585 research outputs found

    F11RS SGR No. 13 (Fee Bill)

    Get PDF
    A RESOLUTION To urge and request the Division of Finance and Administrative Services to provide a hyperlink to descriptions of each fee placed on the fee bill

    Large Margin Nearest Neighbor Embedding for Knowledge Representation

    Full text link
    Traditional way of storing facts in triplets ({\it head\_entity, relation, tail\_entity}), abbreviated as ({\it h, r, t}), makes the knowledge intuitively displayed and easily acquired by mankind, but hardly computed or even reasoned by AI machines. Inspired by the success in applying {\it Distributed Representations} to AI-related fields, recent studies expect to represent each entity and relation with a unique low-dimensional embedding, which is different from the symbolic and atomic framework of displaying knowledge in triplets. In this way, the knowledge computing and reasoning can be essentially facilitated by means of a simple {\it vector calculation}, i.e. h+r≈t{\bf h} + {\bf r} \approx {\bf t}. We thus contribute an effective model to learn better embeddings satisfying the formula by pulling the positive tail entities t+{\bf t^{+}} to get together and close to {\bf h} + {\bf r} ({\it Nearest Neighbor}), and simultaneously pushing the negatives t−{\bf t^{-}} away from the positives t+{\bf t^{+}} via keeping a {\it Large Margin}. We also design a corresponding learning algorithm to efficiently find the optimal solution based on {\it Stochastic Gradient Descent} in iterative fashion. Quantitative experiments illustrate that our approach can achieve the state-of-the-art performance, compared with several latest methods on some benchmark datasets for two classical applications, i.e. {\it Link prediction} and {\it Triplet classification}. Moreover, we analyze the parameter complexities among all the evaluated models, and analytical results indicate that our model needs fewer computational resources on outperforming the other methods.Comment: arXiv admin note: text overlap with arXiv:1503.0815

    F11RS SGR No. 19 (TigerCASH Expansion)

    Get PDF
    A RESOLUTION To urge and request the expansion of TigerCASH in the surrounding communit

    Using Synchronic and Diachronic Relations for Summarizing Multiple Documents Describing Evolving Events

    Full text link
    In this paper we present a fresh look at the problem of summarizing evolving events from multiple sources. After a discussion concerning the nature of evolving events we introduce a distinction between linearly and non-linearly evolving events. We present then a general methodology for the automatic creation of summaries from evolving events. At its heart lie the notions of Synchronic and Diachronic cross-document Relations (SDRs), whose aim is the identification of similarities and differences between sources, from a synchronical and diachronical perspective. SDRs do not connect documents or textual elements found therein, but structures one might call messages. Applying this methodology will yield a set of messages and relations, SDRs, connecting them, that is a graph which we call grid. We will show how such a grid can be considered as the starting point of a Natural Language Generation System. The methodology is evaluated in two case-studies, one for linearly evolving events (descriptions of football matches) and another one for non-linearly evolving events (terrorist incidents involving hostages). In both cases we evaluate the results produced by our computational systems.Comment: 45 pages, 6 figures. To appear in the Journal of Intelligent Information System
    • …
    corecore