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Abstract 37 
 38 
Future changes in both landscape and climate have the potential to create or exacerbate problems 39 

with stormwater management, high flows, and flooding.  In New England, four plausible land-40 

use scenarios were co-developed with stakeholders to give insight to the effects on ecosystem 41 

services of different trajectories of socio-economic connectedness and natural resource 42 

innovation.  To assess the effects of these land-use scenarios on water-related ecosystem 43 

services, we applied the Soil and Water Assessment Tool to two watersheds under two climates.  44 

Differences in land use had minimal effects on the overall water balance but did affect high 45 

flows and the relative contribution of storm runoff to streamflow.  For most of the scenarios, the 46 

effect was small and less than the effect due to climate change.  For one scenario – envisioned to 47 

have global socio-economic connectedness and low levels of natural-resource innovation – the 48 

effects of land-use changes were comparable to the effects due to climate.  For that scenario, 49 

changes to the landscape increased the annual maximum daily flow by 10%, similar to the 5-15% 50 

increase attributable to climate change.  These results, which were consistent across both 51 

watersheds, can help inform planning and policies regarding land use, development, and 52 

maintenance of hydrologic ecosystem services. 53 

54 
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1 Introduction 55 

Changes to the landscape will affect water-related ecosystem services, and planning and 56 

development must be informed by the range of potential effects to ensure resilient and 57 

sustainable water resources, especially under a changing climate.  While climate and 58 

precipitation and are the primary drivers of the hydrologic cycle, land use and land cover 59 

modulate those signals and can exacerbate or mitigate the impacts (Brauman et al., 2007).  60 

Watersheds concentrate precipitation inputs in space (regulating service), distribute them in time 61 

(regulating service), and remove water via evapotranspiration (provisioning service).  Through 62 

modifications to infiltration capacity and vegetation cover, changes to land use and land cover 63 

will affect the partitioning of water between evapotranspiration and streamflow along with the 64 

timing of streamflows.  An understanding of how plausible future landscapes and associated 65 

ecosystem services might affect the water balance and streamflow can improve planning, 66 

infrastructure design, and policy decisions. 67 

An increase in vegetation cover tends to increase both evapotranspiration, which reduces 68 

the provision of streamflow, and infiltration, which increases the temporal regulation of 69 

streamflow.  Paired watershed and observational studies generally show that a reduction in 70 

vegetation cover leads to an increase in average streamflow due to the reduction in 71 

evapotranspiration (e.g., Andréassin, 2004; Bosch & Hewlett, 1982; Brown et al., 2005; Brown 72 

et al., 2013; Bruijnzeel, 2004).  In contrast, the effects of vegetation cover on low flows are less 73 

certain due to the competing effects on evapotranspiration and infiltration (e.g., Devito et al., 74 

2005; Guswa et al., 2017; Homa et al., 2013; Jencso & McGlynn, 2011; Laaha et al., 2013; Price, 75 

2011; Smakhtin, 2001).  The direction of the effect on flooding and high flows is more certain, as 76 

vegetation increases evapotranspiration (reducing streamflow) and infiltration (reducing peak 77 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/847186doi: bioRxiv preprint 

https://doi.org/10.1101/847186
http://creativecommons.org/licenses/by-nc-nd/4.0/


Landscape scenarios and implications for streamflow in New England 

  page 4 of 36 

flows).  The loss of vegetation, coupled with increases in impervious cover, increases peak 78 

flows.  The magnitude and significance of those services are uncertain across environments and 79 

events, however.  For example, in the UK, increases in vegetation were found to reduce peak 80 

flows for small to moderate rainfall events but had little effect for larger events (Dadson et al., 81 

2017).  When the land is saturated, the regulating effect of infiltration may be reduced, and some 82 

claim that landscape effects on flood reduction may be overestimated (Calder & Aylward, 2006).  83 

In one case, authors even found the opposite effect, with increased impervious area correlated 84 

with decreased high flows, perhaps due to a concomitant increase in stormwater detention 85 

infrastructure (Homa et al., 2013). 86 

Investigators have also used modeling studies to elucidate the effects of land use on 87 

hydrologic ecosystem services.  Karlsson et al. (2016) examined the combined effect of four 88 

land-use scenarios, four climate models, and three hydrological models on streamflows in 89 

Denmark and found that the climate model had more influence than land-use change.  Ashage et 90 

al. (2018) used the Soil and Water Assessment Tool (SWAT) to show that forests and 91 

woodlands, relative to agriculture, regulated both sediment loads and peak flows in Tanzania.  92 

Baker & Miller (2013) also used SWAT in East Africa and found that increases in urbanization 93 

resulted in greater surface runoff and reduced groundwater recharge.  For the Songkhram River 94 

Basin in Thailand, Shrestha et al. (2018) employed SWAT to determine that the effects of 95 

climate change (20% decrease in streamflow) were greater than the effects due to potential land-96 

use changes (5% increase in streamflow).  SWAT has also been applied to multiple watersheds 97 

in the United States.  In the northeast, an increase in forest cover led to a decrease in the severity 98 

and duration of both high and low flows (Ahn & Merwade, 2017).  In southern Alabama, Wang 99 

et al. (2014) showed that a near doubling of urban area from 26.4% of the landscape to 50.2% 100 
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resulted in an increase of only 2.2% in the average daily flow.  Hantush & Kalin (2006) 101 

simulated urbanization in the Pocono Creek in Pennsylvania, and they found that increasing 102 

development from 5.8% of the landscape to 75.8% reduced average flows by 1.1% and increased 103 

the average annual maximum daily flow by 19.4%.  Cheng (2013) used SWAT to simulate and 104 

compare four land-use scenarios and three climate scenarios with respect to streamflow and 105 

found that the effects of climate were greater than those due to land-use change.  Building on that 106 

work, Cheng et al. (2017) used SWAT to investigate the ability of stormwater detention to 107 

mitigate the effects of climate change on high flows for the Charles River watershed in 108 

Massachusetts. 109 

In this work, we use SWAT to examine the effects of plausible, future land-use scenarios 110 

on water-related ecosystem services for two watersheds in New England under both a historical 111 

and potential future climate.  The land-use scenarios were co-developed with scientists and a 112 

range of stakeholders as part of the New England Landscape Futures (NELF) project, a large 113 

research network designed to integrate diverse modes of knowledge and create a shared 114 

understanding of how the future may unfold (McBride et al., 2019).  Like all scenarios, the 115 

NELF scenarios are not intended as forecasts or predictions; instead, they explore multiple 116 

hypothetical futures in a way that recognizes the irreducible uncertainty and unpredictability of 117 

complex systems (Thompson et al., 2012).  Co-designing scenarios increases the range of 118 

viewpoints included in the process and is widely credited with enhancing the relevance, 119 

credibility, and salience of outcomes (Cash et al., 2003).  Participatory development of land-use 120 

scenarios is particularly useful in landscapes such as New England where change is driven by the 121 

behaviors and decisions of thousands of independent land owners rather than by a central 122 

decision-making authority.  Throughout this paper, we use the term “scenarios” to refer to the 123 
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stakeholder-informed future landscapes, and we use the term “simulations” to refer to the 124 

combinations of climate-watershed-landscape used in our analyses. 125 

In New England, where precipitation is abundant and consistent throughout the year, 126 

stakeholders expressed that the primary water-quantity issues of concern are related to 127 

stormwater, peak streamflow, and flooding.  Consequently, this work focuses on effects of land 128 

use on storm runoff and high flows.  The intent is to reveal the magnitude and robustness of 129 

potential effects due to plausible changes to the landscape. This work can provide one piece of a 130 

more holistic and comprehensive assessment of ecosystem services across these land-use 131 

scenarios (e.g., Thompson et al., 2014). 132 

2 Methods 133 

2.1 Land-cover scenarios for New England in 2060 134 

McBride et al. (2017) and McBride et al. (2019) describe NELF’s participatory process 135 

for co-developing scenarios of future land cover in New England in 2060.  In brief, four narrative 136 

land-use scenarios were co-designed in context with a “Recent Trends” scenario using a scenario 137 

development process that engaged over 150 stakeholders (e.g., conservationists, planners, 138 

resource managers, land owners, scientists, etc.) from throughout the region.  The scenarios were 139 

created using the Intuitive Logics approach, a structured process in which participants develop 140 

plausible storylines describing a set of distinct alternative futures (Schwarz, 1991). The NELF 141 

participants used this process to construct four scenarios – Go It Alone (GA), Connected 142 

Communities (CC), Yankee Cosmopolitan (YC), and Growing Global (GG) – characterized by 143 

extreme states of two driver variables: (1) low to high natural resource planning and innovation 144 

and (2) local to global socio-economic connectedness (Table 1), which they determined to be 145 

among the most uncertain and potentially impactful for the region.  Storylines for each scenario 146 
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are provided in Table 1, which is adapted from the detailed narratives available in Fallon 147 

Lambert et al. (2018). 148 

Land uses for the scenarios were simulated using the cellular land-cover-change model, 149 

Dinamica EGO v.2.4.1 (Soares-Filho et al. 2009; Soares-Filho et al., 2013), using a process that 150 

iterated between modelers and stakeholders to ensure that the resulting maps accurately 151 

represented the stakeholders’ intent (Thompson et al., 2017).  The 50-year simulations have 30-152 

m resolution and span the years 2010 to 2060 in ten-year time steps.  Land cover varies across 153 

five classes: High Density Development, Low Density Development, Forest, Agriculture, and 154 

Legally Protected Land (e.g., conservation easements).  Other land-cover classes, such as water, 155 

were held constant throughout the simulations.  For the Recent Trends scenario, the rate and 156 

spatial patterns of land-cover transitions were based on observed changes in classified Landsat 157 

data between 1990 and 2010 (Olofsson et al. 2016; Thompson et al., 2017). 158 

2.2 Study watersheds – Cocheco River and Charles River 159 

To investigate the effects of these plausible landscape scenarios (Table 1) on streamflow, 160 

we selected the Cocheco River watershed, defined by USGS gage 01072800, and the Charles 161 

River watershed, defined by USGS gage 01104500 (Figure 1).  The Cocheco River watershed in 162 

southeastern New Hampshire was selected because it is in one of the most rapidly urbanizing 163 

parts of New England.  The watershed has an area of 207 km2, and the main channel is 34 km in 164 

length and drops 170 m in elevation from the headwaters to the gage at an elevation of 36.2 m.  165 

Average annual precipitation is 1059 mm/year, and average streamflow is 3.14 cms, equivalent 166 

to 479 mm/year.  The Charles River flows through some of the most densely populated parts of 167 

New England, and a SWAT model had previously been calibrated to study this watershed 168 

(Cheng et al., 2017).  The watershed has an area of 648 km2, and it is flatter and more developed 169 
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than the Cocheco watershed (Figure 1).  The outlet elevation is 6.10 m, and the main channel 170 

drops only 101 m over its 108-km length.  Average annual precipitation is 1111 mm/year, and 171 

average streamflow is 8.01 cms, equivalent to 389 mm/year.  Figures 2 and 3 display the land 172 

uses across the Cocheco River and Charles River watersheds for the landscape scenarios 173 

described above.  Table 2 reports the fraction of each land-use type within the watersheds. 174 

2.3 Hydrologic model – SWAT 175 

This project employed the Soil and Water Assessment Tool (SWAT; Arnold et al., 1998; 176 

Nietsch et al., 2011) to represent the effects of land-cover differences on hydrology.  SWAT is a 177 

well-known and proven process-based model that represents weather, hydrology, growth and 178 

seasonality of vegetation, and landscape management practices.  It operates with a daily time 179 

step, and space is represented in a semi-distributed way.  Within a watershed, sub-basins are 180 

linked via a stream network, and each sub-basin is represented by a collection of Hydrologic 181 

Response Units (HRUs). Each HRU comprises a particular combination of soil, slope, land use, 182 

and land management.  Within a sub-basin, HRUs are not represented explicitly in space and do 183 

not interact with each other, and water-balance equations are solved within each HRU.  Incoming 184 

precipitation is partitioned among canopy interception, storm runoff, and storage in the soil.  Soil 185 

water then contributes to lateral subsurface flow, groundwater return flow, and deep recharge. 186 

In SWAT, ecosystem services related to hydrology and streamflow are affected by a few 187 

parameters related to land use, including 188 

• The curve number, the parameter in the Curve Number Method for estimating storm 189 

runoff (USDA, 2004), which depends on soil and land use; 190 
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• The fraction of impervious area and the fraction of impervious area that is directly 191 

connected to storm sewer infrastructure; these parameters affect the aggregated curve 192 

number for urban areas; 193 

• Vegetation, which affects the seasonality and magnitude of evapotranspiration. 194 

Across different landscape scenarios, the weather, topography, soils, and soil-related parameters 195 

are held constant. 196 

2.3.1 Weather forcing 197 

Simulations were run in SWAT for twenty-year periods for both historical weather and a 198 

future climate.  The first three years of all simulations were used as a warm-up period and were 199 

not used in subsequent analyses.  The years were selected so that the final simulated years 200 

coincided with the years of the landcover datasets plus the eight years before and the eight years 201 

after (2002-2017 for the historical weather and 2052-2067 for the simulated future climate). 202 

Data for the historical weather came from the National Oceanic and Atmospheric 203 

Administration’s Climate Data Online Search webtool (NOAA, 2018).  We used data from the 204 

Rochester Skyhaven Airport (054791) weather station for the Cocheco River watershed and the 205 

Boston (14739) weather station for the Charles River watershed.  Precipitation and temperature 206 

data for a possible future climate were obtained from the USGS Geo Data Portal Bias Corrected 207 

Constructed Analogs V2 Daily Climate Projections dataset (USGS, 2018).  The spatially and 208 

temporally downscaled LOCA CMIP5 CCSM4 RCP 8.5 dataset has among the highest 209 

temperature correlations with observed data (Kumar et al., 2013) and performs well with 210 

comparisons to historical and paleo climate data (Sillmann et al., 2013). 211 

Precipitation and temperature data were used with the weather generator in SWAT (using 212 

the WGEN_US_FirstOrder database) to simulate additional weather parameters, including 213 
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relative humidity, wind speed, and solar radiation.  The Penman-Monteith method was used to 214 

estimate potential evapotranspiration (Arnold et al., 2012). 215 

2.3.2 Landscape features and watershed discretization 216 

Land-cover maps were derived from the NELF scenarios (McBride et al., 2017; McBride 217 

et al., 2019; Plisinski et al., 2017).  While the NELF scenarios combined water with wetlands 218 

and considered swamps to be forests, we separated water and wetlands, and accounted for 219 

herbaceous wetlands and swamps explicitly by extracting those land-cover types from the 220 

National Land Cover Database (NLCD; Homer et al., 2015) and imposing them on the NELF 221 

scenarios.  Soil data were obtained from the SSURGO database (USDA, 2014).  Three slope 222 

classes were calculated for each watershed using natural class breaks; breakpoints of 5.7% and 223 

14.1% were used for the Cocheco River watershed and 4.6% and 11.5% for the Charles River 224 

watershed.  To better represent the small land-use patches that are typical of the New England 225 

landscape, we did not merge smaller HRUs with larger neighbors, as is sometimes done. 226 

Land-cover differences in SWAT manifest predominantly as differences in plant growth 227 

and evapotranspiration and in the generation of storm runoff via the curve number (Arnold et al., 228 

2012).  We chose curve numbers (CN2) to reflect conditions in New England.  Because there is 229 

very little woodland pasturing in New England, we changed the CN2 values for generic forest 230 

(FRST) from the default values in SWAT, which would be appropriate in forests subject to 231 

grazing by livestock (“fair” condition), to those for forests without livestock grazing (“good” 232 

condition).  CN2 values for forest were 5, 55, 70, 77 for soil hydric classes A through D, 233 

respectively. 234 

The New England Landscape Futures use a single designation for all agricultural land, 235 

and we do the same by using the generic agriculture land-cover (AGRL).  The default curve 236 
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numbers for AGRL in SWAT are appropriate for farmland dominated by corn or row crops, 237 

while New England farms are primarily pasture and hay fields.  Therefore, we updated this 238 

parameter by using county-level data from the United States Agricultural Census (USDA, 2018) 239 

to determine an area-weighted curve number based on the actual agricultural types.  Resulting 240 

curve numbers for our agricultural land use are 42.3, 65.1, 76.2, and 82.1 for soil hydric classes 241 

A through D, respectively.  Other parameters in SWAT’s vegetation database (plant.dat) were 242 

not changed. 243 

Urban areas in the NELF scenarios are designated as either “high-density development” 244 

or “low-density development.” We consider these two classes to be analogous to Urban 245 

Residential High Density (URHD) and Urban Residential Medium/Low Density (URML), 246 

respectively, in SWAT.  We calculated the fraction of impervious surface for all of New England 247 

by overlaying the NLCD urban landcover types (Homer et al., 2015) on the NLCD 2011 Percent 248 

Developed Imperviousness GIS layer (Xian et al., 2011) and calculating separate area-weighted 249 

averages for URHD (consisting of the NLCD “Developed, High Intensity”) and URML 250 

(consisting of NLCD “Developed, Open Space”, “Developed, Low Intensity”, and “Developed 251 

Medium Intensity”).  This resulted in 88.9% impervious for URHD and 27.5% impervious for 252 

URML in our simulations.  For all scenarios except Connected Communities and Yankee 253 

Cosmopolitan, the fractions of connected impervious area (i.e., the impervious area that is 254 

directly connected to storm sewers) were left at SWAT’s default values of 44% and 17%, 255 

respectively, for URHD and URML.  For Connected Communities and Yankee Cosmopolitan, 256 

those numbers were halved to 22% and 8.5% to represent natural-resource innovation (Table 1) 257 

and the implementation of green infrastructure, such as bioswales and rain gardens.  CN2 values 258 

for the pervious portions of these urban areas were set to 39, 61, 74, 80 for hydric classes A 259 
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through D, respectively, since the pervious portions of New England’s urban areas are usually 260 

grass-covered lawns with greater than 75% grass cover (Arnold et al., 2012).  No other values in 261 

the urban.dat file were changed. 262 

2.3.3 Calibration and model performance under historic conditions 263 

To increase model performance and accuracy, parameters that were unrelated to land 264 

cover within the SWAT model were calibrated by matching simulated streamflow to observed 265 

streamflow under current land use.  Model parameters were calibrated separately for each 266 

watershed using observed flow for the years 2002-2011 and validated using the observed flow 267 

from 2012-2017.  Parameters that were explicitly related to land use, such as the curve number 268 

and vegetation-related parameters, were not included in calibration, since they were our driver 269 

variables of interest.  We used a semi-automated approach with the SWAT Calibration and 270 

Uncertainty Program (SWAT-CUP) using the SUFI-2 optimization method (Abbaspour, 2015).  271 

Starting values for our calibration were either the default values in SWAT or the calibrated 272 

results from an earlier study on the Charles River (Cheng, et al., 2017).  We used the Nash-273 

Sutcliffe efficiency, percent bias, and the ratio of the root-mean-square error to the standard 274 

deviation of the streamflow observations (RSR) as metrics of goodness-of-fit.  Calibration 275 

continued until none of the metrics improved by more than 5% over the previous iteration. 276 

The final model for the Cocheco River had a NSE of 0.58, RSR of 0.64, and percent bias 277 

of -13.6% for the calibration period.  The model for the Charles River had values of 0.74, 0.51, 278 

and 1.2%, respectively.  Moriasi et al. (2007) suggest that a model can be viewed as satisfactory 279 

if the NSE value is greater than 0.50, the RSR is less than 0.70, and the percent bias is less than 280 

plus or minus 25%; the calibrated models for both rivers were deemed satisfactory.  For the 281 

validation period, the Cocheco River had a NSE of 0.49, RSR of 0.72, and percent bias of -282 
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19.5%, and the Charles River had values of 0.74, 0.51, and 23.3% respectively.  Final parameters 283 

and goodness-of-fit metrics are shown in Table 3.  284 

2.4 Streamflow metrics of interest 285 

Across scenarios and climates, we consider two metrics of hydrologic regulation.  The 286 

first is the water balance – the partitioning of precipitation among evapotranspiration, storm 287 

runoff, and baseflow.  Runoff and baseflow together constitute streamflow; storm runoff is the 288 

rapid response to precipitation events, whereas baseflow represents the slower component of 289 

streamflow driven by seasonal and interannual variability.  The second metric is the annual 290 

maximum daily flow.  While true peak flows may be short-lived phenomena – on the scale of 291 

minutes to hours – the annual maximum daily flow nonetheless provides an indication of the 292 

potential for flooding and associated damage. 293 

3 Results 294 

3.1 Water balance 295 

Across the simulations, land use has little effect on the average partitioning of 296 

precipitation between evapotranspiration and streamflow (Figure 4).  Under historic weather, 297 

simulated evapotranspiration is 44-45% of precipitation in the Cocheco River watershed and 46-298 

48% of precipitation in the Charles River watershed with little variation among land-use 299 

scenarios (Table 5).  For the future climate, annual precipitation increases from 1059 mm to 300 

1194 mm in the Cocheco River watershed and 1111 mm to 1345 mm in the Charles River 301 

watershed, and potential evaporation decreases (Table 5).  As a result, evaporation represents a 302 

smaller fraction (35%-36%) of precipitation for the simulations with a future climate. 303 
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While total streamflow is nearly unchanged across the land-use scenarios, the partitioning 304 

of streamflow between baseflow and storm runoff does vary.  In the Cocheco River watershed, 305 

baseflow is 90-94% of streamflow for all land-use scenarios, except Growing Global, for both 306 

historic and future weather.  For Growing Global, baseflow is 74% and 78% of streamflow for 307 

historic weather and a future climate, respectively.  In the more developed Charles River 308 

watershed, baseflow represents between 40% and 61% of streamflow under historic weather, 309 

with the lowest fraction associated with the Growing Global scenario (Table 5).  For the future 310 

climate, both storm runoff and baseflow increase.  As a fraction of streamflow, the baseflow 311 

contribution increases by approximately 10% and shows variability across scenarios similar to 312 

that under historic weather. 313 

Seasonal water balances exhibit behavior similar to the annual water balances.  314 

Differences in land use have little effect on the partitioning of water between streamflow and 315 

evapotranspiration; rather, the effect is in the separation of streamflow into baseflow and storm 316 

runoff (Table 6 and 7).  The increases in streamflow associated with a future climate vary 317 

seasonally, with large increases in autumn and winter, moderate increases in spring, and little 318 

effect in summer (Figure 5).  For historic weather, streamflow during the fall and winter 319 

represents 40% and 44% of annual streamflow for the Cocheco River and Charles River 320 

watersheds, respectively.  Those fractions increase to 51% and 55% under a future climate 321 

(Figure 5). 322 

3.2 Changes in magnitude of annual maximum daily flow 323 

The annual maximum daily flow (AMDF) exhibits significant year-to-year variability due 324 

to variability in weather and precipitation.  Under historic weather and land use, simulated 325 

AMDFs range from 10.7 to 78.2 m3/s (equivalent to 4.5 to 32.7 mm/day) for the Cocheco River 326 
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watershed and 15.5 to 94.0 m3/s (2.1 to 12.5 mm/day) for the Charles River watershed.  Due to 327 

this year-to-year variability, a paired comparison was used to quantify the effect of land use on 328 

AMDF.  For each year of simulation, the difference in AMDF between each future land-use 329 

scenario and the land use from 2010 indicates the effect of land-use change on high flows.  330 

Figures 6 and 7 present the average differences, along with their 95%-confidence intervals 331 

determined via 10,000 bootstrap samples, expressed as a percent of the average AMDF under 332 

land use in 2010. 333 

Analysis of the difference in these flows between land use in 2010 and future scenarios 334 

indicates that land-use change could have a moderate effect on the annual maximum daily flow 335 

(Figures 6 and 7 and Table 8).  Under the Growing Global scenario, the annual maximum daily 336 

flows are approximately 10% larger than those under the historic land-use scenario.  This result 337 

is robust across both the Cocheco River and Charles River watersheds and both historic and 338 

future climates.  Effects under other land-use scenarios are more modest, with mean values 339 

ranging from 0-4%. 340 

While the AMDFs increase with increasing urbanization, the relationship depends on the 341 

nature of the urbanization – whether high density or medium or low density – and the associated 342 

increases in the fraction of impervious area (Figure 8).  For example, while total urban area is 343 

greater for both the Recent Trends and Go-It-Alone scenarios than for Connected Communities 344 

(Table 2), the Connected Communities scenario has a higher proportion of high-density 345 

development, and a comparable fraction of total impervious area (Table 8 and Figure 8).  The 346 

incorporation of green infrastructure, manifest as a lower fraction of directly connected 347 

impervious area in the Yankee Cosmopolitan and Connected Communities scenarios, mitigates 348 

the effect of urbanization on AMDF only slightly. 349 
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4 Discussion 350 

4.1 Differences among land-use scenarios 351 

Variations in the future land-use scenarios have little effect on the overall water balance 352 

and provisioning of streamflow.  The dominant effect of land-use is on the temporal regulating 353 

service: partitioning streamflow between faster storm runoff and slower baseflow (Table 5 and 354 

Figure 4).  The effects on these services are similar across the two climates and two watersheds.  355 

Increases in urban areas lead to more water moving quickly to the streams, which increases the 356 

magnitude of the annual maximum daily discharge.  This effect reaches a maximum of 357 

approximately 10% for both the Cocheco and Charles River watersheds when comparing land 358 

use in 2010 with the Growing Global scenario. 359 

The relative sensitivity of AMDF to impervious area is 2% for the Cocheco River 360 

watershed and 6% for the Charles River watershed (for both historic weather and a future 361 

climate).  Thus, a large change in impervious area is required to generate a noticeable effect on 362 

the annual maximum daily flow (Table 8).  These results are consistent with those of Hantush 363 

and Kalin (2006) who found a relative sensitivity of AMDF to developed area of 2% in 364 

Pennsylvania.  Part of the reason for these limited sensitivities may be that high flows in New 365 

England and the northeast occur predominantly in March and April when evapotranspiration is 366 

low and the ground is saturated.  Under such conditions, the regulating service associated with 367 

infiltration is reduced.  Sensitivity of AMDF to precipitation is much greater: 40-60% for the 368 

Cocheco River watershed and over 80% for the Charles River.  Even though the sensitivities are 369 

quite different, the effects on AMDF of plausible future changes in land use or climate in 2060 370 

are comparable, with effects due to land-use change reaching 10% and effects attributable to 371 
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climate change of approximately 5% for the Cocheco River and 17% for the Charles River 372 

(Table 8). 373 

4.2 Implications of findings for policy and design 374 

The results of this work indicate that the effects of climate and land use on runoff and 375 

high flows are additive (Table 8).  The combination of a wetter future climate and increased 376 

urbanization has the potential to exacerbate high flows and flooding.  While the results imply 377 

that it would take a major reworking of the landscape to mitigate the effects of climate change, 378 

they also indicate that rapid growth and development could present significant challenges for 379 

stormwater management and existing infrastructure.  If population growth is modest, land-use 380 

decisions and development patterns have little effect on storm runoff and high flows (compare 381 

scenarios CC and GA in Table 5 and Figures 6 and 7).  However, when the future is 382 

characterized by global socio-economic connectedness and increased population growth (Table 383 

1), the results from the Yankee Cosmopolitan and Growing Global scenarios are substantively 384 

different (Table 5 and Figures 6 and 7).  In this case, urban planning and choices regarding land 385 

use can have a large impact on regulating services and the potential for flooding.  Planning for 386 

smart and sustainable growth while concomitantly investing in multi-functional landscapes and 387 

natural infrastructure could reduce flood damages.  Additionally, with increased high flows, 388 

communities may need to increase the size of their water infrastructure and/or allow for short 389 

periods of inundation (Rosenzweig et al., 2018). 390 

4.3 Limitations of approach 391 

This study employs a hydrologic model to investigate the potential impacts of future 392 

land-use scenarios on streamflow.  As such, the utility of the results depends upon the 393 
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appropriateness of the mathematical representation of watershed characteristics and processes.  394 

SWAT is a well-established model, suitable for watershed applications, that has been and 395 

continues to be employed in a number of studies and investigations.  Nonetheless, there are some 396 

inherent limitations of the model, and the results of this work should be interpreted within that 397 

context. 398 

First, some of the model parameters (such as available water content, hydraulic 399 

conductivity, and surface runoff lag) are determined by calibrating the model to existing 400 

conditions.  Using the model to represent future land use presumes that those parameters are 401 

unchanging across the scenarios.  In most cases, we anticipate this to be true, as those parameters 402 

are functions of soil, topography, or other watershed characteristics that are generally unchanged 403 

as the land cover changes.  Characteristics that do change with land use, such as the curve 404 

number and vegetation cover, are not calibrated but determined a priori.  Second, the temporal 405 

resolution of this work is limited to the daily timescale.  This precludes the representation of sub-406 

daily dynamics of precipitation and streamflow.  Therefore, instantaneous peak streamflows 407 

cannot be modeled, and this work is limited to daily discharge.  Third, SWAT represents space in 408 

a semi-distributed way.  While the model accounts for spatial variations among watershed 409 

characteristics, the HRU structure does not permit the representation of the spatial arrangement 410 

and connectedness of landscape elements.  Therefore, feedbacks and interactions among 411 

different parts of the landscape cannot be represented explicitly.  For example, increased runoff 412 

from one HRU cannot infiltrate in a different HRU.  Such interactions can only be represented 413 

implicitly.  Relatedly, storm runoff is represented with an approach that implicitly accounts for 414 

effects of soil, land cover, and land management through a single parameter.  This is consistent 415 
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with large-scale analyses and is not intended for small-scale green-infrastructure evaluation.  416 

Results from this work must be interpreted within the context of these modeling limitations. 417 

4.4 Next steps 418 

Our results reveal that potential changes to high flows are strongly connected to increases 419 

in urban land uses in New England.  To more precisely elucidate the effects of such changes in 420 

land use and land cover, one could refine the representation of urban hydrology.  Models such as 421 

the Storm Water Management Model (SWMM) and HydroCAD are better equipped to represent 422 

the natural and engineered features of an urban landscape, the sub-daily dynamics of the runoff 423 

response to storm events, and the elements of green infrastructure at the site and local scales.  424 

Such site-scale and sub-daily simulations of hydrological responses can further inform policy 425 

and practice, and these more detailed studies will necessarily be narrower in geographic scope.  426 

Continued engagement with stakeholders in the scenario-planning process can provide guidance 427 

to locations of interest along with the level of risk and types of landscape and infrastructure 428 

interventions that communities are willing to accept. 429 

Finally, changes to nutrient and sediment loads are additional effects of changes to the 430 

landscape that may be of interest to stakeholders in New England.  SWAT could be employed 431 

(for the Charles River, Cocheco River, or other watersheds) to investigate the effects of the 432 

landscape scenarios on the export of nitrogen, phosphorus, and sediment.  The effects on water 433 

quality could be combined with our results on high flows to create a more complete picture of 434 

the effects of landscape futures on water-related services. 435 
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5 Conclusions 436 

Application of a hydrologic model to stakeholder-developed scenarios can provide 437 

meaningful insight to the effects of plausible land-use changes on water-related ecosystem 438 

services.  The combination of land use and climate change on storm runoff, high flows, and 439 

flooding are issues of concern, not only in New England but worldwide.  Across the NELF 440 

scenarios, variations in land use had little effect on the overall water balance.  Rather, the impact 441 

was on high flows and the partitioning of streamflow between storm runoff and baseflow.  Those 442 

effects were correlated with the amount of impervious cover.  For most of the scenarios (GA, 443 

CC, YC), the effects were muted and less than the effects due to climate change.  For the 444 

Growing Global scenario, however, the effects were large and comparable to or greater than the 445 

effects of climate.  These responses to land-cover change were similar across the Cocheco River 446 

and Charles River watersheds.  Results from this work can help inform designs and decisions 447 

related to infrastructure resiliency and can complement other studies to provide a comprehensive 448 

assessment of ecosystem services across possible future landscapes. 449 
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Table 1.  Storylines for New England Landscape Futures in 2060.  Scenario icons and 
descriptions are adapted with permission from Fallon Lambert et al. (2018). 
 
        Local                           Socio-economic connectedness                        Global 

 
 
 
 
 
 

High 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Natural 
resource 
planning 

and 
innovation 

 
 
 
 
 
 
 
 
 
 

 

  Connected Communities (CC) 
 
This is the story of how a shift towards living 
‘local’ and valuing regional self-sufficiency and 
local resource use increases the urgency to 
protect local resources.  The New England 
population has increased slowly over the past 
fifty years and most communities are coping with 
climate change by anchoring in place rather than 
relocating, making local culture and the use and 
protection of local resources increasingly 
important to governments and communities. 
New England has been less affected by climate 
change than many other regions of the U.S. in 
this scenario. Concerns about global unrest and 
the environmental impacts of global trade have 
led New Englanders to strengthen their local ties 
and become more self-reliant. These factors 
combine with heightened community interest and 
public policies to strengthen local economies and 
fuel burgeoning markets for local food, local 
wood, and local recreation.   
 
Drivers: high natural resource planning 
and innovation; local socio-economic 
connectedness 

 

  Yankee Cosmopolitan (YC) 
 
This is the story of how we embrace change 
through experimentation and upfront 
investments. While environmental changes break 
records and urbanization continues to pressure 
natural systems, society responds with greater 
flexibility, ingenuity, and integration.  In this 
scenario, New England has experienced 
substantial population growth spurred by climate 
and economic migrants who are seeking areas 
less vulnerable to heat waves, drought, and sea-
level rise. Most migrants are international but 
some have relocated from more climate-affected 
regions in the U.S. At the same time, a strong 
track record in research and technology has made 
New England a world leader in biotech and 
engineering, creating a large demand for skilled 
labor. The region’s relative resilience to climate 
change and growing employment opportunities 
has made New England a major economic and 
population growth center of the U.S. Abundant 
forests remain a central part of New England’s 
identity, and support increases in tourism, 
particularly in Vermont, Maine, and New 
Hampshire. 
 
Drivers: high natural resource planning 
and innovation; global socio-economic 
connectedness 
 

 

 Go It Alone (GA) 
 
This is the story of a region challenged by 
shrinking economic opportunities paired with 
increasing costs to meet basic needs, yet 
innovation is stagnant and new technologies are 
not rising to increase efficiency or create new 
opportunities. With local self-reliance and 
survival as the primary objectives, natural 
resource protections are rolled-back and 
communities turn heavily to extractive 
industries.  

 

  Growing Global (GG) 
 
This is the story of an influx of climate change 
migrants seeking refuge in New England, and 
taking the region by surprise. New pressures on 
municipal services drive a trend towards 
privatization. Regional to national policies have 
promoted global trade but global agreements to 
address climate change have failed.      
  
In this scenario, by 2060, a steady stream of 
migrants has driven up New England’s 
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Low 

  
In this scenario, population growth in the region 
has remained fairly low and stable over the past 
50 years as the lack of economic opportunity, 
high energy costs, and tightened national borders 
have deterred immigration and the relocation of 
people from within the U.S. to New England. 
The concurrent shrinking of national budgets and 
lack of global economic connections have left 
little leeway to deal with challenges such as high 
unemployment, demographic change, and 
climate resilience. Within New England this has 
resulted in the rolling back of natural resource 
protection policies and the drying up of 
investments in new technologies and ecosystem 
protections in response to a lack of regulatory 
drivers. Over the last 50 years, the region has 
seen the significant degradation of ecosystem 
services as a result of poor planning, increased 
pollution, and heavy extractive uses of local 
resources using conventional technologies. 
 
Drivers: low natural resource planning 
and innovation; local socio-economic 
connectedness 

population, with newcomers seeking to live in 
areas with few natural hazards, ample clean air 
and water, and low vulnerability to climate 
change. This influx of people has taken the 
region by surprise and local planning efforts have 
failed to keep pace with development. The region 
has experienced increasing privatization of 
municipal services as state and local 
governments struggle to keep up with the needs 
of the burgeoning population. Trade barriers 
were lifted in the 2020s to counter economic 
stagnation and the volume of global trade has 
multiplied over the past 40 years as a result of 
increasing globalization. However, all attempts at 
global climate change negotiations and 
renewable energy commitments have failed in 
this globally divided world.  
 
Drivers: low natural resource planning 
and innovation; global socio-economic 
connectedness 
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Table 2. Fractional land use across scenarios and watersheds. 
 
Watershed Land-use 

scenario 
% Urban  % Forest  % Agriculture  

Cocheco 2010 14.3 75.5 4.4 
RT 22.8 66.7 4.7 
GA 16.1 73.8 4.3 
CC 14.6 74.3 5.3 
YC 39.6 49.9 4.7 
GG 65.7 18.6 9.8 

Charles 2010 35.2 50.6 6.2 
RT 50.7 35.2 6.1 
GA 47.7 38.4 5.8 
CC 41.8 43.3 6.9 
YC 63.8 22.8 5.4 
GG 68.9 16.2 6.8 
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Table 3. Calibrated parameters for SWAT models of the Cocheco River and Charles River 
watersheds. 
 
Description SWAT file Cocheco Charles 
Soil evaporation compensation factor .bsn 0.84 0.99 
Surface runoff lag coefficient .bsn 3.94 4.62 
Fraction of transmission loss from 
main channel that enter deep aquifer .bsn 0.01 0.01 

Plant uptake compensation factor .bsn 0.69 0.95 
Baseflow alpha factor (1/days) .gw 0.19 0.22 
Groundwater delay time (days) .gw 32.16 36.37 
Threshold depth in the shallow aquifer 
required for return flow (mm H20) .gw 972.19 1150.78 

Groundwater "revap" coefficient .gw 0.06 0.08 
Deep aquifer percolation fraction .gw 0.09 0.08 
Threshold depth in the shallow aquifer 
for "revap" or percolation to the deep 
aquifer (mm H2O) 

.gw 1027.11 534.91 

Soil evaporation compensation factor 
for HRUs .hru 0.98 1.00 

Plant uptake compensation factor .hru 0.78 0.09 
Baseflow alpha factor for bank storage 
(days) .rte 0.81 0.70 

Effective hydraulic conductivity in 
main channel alluvium (mm/hr) .rte 242.34 405.11 

Available water content of the soil 
(mm H2O/mm soil) for hydric class A .sol 0.22 0.20 

Available water content of the soil 
(mm H2O/mm soil) for hydric class B .sol 0.30 0.30 

Available water content of the soil 
(mm H2O/mm soil) for hydric class C .sol 0.19 0.08 

Available water content of the soil 
(mm H2O/mm soil) for hydric class D .sol 0.15 0.16 

Saturated hydraulic conductivity 
(mm/hr) for hydric class A .sol 236.58 65.47 

Saturated hydraulic conductivity 
(mm/hr) for hydric class B .sol 391.94 492.62 

Saturated hydraulic conductivity 
(mm/hr) for hydric class C .sol 259.36 252.56 

Saturated hydraulic conductivity 
(mm/hr) for hydric class D .sol 321.95 343.35 

Effective hydraulic conductivity in 
tributary channel alluvium (mm/hr) .sub 170.37 330.13 
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Table 4.  Goodness-of-fit for SWAT models of the Charles River and Cocheco River watersheds.  
NSE is the Nash-Sutcliffe efficiency, and RSR is the ratio of the root-mean-squared error to the 
standard deviation of the observations.  All goodness-of-fit statistics were calculated in R with 
the hydroGOF package (Zambrano-Bigiarini, 2017). 
 
Watershed Description Years NSE Bias RSR 
Cocheco calibration 2002-2011 0.58 -13.6% 0.64 

validation 2012-2017 0.49 -19.5% 0.72 
overall 2002-2017 0.58 -15.3% 0.65 

Charles calibration 2002-2011 0.74 1.2% 0.51 
validation 2012-2017 0.74 23.3% 0.51 
overall 2002-2017 0.75 7.2% 0.5 
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Table 5. Average annual fluxes across simulations.  HW and FC indicate simulations under 
historic weather and a future climate, respectively.  Scenarios are denoted as follows: 2010 – 
historic land use in 2010, RT – Recent Trends, GA – Go It Alone, CC – Connected 
Communities, YC – Yankee Cosmopolitan, GG – Growing Global. 
 

Simulation Precip ET Runoff Baseflow3 

Weather Scenario Watershed mm mm %1 mm %2 mm %2 
HW  2010 Cocheco 1059 468 44% 44 8% 541 92% 
HW  RT Cocheco 1059 469 44% 57 10% 528 90% 
HW  GA Cocheco 1059 468 44% 48 8% 538 92% 
HW  CC Cocheco 1059 470 44% 38 6% 546 94% 
HW  YC Cocheco 1059 473 45% 58 10% 523 90% 
HW  GG Cocheco 1059 463 44% 152 26% 439 74% 
HW  2010 Charles 1111 524 47% 197 39% 314 61% 
HW  RT Charles 1111 525 47% 228 45% 282 55% 
HW  GA Charles 1111 538 48% 221 44% 277 56% 
HW  CC Charles 1111 527 47% 202 40% 307 60% 
HW  YC Charles 1111 534 48% 219 44% 284 56% 
HW  GG Charles 1111 512 46% 317 60% 208 40% 
FC  2010 Cocheco 1194 415 35% 53 7% 717 93% 
FC  RT Cocheco 1194 415 35% 66 9% 703 91% 
FC  GA Cocheco 1194 415 35% 56 7% 714 93% 
FC  CC Cocheco 1194 415 35% 48 6% 722 94% 
FC  YC Cocheco 1194 418 35% 71 9% 696 91% 
FC  GG Cocheco 1194 418 35% 168 22% 598 78% 
FC  2010 Charles 1345 475 35% 231 29% 572 71% 
FC  RT Charles 1345 480 36% 269 34% 529 66% 
FC  GA Charles 1345 479 36% 261 33% 538 67% 
FC  CC Charles 1345 477 35% 245 31% 556 69% 
FC  YC Charles 1345 485 36% 265 33% 528 67% 
FC  GG Charles 1345 479 36% 379 47% 420 53% 

1 percentage of precipitation. 2percentage of total streamflow 
3Baseflow calculated as Water Yield – Storm Runoff 
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Table 6.  Seasonal evapotranspiration (ET), storm runoff (SR), and baseflow (BF), in mm, for the 
Cocheco River watershed. 

 
 Historic Weather Future Climate 

 2010 Land Use Growing Global 2010 Land Use Growing Global 

 ET SR BF ET SR BF ET SR BF ET SR BF 

Fall 93 11 126 92 41 105 84 11 155 82 36 125 

Winter 29 6 94 27 22 73 20 19 203 18 52 161 

Spring 129 19 196 122 56 155 118 18 247 112 60 209 

Summer 218 8 125 222 34 107 193 5 112 206 21 103 
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Table 7. Seasonal evapotranspiration (ET), storm runoff (SR), and baseflow (BF), in mm, for the 
Charles River watershed. 

 
 Historic Weather Future Climate 

 2010 Land Use Growing Global 2010 Land Use Growing Global 

 ET SR BF ET SR BF ET SR BF ET SR BF 

Fall 113 42 42 115 70 25 94 59 115 96 95 76 

Winter 43 43 100 42 69 70 34 72 192 34 115 144 

Spring 129 66 121 124 102 84 130 60 186 128 99 145 

Summer 239 45 51 232 76 30 217 41 79 221 71 55 
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Table 8. High-density urban area (URHD), medium/low density urban area (URML), impervious 
area, and average annual maximum daily flows across the simulations.  Scenarios are denoted as 
follows: 2010 – historic land use in 2010, RT – Recent Trends, GA – Go It Alone, CC – 
Connected Communities, YC – Yankee Cosmopolitan, GG – Growing Global. 
 

Watershed Land Use 
Scenario % URHD % URML % Impervious 

Historic 
Weather 

Average Max 
Daily Flow, 

cms 

Future 
Climate 

Average Max 
Daily Flow, 

cms 

Cocheco 

2010 2.2 12.1 5.3 32.0 33.6 

RT 2.5 20.3 7.8 32.7 34.0 

GA 2.4 13.7 5.9 32.2 33.7 

CC 2.9 11.7 5.8 32.1 33.7 

YC 3.4 36.2 13.0 32.5 34.0 

GG 14.6 51.1 27.0 34.7 37.3 

Charles 

2010  5.5 29.7 13.1 40.4 47.3 

RT 7.5 43.2 18.5 41.8 48.5 

GA 7.0 40.8 17.4 41.0 48.3 

CC 11.0 30.8 18.3 41.4 48.5 

YC 10.0 53.9 23.7 41.9 48.4 

GG 24.4 44.5 34.0 44.2 52.3 
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9 Figure Captions 

Figure 1. Locations of the Cocheco River watershed and the Charles River watershed with land 
covers from 2010. [color] 
 
Figure 2. Land use for the Cocheco River watershed.  LU2010 indicates land use in 2010 from 
the NLCD.  Recent Trends, Connected Communities, Yankee Cosmopolitan, Go It Alone, and 
Growing Global represent plausible land-use scenarios in 2060. [color] 
 
Figure 3. Land use for the Charles River watershed.  LU2010 indicates land use in 2010 from the 
NLCD.  Recent Trends, Connected Communities, Yankee Cosmopolitan, Go It Alone, and 
Growing Global represent plausible land-use scenarios in 2060. [color] 
 
Figure 4. Average water balances for the Charles River and Cocheco River watersheds across 
scenarios and climates. 
 
Figure 5. Seasonal water yield for the Cocheco and Charles River watersheds under for land use 
from 2010 and historic weather (HW) and a future climate (FC).  Seasons are represented by 
colors, from the bottom: orange – autumn (SON); gray – winter (DJF); blue – spring (MAM); 
green – summer (JJA). [color] 
 
Figure 6. Difference in annual maximum daily flow (AMDF) between land-use scenarios and 
historic land use in 2010 for the Charles River watershed.  Bars represent 95%-confidence limits 
determined via bootstrap, and the line in the middle represents the mean difference in AMDF 
between that scenario and land use in 2010.  Scenarios are denoted as follows: RT – Recent 
Trends, GA – Go It Alone, CC – Connected Communities, YC – Yankee Cosmopolitan, GG – 
Growing Global. 
 
Figure 7. Difference in annual maximum daily flow (AMDF) between land-use scenarios and 
historic land use in 2010 for the Cocheco River watershed.  Bars represent 95%-confidence 
limits determined via bootstrap, and the line in the middle represents the mean difference in 
AMDF between that scenario and land use in 2010.  Scenarios are denoted as follows: RT – 
Recent Trends, GA – Go It Alone, CC – Connected Communities, YC – Yankee Cosmopolitan, 
GG – Growing Global. 
 
Figure 8. Average annual maximum daily flow increases with impervious area.  Land-use 
scenarios are indicated by letter codes: 2010 – historic land use in 2010, RT – Recent Trends, 
GA – Go It Alone, CC – Connected Communities, YC – Yankee Cosmopolitan, GG – Growing 
Global.  Bold indicates simulations for a future climate and normal font represents historic 
weather.  The larger font (and higher magnitude flows) are for the Charles River watershed, and 
the smaller font is for the Cocheco River watershed.  For the Charles River watershed, results for 
Go It Alone, Connected Communities, and Recent Trends are very similar and plot on top of 
each other.  For the Cocheco River watershed, results for Go It Alone, Connected Communities, 
and land use in 2010 are very similar and plot on top of each other. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/847186doi: bioRxiv preprint 

https://doi.org/10.1101/847186
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/847186doi: bioRxiv preprint 

https://doi.org/10.1101/847186
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/847186doi: bioRxiv preprint 

https://doi.org/10.1101/847186
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/847186doi: bioRxiv preprint 

https://doi.org/10.1101/847186
http://creativecommons.org/licenses/by-nc-nd/4.0/


Charles River
m

m

0

200

400

600

800

1000

1200

1400
Surface Runoff
Baseflow
Evapotranspiration

Cocheco River

0

200

400

600

800

1000

1200

1400

RT GA CC YC GG

Historical Weather
Simulations

RT GA CC YC GG

Future Weather
Simulations

LU
2010

LU
2010

RT GA CC YC GG

Historical Weather
Simulations

RT GA CC YC GG

Future Weather
Simulations

LU
2010

LU
2010

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/847186doi: bioRxiv preprint 

https://doi.org/10.1101/847186
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cocheco, HW Cocheco, FC Charles, HW Charles, FC
0

100

200

300

400

500

600

700

800

900

W
at

er
 Y

ie
ld

, m
m

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/847186doi: bioRxiv preprint 

https://doi.org/10.1101/847186
http://creativecommons.org/licenses/by-nc-nd/4.0/


RT GA CC YC GG RT GA CC YC GG
Historic Weather                   Future Climate     

-5

0

5

10

15

20

Pe
rc

en
t c

ha
ng

e 
in

 A
M

D
F

Cocheco River Watershed

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/847186doi: bioRxiv preprint 

https://doi.org/10.1101/847186
http://creativecommons.org/licenses/by-nc-nd/4.0/


RT GA CC YC GG RT GA CC YC GG
Historic Weather                   Future Climate     

-5

0

5

10

15

20

Pe
rc

en
t c

ha
ng

e 
in

 A
M

D
F

Charles River Watershed

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/847186doi: bioRxiv preprint 

https://doi.org/10.1101/847186
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 5 10 15 20 25 30 35 40
Impervious Area (% of watershed)

25

30

35

40

45

50

55

60

Av
er

ag
e 

An
nu

al
 M

ax
im

um
 D

ai
ly

 F
lo

w
 (c

m
s)

2010

2010

2010
2010

 RT 

 RT 

 RT 
 RT 

 GA 

 GA 

 GA 
 GA 

 CC 

 CC 

 CC 
 CC 

 YC 

 YC 

 YC 
 YC 

 GG 

 GG 

 GG 

 GG 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/847186doi: bioRxiv preprint 

https://doi.org/10.1101/847186
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Co-designed Land-use Scenarios and their Implications for Storm Runoff and Streamflow in New England
	Recommended Citation

	Co-designed land-use scenarios and their implications for storm runoff and streamflow in New England

