is not

appropriate for two reasons: 1) for majority of patients the resulting
PTVs will be larger compared to those established based on 4DCT 2) for
highly mobile tumours these margins will not be sufficient and will
result in risk of underdosing the tumour [12]. Therefore, instead of
using standard margins, margins in lung SBRT should be based on the
actual uncertainties measured and incorporated into a margin recipe
(for instance [65]). These uncertainties include, but are not limited to,
inter- and intra-fractional uncertainties of the tumour position (which
depend on the type and frequency of IGRT together with observer un-
certainties of the image registration process), delineation uncertainty,
mechanical uncertainties of the linac (such as difference between the
kV and MV isocentres and accuracy of treatment couch motion) and the
size of beam penumbra, which is larger in low density lung tissue
compared to soft tissue. Uncertainty of respiratory tumour motion is
included in the ITV, but with the midventilation approach it should be
added to the margin recipe. With midventilation-based margins, the
resulting PTV may be smaller than with ITV-based margins [4,66].
Local control reported on almost 300 stage I NSCLC patients treated
with SBRT using midventilation-based margins still showed 98% local
control at 2 years [67]: in this study, no difference in local control or
overall survival was observed between patients with very mobile tu-
mours (amplitude ≥6.5 mm) and patients with less mobile tumours.

3. Dose planning and calculation

3.1. Dose prescription

Inhomogeneous dose distributions were first rationalised for cranial
stereotactic radiosurgery [68], where the hot spot in the centre of the
tumour could be beneficial for eradicating an increased density of
clonogenic tumour cells. The same argument was used upon im-
plementation in extra cranial targets [1]. The resulting high dose fall off
outside the PTV also limits the exposure of nearby organs at risk.
However, there is no inter-institutional agreement or international code
of practice for prescribing and reporting the dose to the target in lung
SBRT. The most common practice is prescription to the isodose which
encompasses the PTV (see examples in Table 1). In RTOG 0236, 0618
and 0915 lung SBRT trials the prescription dose was three fractions of
20 Gy, prescribed to the isodose covering the PTV, which can be be-
tween 60% and 90% [69,70]. As the maximum dose was 100%, this
produced very different degree of heterogeneity within the target. In
the Scandinavian tradition, 45 Gy in three fractions is prescribed to the
PTV encompassing 65% isodose [71]. This can be presented equiva-
lently, as the 100% isodose encompassing the PTV with a 140%-150%
hot spot at the isocenter [1]. Within the ROSEL trial, the RTOG 0618
dose prescription was specified in a similar way, with 95% of the PTV
receiving nominal fraction dose of 20 Gy, and aiming for a maximum
dose of 110–140% [69]. A discussion of how to achieve these

Fig. 2. a) top row: free breathing CBCT of a tumour with
9mm diameter and respiratory motion of 15mm in cra-
niocaudal direction: the position of the tumour is not de-
tectable. b) bottom row: CBCT acquired in deep inspiration
breath hold (DIBH) resulted in clear representation of the
target.
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inhomogeneous dose distributions is presented by Giglioli et al. in this
issue [72].

Studies have also been published with different dose prescription
approaches: to mean PTV dose, maximum dose and even with relatively
homogeneous dose distribution within the target [73,74]. As discussed
by Ricardi et al. in this issue [75], this is still considerable debate about
the optimal dose prescription and fractionation in lung SBRT. The
variety of dose prescription practices (see table 1 and the calculation
example provided) makes it challenging to compare studies from a
dosimetric point of view and the introduction of standard methods of
dose reporting are sorely needed.

3.2. Dose calculation algorithms

The accuracy of the calculated dose distribution in lung SBRT is
affected by uncertainties related to small-field dosimetry (which will
impact input data used in dose calculation algorithms), and handling
the lateral electron transport and charged particle disequilibrium.
Knöös et al. divided dose calculation algorithms used in commercially
available treatment planning systems into simple ones not taking into
account changes in electron transport (type A), and more complex ones
(type B), which partially account for these changes in electron transport
[76]. Both type A and B algorithms are analytical or semi-analytical.
The third-generation algorithms, recently referred to as type C, solve
the linear Boltzmann transport equations either stochastically (Monte
Carlo) or deterministically (Acuros XB). Modelling physical interactions
of particles in media enables reporting absorbed dose as dose-to-media
as opposed to widely used dose-to-water. There have been some con-
troversies as to which to use [77], and AAPM TG 105 recommended
indicating the material to which the dose was computed, and allowing
conversion from dose-to-medium to dose-to-water, until clinical justi-
fication for either method was assessed [78]. The properties and dosi-
metric impact of these different algorithms are reviewed in detail in
other articles within the present issue [66,79].The choice of dose cal-
culation algorithm in lung SBRT has been shown to have a significant
impact on treatment outcomes. Recurrence rates for type A algorithm
planned SBRT were higher (hazard ration 3.4; 95% CI: 1.18–0.83) [80],
despite tumours treated in the type A group were smaller [80]. 2 years
local control was in better agreement with dose recalculated with type
B or C algorithms [81].

Recent SBRT trials require use of type B or C algorithms (RTOG
0915) or suggest differentiating the prescribed dose according to the
dose calculation algorithm of choice [69,82].

The accuracy of the calculated dose distribution is also affected by
the calculation grid size. AAPM TG 101 recommends using 2mm or
smaller grid size [3], although a 1mm calculation grid size for Acuros
XB has not shown statistically significant benefits for lung SBRT de-
livered with VMAT [83]. Optimisation of Monte Carlo approaches is
discussed by Chetty et al., however without focus on SBRT [78].

3.3. Dose prediction and verification prior to delivery

Recent developments in handling 4D-CT image datasets in com-
mercial treatment planning systems (TPS) have opened up the possi-
bility of in silico assessment of treatment plans across all breathing
phases. These capabilities have so far been used more in the research
setting than in clinical routine [84] and rely heavily on the use of de-
formable image registration (DIR). The accuracy of DIR algorithms in
commercial TPS is probably sufficient in the high-contrast thoracic
region to be useful for propagation of the outline of normal tissues. A
3–5mm variation in contour accuracy between different commercial
software packages has been found [85], and variations of the same
magnitude are also found when using the same software package, but
different workflow. This highlights that work still remains to be done on
establishing guidelines for use of DIR software, along with an evalua-
tion of the size of registration errors for specific tumour sites [86].

The development of semi-automated tools (which allow re-calcula-
tion of the treatment plan dose on each phase of the 4D CT) now permit
inspection of the dose distribution(s) throughout the breathing cycle
prior to treatment. Plan assessment tools such as DVH graphs with error
limits or confidence intervals to guide the user in assessing multiple
plans would be helpful in future software development.

Use of DIR for dose warping or dose accumulation (to sum the dose
delivered across all breathing phases onto a single reference phase) is
more problematic. Errors in the deformation vector, particularly in
zones with a high dose gradient could lead to very significant errors in
accumulated dose [87,88]. Further work is also necessary to fully ex-
amine the interplay effect – this requires information about the dura-
tion of the breathing cycle, and timing of the treatment delivery, par-
ticularly for intensity-modulated beams. Inverse optimisation of plans
using multiple phases of the 4D CT image dataset could also be im-
plemented in the future, to create treatment plans which are ‘robust’ to
breathing motion. Experimental evaluation of the accuracy of 3D versus
4D planning suggests that for each patient, uncertainties in 4D planning
need to be smaller than the uncertainties in the standard 3D approach,
in order for this technique to be adopted in clinical routine [89].

4. New delivery techniques in lung SBRT

The development of volumetric modulated arc therapy (VMAT), in
particular when coupled with the introduction of flattening filter free
(FFF) beams with dose rates of 2400MU per minute, has allowed lung
SBRT plans to be delivered much more rapidly and conveniently than
multiple static beams. Delivery of lung SBRT plans using FFF arc
therapy has been shown to be feasible with acceptable acute toxicity
rates [90].

Some caution is required when selecting patients for these treat-
ments, to avoid any kind of interplay effect, where the periodic nature
of tumour displacement, and the temporal pattern of dose delivery
could overlap to degrade the delivered dose compared to that planned
on the ‘static’ CT image used for planning. Experimental phantom
studies have suggested that the interplay effect is significant for large
tumour displacements (> 3 cm) or very long respiratory patterns
(period > 60 s) [91].

Specialised treatment machines, such as the Cyberknife robotic
radiosurgery system, allow tracking of the tumour in real-time, by
constructing a patient specific correlation model to monitor the re-
spiratory tumour movement, and reposition the treatment beam using
the robotic treatment arm. Briefly: external optical markers (endpoints
of optical fibres that transport the light of light-emitting diodes) are
placed on the chest or abdomen of the patient and are monitored by a
camera array and correlated with the tumour location derived from
orthogonal kV X-ray images of the patient anatomy. The correlation
model is constructed prior to each treatment fraction and verified and
adapted during each treatment fraction. Fiducials can be used for target
localisation, and Cyberknife treatment using fiducial tracking has been
found to give comparable results for 3 year local control (91%) as for
surgical resection [92]. A fiducial-less tracking system (Xsight lung
tracking) is also available, and measurements on patient specific lung
phantoms indicate this tracking accuracy (with mean error
0.38 ± 0.54mm craniocaudal) is comparable to tracking using fidu-
cials [93]. However, not all lung tumours may be amenable to tracking
using the fiducial-less system – small tumours with low density being
more challenging to visualize during treatment [25]. If implanted fi-
ducials are not available and the tumour cannot be localized directly by
one of the two X-ray cameras, there is an option to use only one X-ray
camera for real-time tracking. A treatment margin is then needed to
encompass the motion that is blinded to the other X-ray camera and is
therefore not being tracked. If implanted fiducials are not available and
the tumour cannot be localized by either X-ray camera, margins need to
be added that account for the full inhale-to-exhale motion of the tu-
mour.
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Efforts are also made to increase the potential of DIBH treatments:
Péguret et al. have reported achieving apnea-like conditions lasting up
to 16.5min using a pneumatic ventilation system [94]. Though com-
pliance was acceptable in the healthy volunteers, one out of five pa-
tients could not hold a long enough breath hold to be treated with this
approach and further investigation is necessary to judge whether this
approach is feasible in clinical practice.

5. Quality assurance

Geometric tests for verification of the alignment and coincidence of
the mechanical and radiation isocentres and the image guidance system
should be tighter for machines delivering SBRT treatments: for ex-
ample, a maximum difference of± 1mm compared to the indicated
position, and ± 0.5° in rotation (as opposed to ± 2mm/1° for con-
ventional RT) has been recommended [3,95]. QA procedures have to be
performed frequently and should include a daily check of the coin-
cidence of treatment (MV) and imaging (kV) isocentres [27,29]. For
volumetric vs planar kV in-room imaging, reported isocentre deviations
were within 1mm [96].

Although checking each component individually is required, end-to-
end (E2E) testing using simple geometric phantoms [97,98] is also re-
commended, and developments in EPID technology mean these tests
can be now be semi- or fully automated [99].

For lung SBRT, a patient specific QA program using E2E tests with a
heterogeneous anthropomorphic phantom [100] is required, as this can
be used to verify the mechanical, dosimetric and imaging components
for SBRT delivery, and also check correct transfer and application of
image-guidance positioning data (see an example in Fig. 3). Additional
QA may be required when using a robotic “6 degrees of freedom”
couch, to correct for rotational errors in patient position [101]. Hurk-
mans et al. [102] showed that differences in 4D-CT protocols (due to,
e.g. type of scanner, breathing surrogate or image reconstruction
strategy) could introduce systematic errors in the treatment planning
process: regular QA checks using a moving phantom can help optimise
4D acquisition protocols and should be included in the commissioning
program. Consideration should be given to the quality of images to be
used during real-time imaging for each patient, as image contrast or
target visibility may be degraded compared to studies using phantoms
due to patient size or other artefacts. This is especially important if
tracking or gating is applied, and specific QA procedures relevant to the
exact configuration of each treatment and imaging system will be ne-
cessary [103].

The challenges associated with small field dosimetry have been
described [27], and use of a detector with an active area of 1mm2 or
less is recommended for SBRT dose measurements [3]. A new form-
alism for small-field reference dosimetry has been proposed, which is
also applicable to treatment machines such as CyberKnife or To-
motherapy where the reference geometry outlined in the standard code
of practice is not achievable [104]. In addition, the development of

flattening-filter free (FFF) linacs (e.g. Varian Truebeam and Elekta
Agility HD) which do not deliver ‘flat’ beam profiles also means that
standard parameters for field homogeneity and flatness are no longer
applicable. Novel parameters for beam profile consistency checks have
recently been proposed and analysed [105,106].

Frequent use of non-co-planar fields means that in addition to col-
lision verification, the dosimetric effects of the treatment couch and
immobilisation devices on beam attenuation or increased skin dose
should be considered in the delivery of high-dose per fraction treat-
ments with standard or FFF beams [107,108].

A list of guidelines and protocols specific to SBRT is given in the
Supplementary Table material. These also give guidelines on staffing
and resources needed to implement a successful SBRT program. Reports
for commissioning and benchmarking QA procedures for specialised
machines such as CyberKnife [103], Novalis [109], Vero [110] are also
available. In addition, a review of in vivo dosimetry methods is given by
McCurdy et al. [111] (this issue).

6. Discussion & conclusion

SBRT has led the development of technologies that are today widely
used for other treatment schemes and diagnostic sites. The improve-
ments in local control and overall survival in patients treated with SBRT
cannot be ascribed to technology alone, but it has certainly played a
role: improved SBRT technology facilitated safely escalating the dose to
the tumour, which in turn seems to correlate with improved outcomes
[112]. The potential of future technological developments may be
classified in three categories: 1) workflow improvements (such as FFF
or automated planning and contouring), 2) improvements likely to
show a clinical benefit in a small number of patients, and 3) improve-
ments likely to benefit the group of SBRT patients as a whole. In-
novations in intra fraction management arguably belong to the second
category and will be welcome for a subgroup of patients with very
mobile tumours. Improved imaging for contouring of tumours and or-
gans at risk is also desirable especially in central lung tumours [113],
but we are presently missing data about which structures drive toxicity
and how much they should be spared. When this knowledge becomes
available, advanced delivery techniques (such as proton therapy or
MRI-guided RT (Menten et al. [114] this issue)) may prove valuable for
a larger group of patients.

The next technological priority belonging to the third category and
benefitting the largest group of patients should be on standardisation
(for example, in reporting heterogeneous dose distributions) and/or a
better use of the technology available today. This means more thorough
commissioning and rigorous QA so that the present technology can be
used close to its potential accuracy. It is worth noting that even in these
optimal conditions, uncertainties will be present and zero-margins are
unlikely to be achieved.

Optimal use of the technology currently available will both benefit
clinical practice and ensure the highest quality in clinical trials.

Fig. 3. Motion phantom used for end-to-end testing of
tracking at Erasmus MC.
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Unfortunately, this is not yet the case and a few current trials still allow
the use of 2D portal imaging for peripheral lung tumours despite the
wide availability of CBCT (or other methods which enable to visualize
the position of the tumour) and the well-documented uncertainty of
portal imaging.

Along with developing new tools and making the most of the ones
we already have, the ultimate goal is to achieve high quality and high
precision lung SBRT in both clinical trials and “daily” treatments, in
both academic and non-academic institutions, benefiting all SBRT pa-
tients.
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