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Abstract
Machine learning, statistics and knowledge en-
gineering provide a broad variety of supervised
learning algorithms for classification. In this pa-
per we introduce the Automated Model Selection
Framework (AMSF) which presents automatic
and semi-automatic methods to select classifiers.
To achieve this we split up the selection process
into three distinct phases. Two of those select al-
gorithms by static rules which are derived from
a manually created knowledgebase. At this stage
of AMSF the user can choose between different
rankers in the third phase. Currently, we use in-
stance based learning and a scoring scheme for
ranking the classifiers. After evaluation of dif-
ferent rankers we will recommend the most suc-
cessful to the user by default. Besides describing
the architecture and design issues, we addition-
ally point out the versatile ways AMSF is applied
in a production process of the automotive indus-
try.

1 Introduction
Following CRISP, the process of Data-Mining can be bro-
ken down into the phases of business understanding, data
understanding, data preparation, modeling, evaluation and
deployment [CRI, 2000]. In the modeling phase algorithms
are selected and applied to generate models. The issue of
selecting appropriate methods in this phase we refer to as
Model Selection. CRISP describes algorithm selection as
an exploratory process, highly dependant on the analyst’s
knowledge and on the problem domain.

In the field of Knowledge Discovery in Databases dif-
ferent projects with different approaches exist dealing with
the issue of Model Selection. The most recent project is
MetaL, combining the results of previous research projects
in an online service [Met, 2004]. Users can upload their
datasets and receive a ranking of algorithms.

The Waikato Environment for Knowledge Analysis
(WEKA) is a tool for data analysis and includes implemen-
tations of different classification algorithms. A book de-
scribing the software was published in 2005 by Ian H. Wit-
ten and Eibe Frank [Witten and Frank, 2005]. WEKA’s bi-
naries and sources are freely available. Implemented meth-
ods include instance-based learning algorithms, statistical
learning like Bayes methods and tree-like algorithms like
ID3 and J4.8 (slightly modified C4.5). Including combi-
nations of classifiers, e.g. bagging and boosting schemes,
there are over sixty methods available in WEKA. Table

1 shows a list of all non-combined methods with a short
description. All algorithms can be utilized for supervised
learning with their standard parameters.

This paper introduces AMSF which’s intention is to pro-
vide help to human users by semiautomatically selecting
appropriate methods. Furthermore its selection schemes
can be utilized to automatically analyze problem domains
by analyzing datasets and ranking methods. For the semi-
automatic use, support is provided by a user interface in
form of a wizard1.

2 AMSF Components
This Section introduces the different components AMSF
consists of. From an architectural point of view the com-
ponents and classes are separated according to a three layer
architecture. In the data-layer we put two database files
• the Knowledgebase of Classifiers and
• the Performance Database.

In the logic layer there are the classes to handle the selec-
tion and ranking of the algorithms. Important components
here are
• the Preselection Component and
• the Ranking Component.

In the presentation layer we find the wizard and other GUI-
components.

2.1 Knowledgebase of Classifiers
The Knowledgebase of Classifiers is a database and con-
tains an entry for every algorithm WEKA 4.5 provides.

The entries contain information about the applicability
of an algorithm on a dataset. Here, we mean wether an al-
gorithm can handle missing values or unlabeled instances.
Furthermore the algorithms vary in their ability of dealing
with different types of attributes and classes. Following the
conventions of the Attribute-Relation File Format (ARFF)
each attribute may be either numeric or nominal.

In addition to applicability characteristics the algorithms
in the Knowledgebase of Classifiers are categorized ac-
cording to the type of knowledge representation they gen-
erate. J4.8 for example generates a decision tree. Figure 1
exemplarily shows the Knowledgebase of Classifiers’ entry
for J4.8.

J. Gama and P. Brazdil provide additional criteria in
[Gama and Brazdil, 1995] to characterize classifiers. In
contrast to the Performance Database described in Section
2.2 the Knowledgebase of Classifiers was created manu-
ally by considering relevant literature and the sources of
WEKA.

1A wizard is a user friendly stepwise dialog
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Figure 1: J4.8 entry in the Knowledgebase of Classifiers

2.2 Performance Database
In addition to the described Knowledgebase of Classifiers,
we generated a Performance Database in an automated cre-
ation process. Details about the creation process are out-
lined in Section 2.3.

The Performance Database comprises information about
the method’s error rate, training and testing time when ap-
plied to a particular dataset. It currently contains about
two-hundred entries, one for each dataset. To summarize,
each entry of the Performance Database contains
• dataset characterization measures described in Section

2.4 and a
• list of performance related data consisting of one entry

per applied learning algorithm.
The Performance Database and the Knowledgebase of

Classifiers described in Section 2.1 are stored in XML-
format and can be validated against schema documents af-
ter new entries have been added.

2.3 Performance Database Creator
The Performance Database contains empirical data. It was
generated by applying the algorithms provided by WEKA
in their standard setup. Here, for every dataset we utilized
the Knowledgebase of Classifiers to select a subset of meth-
ods applicable to the dataset. The methods were applied us-
ing stratified ten-fold cross-validation. The resulting Error
rates, training and testing times were averaged according to
the cross-validation settings.

We expect the performance of AMSF to increase when
additional entries are added to the Performance Database.
AMSF therefore includes a graphical component to add
new entries comfortably.

2.4 Dataset Characteristics
Besides error rate and time dependent information, we
store information about the datasets themselves in the Per-

formance Database. The coverage of characterization in-
formation stored follows the proposals of R. Engels and C.
Theusinger in [Engels and Theusinger, 1998]. Referring to
their terminology, the characteristics include
• simple characteristics like number of cases, number

of defective cases and number of binary attributes,
• statistical measures like median and median deviation

of classes and
• information theoretical measures like class entropy.

2.5 User Interface
The main GUI component of the AMSF so far is the wiz-
ard already mentioned in Section 1. Figure 2 shows a
screenshot of one step in the model selection process. Be-
sides the wizard AMSF also provides an user interface for
controlling the creation and extension of the performance
database. We furthermore developed a GUI for the prese-
lection process described in Section 3.1 to enable fast and
direct access to the information of the Knowledgebase of
Classifiers.

3 Selection Process
In this Section we explain how the components described in
Section 2 are utilized to perform the selection and ranking
of the classifiers.

3.1 Preselection Component
Fed by the Knowledgebase of Classifiers the Preselection
Component selects the methods applicable to a given do-
main description. Here, the domain description includes
the user preferences regarding the method’s knowledge
representation and furthermore the characterization of the
input attributes and the class attribute as described in Sec-
tion 2.1. The preselection is carried out by simply sup-
pressing the algorithms which cannot handle the properties
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Figure 2: The third wizard step of the algorithm selection

of the dataset. Their properties can be comfortably calcu-
lated directly whereas those have to be provided in ARFF-
format. Some of the input and class attribute information
is included in the ARFF header and does not have to be de-
rived from the data itself. It is therefore important that the
ARFF-file was created according to the specification.

3.2 Ranking Component
Currently, AMSF includes two rankers. The first ranker uti-
lizes an instance-based learner to find the k nearest neigh-
bors in the dataset characterization space introduced in Sec-
tion 2.4.

To find the nearest neighbors, the user has to provide a
dataset that the characteristics can be calculated of. In the
current version we have not yet implemented any special
weighting of the dimensions. After the k nearest neighbors
have been identified, only the error rate information is con-
sidered to perform the ranking by now.

For this purpose we created a scoring scheme: Within
every of the k nearest neighbors the classifiers are sorted
according to error rate. The best algorithm obtains three
points, the second best two and the third best one point.
The points are then accumulated over the k datasets for
each method and then ranked according to their score. This
is particulary useful in this stage of the software, as we pre-
sume the methods to become more obvious winners when
we adjust the weighting of the dataset characteristics di-
mensions.

The second ranker is applicable without providing a con-
crete dataset and only ranks the methods by the standard-
ized error rate sum

errs =
1
N

N∑

i=1

erri (1)

where N denotes the number of datasets the algorithm was
applied to and erri is the error rate of the method applied
to the i-th dataset. The only information the user has to
provide besides the preselection criteria is the nature of the
class attribute. The methods are then either ranked accord-
ing to Equation 1 or according to the corresponding equa-
tion of the sum of squares.

The whole selection procedure is illustrated in Figure 3
and summarized in the caption.

4 AMSF in the real world
Data Mining methods can be utilized to uncover new valu-
able insights. Still, one major problem when those methods
are to be applied is insufficient usability. Although tools
like WEKA offer a comprehensive spectrum of analysis al-
ternatives, the appropriate selection of applicable methods
is still an issue of the user.

In modern production lines hundreds to thousands of pa-
rameters can be set and adjusted not to mention the high
number of measurement values that are recorded during
production. Analyzing and interpreting these data can be
of high benefit with respect to quality and cost optimiza-
tion.

In a production process of the DaimlerChrysler plant in
Hamburg we therefore set up an Integrated Database which
collects data of the complete production process including
quality data about input factors and former auxiliary condi-
tions like data about hall temperature and humidity. In do-
ing so, it is possible to identify the produced parts through-
out the production process and mine valuable knowledge.

In order to increase quality characteristics or to deter-
mine the process robustness the parameters are often varied
systematically. The methodology of Design of Experiments
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Figure 3: The selection process split up in the three distinct phases user preferences, data properties and ranking. The
user employs the wizard to control the process and analyze the optionally provided dataset. The third phase utilizes the
performance database. The previous phases generate rules from the Knowledgebase of Classifiers.

(DOE) provides procedures to maximize the knowledge
that can be gained with a fixed preferably small number of
experiments. Classically, the input as well as the output pa-
rameters of such experiments are assumed to be numerical.
After the experiments have been carried out linear models
are adjusted by the method of linear regression. In doing
so only a small number of parameters, namely the varied
input parameters and the output parameter, are utilized to
build the models. So, almost all the data collected during
the experiments is not considered. This is especially un-
satisfactory if the created linear models do not sufficiently
fulfill the necessary requirements and are discarded after
the procedure for that reason.

By mining the data and carefully looking at the created
interpretable models (in this case the models have to be
’interpretable’, as described above), we gained valuable
new insights in the production process. The dependencies
revealed are used for example to classify produced parts
avoiding expensive experiments.

5 Evaluation of preselection and rankers

As mentioned in Section 2.2 we created performance data
for about two-hundred datasets. In that process, the pres-
election component described in Section 3.1 was utilized
and tested. It attracted attention that a relatively large
ration of classifiers could be applied to the datasets (ap-
proximately 70% in average). We used UCI and our own
datasets to calculate the performance data and are currently
in the process of producing more data.

A comparison of rankers provided by different ranking
methods of AMSF and ideal ranking (calculated later on)
is not yet available. Anyhow, the described ranker already
produces reasonable results although the possibilities are
not yet exploited.

6 Conclusion and Future Work
AMSF provides user support in selecting appropriate meth-
ods. To reach this goal it compares the domain-description
provided by the user and the dataset on one hand with cer-
tain databases on the other hand.

AMSF provides assistance to the user in different ways:

• It automatically analyzes datasets.

• In a preselection step it identifies applicable methods.

• It provides a ranking of the applicable by different
ranking methods.

Considering the ranking component described in Section
3.2 other approaches, e.g. the Zoomed Ranking method of
P. Brazdil and C. Soares described in [Soares and Brazdil,
2000] also take time issues into account. This is particu-
larly valuable if the user has fixed notions about the run-
time, for example if a method for real-time systems has to
be chosen.
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Name Description
AODE Averaged, one-dependence estimators
BayesNet Learn Bayesian nets
Complement
NaiveBayes

Build a Complement Nave Bayes
classifier

NaiveBayes Standard probabilistic Nave Bayes
classifier

NaiveBayes
Multinomial

Multinomial version of Nave Bayes

NaiveBayes
Simple

Simple implementation of Nave
Bayes

NaiveBayes
Updateable

Incremental Nave Bayes classifier
that learns one instance at a time

ADTree Build alternating decision trees
DecisionStump Build one-level decision trees Id3 Ba-

sic divide-and-conquer decision tree
algorithm

J48 C4.5 decision tree learner (imple-
ments C4.5 revision 8)

LMT Build logistic model trees M5P M5
model tree learner

NBTree Build a decision tree with Nave Bayes
classifiers at the leaves

RandomForest Construct random forests
RandomTree Construct a tree that considers a given

number of random features at each
node

REPTree Fast tree learner that uses reduced-
error pruning

UserClassifier Allow users to build their own deci-
sion tree

ConjunctiveRule Simple conjunctive rule learner
DecisionTable Build a simple decision table majority

classifier
JRip RIPPER algorithm for fast, effective

rule induction
M5Rules Obtain rules from model trees built

using M5
Nnge Nearest-neighbor method of generat-

ing rules using nonnested generalized
exemplars

OneR 1R classifier Part Obtain rules from
partial decision trees built using J4.8

Prism Simple covering algorithm for rules
Ridor Ripple-down rule learner
ZeroR Predict the majority class (if nominal)

or the average value (if numeric)
LeastMedSq Robust regression using the median

rather than the mean
LinearRegress. Standard linear regression
Logistic Build linear logistic regression mod-

els
Multilayer Per-
ceptron

Backpropagation neural network

PaceRegression Build linear regression models using
Pace regression

RBFNetwork Implements a radial basis function
network

SimpleLinear
Regression

Learn a linear regression model based
on a single attribute

SimpleLogistic Build linear logistic regression mod-
els with built-in attribute selection

SMO Sequential minimal optimization al-
gorithm for support vector classifica-
tion

Table 1: Non-combined methods in the knowledgebase
[Witten and Frank, 2005]. The first block shows the group
of Bayes methods, the second tree algorithms, the third
instance-based learners and the last the functions group.
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