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After crossing the midline, different populations of commissural axons
in Drosophila target specific longitudinal pathways at different distances
from the midline. It has recently been shown that this choice of lateral
position is governed by the particular combination of Robo receptors
expressed by these axons, presumably in response to a gradient of Slit
released by the midline. Here we propose a simple theoretical model of
this combinatorial coding scheme. The principal results of the model are
that purely quantitative rather than qualitative differences between the
different Robo receptors are sufficient to account for the effects observed
following removal or ectopic expression of specific Robo receptors, and
that the steepness of the Slit gradient in vivo must exceed a certain mini-
mum for the results observed experimentally to be consistent.

1 Introduction

A crucial process in the construction of a nervous system is the establish-
ment of appropriate connectivity. This consists of two stages: the guidance
of axons to target regions largely independent of neural activity, followed by
the activity-dependent refinement of synaptic connections. Much progress
has recently been made in understanding the mechanisms of axon guidance
in response to molecular cues in the developing nervous system (Tessier-
Lavigne & Goodman, 1996; Mueller, 1999; Wilkinson, 2001; Song & Poo,
2001). An emerging theme is that a limited number of evolutionarily con-
served axon guidance molecules are reused in many different contexts.
When it is necessary to generate several different outcomes in the same
region of space and time, an obvious strategy is combinatorial coding. For
instance, two guidance molecules could simultaneously attract three popu-
lations of axons to different targets if population 1 expressed only one type
of receptor, population 2 expressed only the other type, and population 3 ex-
pressed both types. Since axons can also be attracted or repelled depending
on their internal state (Song, Ming, & Poo, 1997), for N guidance molecules,
the number of separate populations that could in principle simultaneously
be guided to different locations is of order 3N. About 100 guidance molecules
are now known, allowing many more potential outcomes than there are total
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connections in any biological nervous system. Combinatorial coding is thus
a very efficient coding strategy and is used by nervous systems in contexts
ranging from axon guidance (Shirasaki & Pfaff, 2002) to information coding
by spike trains (Diesman, Gewaltig, & Aertsen, 1999) and odor coding in
the olfactory system (Malnic, Hirono, Sato, & Buck, 1999).

A particularly well-studied model system in axon guidance is the growth
of commissural axons to, across, and beyond the midline (Kaprielian,
Imondi, & Runko, 2000). Commissural axons are initially attracted toward
the midline (e.g., the insect nerve cord or the vertebrate spinal cord) by a
gradient of Netrin released by midline glia (Serafini et al., 1994; Kennedy,
Serafini, de la Torre, & Tessier-Lavigne, 1994; Mitchell et al., 1996). On reach-
ing the midline, they lose their responsiveness to Netrin but become respon-
sive instead to the repellent molecule Slit, which binds to the Robo family of
receptors (Brose et al., 1999; Kidd, Bland, & Goodman, 1999). In Drosophila,
this currently consists of the three members Robo, Robo2, and Robo3, each
of which plays a particular role in enabling commissural axons to cross
the midline and not then recross (Rajagopalan, Nicolas, Vivancos, Berger,
& Dickson, 2000; Simpson, Kidd, Bland, & Goodman, 2000). After cross-
ing, axons project to specific lateral pathways before turning longitudinally.
Recent results from Drosophila (Rajagopalan, Vivancos, Nicolas, & Dickson,
2000; Simpson, Bland, Fetter, & Goodman, 2000) have focused on three spe-
cific longitudinal Fas-II positive tracts, referred to as medial, intermediate,
and lateral. In this case, the choice of pathway depends on a combinato-
rial code of Robo receptors expressed by axons after they have crossed the
midline—the so-called Robo code. Axons that normally turn in the medial
tract express only Robo, axons that normally turn in the intermediate tract
express Robo and Robo3, and axons that normally turn in the lateral tract
express Robo, Robo2, and Robo3 (see Figure 1A). Although a gradient of
Slit emanating from the midline has not yet been directly observed, it has
been hypothesized that this gradient drives axons to specific lateral posi-
tions based on their combinatorial code of Robo receptors (Rajagopalan,
Vivancos, Nicolas, & Dickson, 2000; Simpson, Bland, Fetter, & Goodman,
2000). This hypothesis is supported by loss- and gain-of-function experi-
ments (Rajagopalan, Vivancos, Nicolas, & Dickson, 2000; Simpson, Bland,
Fetter, & Goodman, 2000). When particular Robo receptors are deleted, ax-
ons often project to a more medial fascicle than normal, whereas when
particular Robo receptors are ectopically expressed, axons often project to
a more lateral fascicle than normal. The shifts induced by these genetic per-
turbations are always discrete jumps between fascicles: these axons do not
generally turn between fascicles. Both Rajagopalan, Vivancos, Nicolas, and
Dickson (2000) and Simpson, Bland, Fetter, and Goodman, (2000) argue that
the Robo code targets axons to a general region; then local cues take over to
target a particular tract within that region.

Although these different Robo receptors all mediate repulsion by Slit,
the specific signal transduction pathways they activate inside the growth
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Figure 1: (A) Schematic diagram of the Robo code. Three different populations
of commissural axons (dashed lines) are shown projecting to three different
lateral fascicles: M (medial), I (intermediate), and L (lateral). (B) Parameters of
the model. x0 = distance of the medial fascicle from the midline, 2d = spacing
of the fascicles. S(M), S(I), and S(L) refer to the Slit concentrations at the medial,
intermediate, and lateral fascicles, respectively.

cone may be different (discussed in Rajagopalan, Vivancos, Nicolas, & Dick-
son, 2000). One possibility is that each type of Robo receptor signals qual-
itatively different information regarding levels of Slit, which would be a
combinatorial code in the sense most analogous to the other examples cited
above. However, an alternative possibility is that the differences between
types of Robo receptors are simply quantitative; each generates the same
type of repulsive signal to particular levels of Slit, differing only in de-
gree. Roughly speaking, this is consistent with the experimental results that
the more Robo receptors an axon expresses, the more repulsion and thus
the further its lateral projection. By analogy with levels of measurement
in statistics (Krzanowski, 1988), we refer to the first possibility as a cate-
gorical model and the second as a ratio model. In the categorical model,
only the categories of Robo receptors expressed by a given axon determine
where it projects to, whereas in the ratio model, only the relative proportions
matter. The categorical model is consistent with many of the experimental
results. For instance, overexpressing Robo does not generally cause a lat-
eral shift (Simpson, Bland, Fetter, & Goodman, 2000). However, a purely
categorical model is insufficient to explain some results: for instance, axons
that normally project laterally still do so in the robo/robo3 double mutant
(Simpson, Bland, Fetter, & Goodman, 2000), and medially projecting axons
that project to the intermediate zone when robo3 is added can be “super-
shifted” to the lateral zone by the addition of two copies of the robo3 gene
(Rajagopalan, Vivancos, Nicolas, & Dickson, 2000). Results such as these
led both Simpson, Bland, Fetter, and Goodman (2000) and Rajagopalan, Vi-
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vancos, Nicolas, and Dickson (2000) to propose a mixed categorical-ratio
model, where Robo acts as a category (only the presence of Robo is impor-
tant, not its precise amount) and Robo2 and Robo3 act in a more graded
way.

To explore these coding issues in a more quantitative way, we have devel-
oped a simple mathematical model of the Robo code based on a pure ratio
and a mixed categorical-ratio approach. We show that a pure ratio model
could in fact be consistent with the data if the Slit gradient is steep enough.
This leads to experimentally testable predictions regarding how the out-
come of Robo overexpression experiments might depend on the steepness
of the Slit gradient. In addition, for the mixed categorical-ratio model, we
show that even this version is consistent with the data only when the Slit
gradient is sufficiently steep.

2 Mathematical Model

2.1 Form of the Slit Gradient. There is no direct evidence concerning the
shape of the Slit gradient in vivo. Theoretically, one approach would be to
model it as free diffusion from a line source in an infinite three-dimensional
volume (Crank, 1975; Carslaw & Jaeger, 1959), analogous to a recent model
of axon guidance by a target-derived diffusible factor (Goodhill, 1997, 1998).
However, data from other systems suggest the diffusion might not be free
(Hiramoto, Hiromi, Giniger, & Hotta, 2000). Given this uncertainty, it seems
sensible to choose a very generic shape with a parameterized steepness
for the Slit gradient. We therefore assume it to be a decaying exponential,
S(x) = Ce−x/α , where C gives the concentration of Slit at the midline, x is
distance from the midline, and α gives the rate of decrease moving away
from the midline. For small α, Slit is tightly concentrated around the midline,
whereas for larger α, it decays more gradually.

2.2 Generation of Repulsion: Linear Model. In the linear version of
the model, we assume that the amount of repulsion induced in growth
cones by Slit is given by S(x) × R, where R is just a sum of the amount
of repulsion transduced by each Robo receptor separately (Nakamoto et
al., 1996; Goodhill & Richards, 1999). That is, R = r for axons normally
projecting to the medial fascicle, R = r + r3 for intermediate axons, and
R = r + r3 + r2 for lateral axons, where r, r3, and r2 give the “net” amount of
repulsion due to each Robo receptor (for the mixed categorical-ratio model,
R is assumed to depend on only r2 and r3). The values of the r’s that are
consistent with the data come out of the model. For experiments where
a second copy of a gene is inserted, this net repulsion is assumed to be
doubled. That is, the net repulsion is assumed to be equal to the product of
the number of receptors times the strength of repulsive signaling through
a single receptor of that type. For Robo overexpression experiments, where
the degree of amplification of r is uncertain, we introduce a multiplication
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parameter n. The values of n that are consistent with the data emerge from
the model.

Each axon is assumed to be repelled by Slit until the amount of repulsion
S(x)×R reaches a certain threshold T that is the same for all axons. Axons are
then assumed to be attracted by local cues toward the nearest of the medial,
intermediate, or lateral fascicles. The model presented here concerns only
how axons target a particular general area based on their Robo code and
does not explicitly address how local cues refine their positions within these
general areas (we return to this in section 4). This means that the positions
that axons reach defined purely by Slit repulsion can be anywhere in the
region of a particular fascicle, provided they are nearer to that fascicle than
neighboring fascicles. Fascicles are assumed to be evenly spaced, distance 2d
apart, with the medial fascicle distance x0 from the midline (see Figure 1B).
We also assume that for axons to project to the medial fascicle, their turning
position must be more than x0 −d from the midline, and for axons to project
to the lateral fascicle, their turning position must be less than x0 + 5d from
the midline. Based on data such as Figure 5A of Simpson, Bland, Fetter, and
Goodman (2000), we chose x0 = 4, d = 1 (in arbitrary units), so that the three
fascicles run at distances 4, 6, and 8 from the midline (absolute distances are
not indicated in Simpson, Bland, Fetter, & Goodman, 2000, or Rajagopalan,
Vivancos, Nicolas, & Dickson, 2000). These units set the scale for α.

The constraints imposed by the experimental data can now be expressed
as a set of inequalities that must all be simultaneously satisfied. As an exam-
ple, consider the normal targeting of axons projecting to the intermediate
fascicle. The equation for targeting to position x is

S(x)(r + r3) = T. (2.1)

Substituting the exponential form for S gives

e−x/α(r + r3) = T/C.

The ratio T/C sets the absolute scale for the r’s. However, since we are inter-
ested only in the relative values of the r’s, we can without loss of generality
set T/C = 1. This yields a value for x of

x = α log(r + r3). (2.2)

This target position must be closer to the intermediate tract than either the
medial or lateral tracts. Thus we require (cf. Figure 1) that

x0 + d < α log(r + r3) < x0 + 3d

or equivalently

e
x0+d

α < r + r3 < e
x0+3d

α .
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Table 1 shows a set of inequalities that can be derived by this approach
from the experimental data of Rajagopalan, Vivancos, Nicolas, and Dickson
(2000) and Simpson, Bland, Fetter, and Goodman (2000) (see particularly
the schematic Figure 4 in Simpson, Bland, Fetter, & Goodman, 2000). Cases
labeled “crossing defect” are assumed to represent problems with crossing
rather than lateral termination zone and are not considered further in our
analysis. In case 9 in Table 1 (axons that normally project to the lateral fascicle
in the robo2 mutant), the axons seem undecided between the intermediate
and lateral fascicles. This was not included in our analysis, and we return
to this issue in section 4.

Not all of these inequalities are independent. For instance, if α log(r3) >

x0 + d (index 5 in Table 1), then it is certainly true that α log(r + r3) > x0 + d
(index 2 in Table 1), and the latter constraint is superfluous. However, we
explicitly include all the constraints in Table 1 since it makes it easier to see
which piece of datum each is based on and what would happen if each were
deleted or altered.

2.3 Generation of Repulsion: Nonlinear Model. A more realistic pic-
ture of binding kinetics than the linear version presented above is

[RL] = [R][L]
[L] + Kd

,

where [R] is the receptor concentration, [L] is the ligand concentration, [RL]
is the concentration of the product, and Kd is the dissociation constant (Gut-
freund, 1995). When [L] � Kd, this simplifies to the linear version (with Kd
absorbed into the threshold T). The three Robo receptors have similar Kds
for binding Slit, in the range 10 to 40 nM (Simpson, Kidd, Bland, & Good-
man, 2000), and we consider these as equal. The analog of equation 2.1 is
then

S(x)

S(x) + Kd
(r + r3) = T.

Substituting the exponential form for S(x) and dividing by C gives

e−x/α

e−x/α + 1/c̄
(r + r3) = T, (2.3)

where c̄ = C/Kd, the normalized Slit concentration at the midline. Again, T
simply sets the overall scale of the r’s, so we can set it to 1 without loss of
generality. The analog to equation 2.2 is now

x = α log[c̄(r + r3 − 1)],

and an analogous set of constraints to Table 1 can be generated (not shown).
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3 Results

3.1 Linear Model. In the mixed categorical-ratio model, it is assumed
that only r2 and r3 act in a quantitative way: the set of constraints used is as
in Table 1, except that r is ignored (i.e., set to zero). For instance, constraint
2 now becomes x0 + d < α log(r3) < x0 + 3d (or e(x0+d)/α < r3 < e(x0+3d)/α).
Since there are now only two variables, r2 and r3, each constraint can be
represented as a straight line in the r2, r3 plane. Figure 2 shows how the
constraints conspire to limit the allowable combinations of r2 and r3 that
satisfy the inequalities. This is illustrated for two gradient steepnesses, α = 1
and α = 2. It is immediately obvious from Figure 2 that for α � 2, there can
be no more solutions.

For the pure ratio model, there are the additional parameters r and n,
giving four dimensions in total, which is hard to represent graphically. To
investigate which sets {α, r, r2, r3} satisfy all the inequalities, an exhaustive
search was performed over the parameter space ri ∈ [0, rmax] in increments
rinc for various values of α. For certain values of α, we found many differ-
ent combinations of r, r3, and r2, which satisfy the constraints. The precise
number of solutions per value of α depends on rinc, which was varied for
different α. The total number of solutions is not important here, providing
solutions exist, but we ensured that there were always at least 100 so that
averaging over them would be meaningful. Since only the ratios of the r’s
are of interest, they were normalized by r3. The results are shown in Table 2.
Means and standard deviations for the r’s are quoted: the standard devia-
tions give a measure of the size of the box in the four-dimensional space in
which the solutions exist. Several trends are apparent:

• As for the mixed categorical-ratio model, there are no solutions for
α � 2.

• The values of the r’s (i.e., the relative strength of signaling of the dif-
ferent Robo receptors) are always ordered r2 > r3 > r.

• The ratios of the r values become more extreme as α decreases (i.e., the
gradient becomes steeper). For instance, for n = 2, the ratios r:r3:r2 go
from 0.4:1:2.2 for α = 2.0 to 0.007:1:20.1 for α = 0.5.

• For a very steep gradient (α = 0.5), values of n (the amplification
factor for Robo overexpression experiments) up to 25 are allowable.
As α decreases further, even larger values of n are allowed (results not
shown). As the gradient becomes shallower, n becomes more restricted,
until finally for α = 2, solutions exist only for n = 2.

3.2 Nonlinear Model. Comparing equations 2.2 and 2.3, it can be seen
that the nonlinear model with S(x) = e−x/α is formally equivalent to a linear
model with S(x) = e−x/α

e−x/α+1/c̄ . Thus, we may think of the nonlinear version
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Figure 2: Interaction of constraints for the mixed categorical-ratio model (linear
version). (Left) α = 1.0. (Right) α = 2.0 (x0 = 4, d = 1). The shaded box in each
case represents the region of r2–r3 space allowed by the constraints. First row:
cases 2 and 12 from Table 1. Second row: case 28 is added. Third row: case 6 is
added. Fourth row: case 29 is added. It can be seen that the allowable region of
space shrinks as α increases (the Slit gradient becomes shallower).
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Table 2: Values of r, r2, and r3 Obtained for the Pure Ratio Model (Linear Version).

n α = 0.5 α = 1.0 α = 2.0

2 0.0067 ± 0.0038 0.065 ± 0.026 0.35 ± 0.04
20 ± 11 3.3 ± 1.2 2.2 ± 0.2

3 0.0047 ± 0.0026 0.048 ± 0.015 No solutions
20 ± 11 3.3 ± 1.2

4 0.0035 ± 0.0018 0.039 ± 0.010 No solutions
20 ± 11 3.3 ± 1.2

5 0.0030 ± 0.0015 0.035 ± 0.007 No solutions
20 ± 11 3.3 ± 1.2

6 0.0025 ± 0.0011 0.031 ± 0.005 No solutions
20 ± 11 3.3 ± 1.2

7 0.0021 ± 0.0008 No solutions No solutions
20 ± 11

10 0.0017 ± 0.0007 No solutions No solutions
20 ± 11

25 0.001 ± 0.0002 No solutions No solutions
20 ± 11

30 No solutions No solutions No solutions

Notes: n is the increase in repulsion compared to wild type
in Robo ectopic expression experiments; α is the steepness
of the Slit gradient. Shown are the mean and standard de-
viation of the values obtained for r (above) and r2 (below)
normalized by r3 (i.e., r3 = 1).

as simply the linear model with a different Slit gradient. In comparing dif-
ferent gradients, the overall scaling is unimportant since in the model, we
are interested only in the ratio of the r’s. Thus, significant differences are
expected only between the results for the linear and nonlinear models when
the effective gradients have significantly different shapes in the region be-
tween x = 4 and x = 8. For the range of α considered above, this occurs only
when c̄  1 (see Figure 3). Table 3 shows results for the pure ratio model
for c̄ = 100, that is, a midline Slit concentration 100Kd (α = 1). This implies
Slit concentrations at the medial, intermediate, and lateral fascicles of 65Kd,
20Kd, and 3Kd, respectively (650 nM, 200 nM, and 30 nM for Kd = 10 nM).
There are slight differences from the linear model, but overall the general
trends are the same. The numerical differences are smaller for smaller c̄ (data
not shown).

4 Discussion

The model presented here is a way of simplifying a varied and complex
set of experimental results so as to attempt to extract certain key pieces of
quantitative information about the system. A number of biologically rel-
evant conclusions can be drawn. Perhaps the most important of these is
that a pure ratio model can be consistent with the data, despite the fact
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Figure 3: Comparison of an exponential Slit gradient with the effective gradient
shape in the nonlinear model. The horizontal axis is distance from the midline;
the vertical axis is Slit concentration (arbitrary units). (A) From left to right,
effective gradient in nonlinear model for c̄ = 1, exponential gradient, effective
gradient in nonlinear model for c̄ = 10, 100. (B) Same gradients, but normalized
so that the Slit concentration at distance 4 is always 1. From left to right, exponen-
tial gradient, effective gradient in nonlinear model for c̄ = 1 (indistinguishable
from exponential), c̄ = 10, 100. Note that the effective gradient shape diverges
significantly from an exponential only when c̄  1. For all curves, α = 1.

that Simpson, Bland, Fetter, and Goodman (2000) and Rajagopalan, Vivan-
cos, Nicolas, and Dickson (2000) did not generally find lateral shifts when
Robo was overexpressed. The model predicts that arbitrarily large degrees
of overexpression of Robo may indeed not cause shifts in a ratio model, pro-
vided the Slit gradient is sufficiently steep. The reason for this is actually
quite intuitive. The ratio of Slit concentration at the intermediate compared
to medial fascicles in the linear model is e−6/α

e−4/α = e−2/α . As α becomes smaller,
this ratio becomes smaller; that is, for steeper gradients, there is a larger dis-
parity between the concentrations at the intermediate and medial fascicles.
Since in the linear model the repulsion due to Robo induced by Slit is given
by r × S(x), a larger Slit disparity means that a larger increase in Robo ex-
pression is possible before a shift to the intermediate fascicle is induced.
Thus, by precisely measuring the actual level of Robo in overexpression
experiments where no shifts occur, it should be possible to predict based
on the model a minimum steepness for the Slit gradient in vivo. Similarly,
the pure ratio model predicts that there should be a certain level of overex-
pression of Robo at which lateral shifts can be made to occur. Interestingly,
Simpson, Bland, Fetter, and Goodman (2000) did in fact find one GAL4 line
(15J2) where increased Robo can cause a lateral shift of the dMP2 and vMP2
axons. A possible explanation suggested by the model is that it is only in
this line that Robo levels exceed that required for a lateral shift.

A robust result of both the pure ratio and mixed categorical-ratio model
is that the experimental data are consistent only when the Slit gradient is
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Table 3: Values of r, r2, and r3 Obtained for the Pure Ratio Model (Nonlinear
Version).

n α = 0.5 α = 1.0 α = 2.0

2 0.0067 ± 0.0038 0.17 ± 0.028 No solutions
20 ± 11 3.4 ± 1.2

3 0.0046 ± 0.0025 No solutions No solutions
20 ± 11

4 0.0036 ± 0.0019 No solutions No solutions
20 ± 11

5 0.0030 ± 0.0015 No solutions No solutions
20 ± 11

6 0.0025 ± 0.0012 No solutions No solutions
20 ± 11

7 0.0022 ± 0.0010 No solutions No solutions
20 ± 11

10 0.0016 ± 0.0007 No solutions No solutions
20 ± 11

25 0.00083 ± 0.00016 No solutions No solutions
20 ± 11

30 0.00083 ± 0.00016 No solutions No solutions
20 ± 11

35 No solutions No solutions No solutions

Notes: n is the increase in repulsion compared to wild type in
Robo ectopic expression experiments; α is the steepness of the
Slit gradient. Shown are the mean and standard deviation of
the values obtained for r (above) and r2 (below) normalized
by r3 (i.e., r3 = 1).

sufficiently steep. For the linear model, the cut-off is about α � 2. For the
nonlinear model, the cut-off depends on c̄, the midline concentration com-
pared to Kd. When c̄ � 1, the cut-off is similar to the linear model; for higher
values of c̄, a slightly steeper gradient is required. According to the linear
model, the shallowest allowable Slit gradient consistent with the data has
a concentration at the medial fascicle (position x0 = 4) of approximately
e−4/2 = 0.14 times its concentration at the midline, and corresponding val-
ues 0.05 and 0.03 at the intermediate and lateral fascicles, respectively. The
exact numbers are dependent on the assumption of an exponential gradient
shape; while there is no direct experimental evidence for this shape, there
is no direct evidence for any other shape either. The exponential function
provides a convenient way of exploring gradients varying from very steep
(small α) to very shallow (large α) and has been used to model the gradient in
previous theoretical analyses of axon guidance such as Gierer (1987). When
experimental data about Slit gradients in vivo become available, these could
be used in the model instead. Although changing the gradient function will
likely change the precise numerical results, it is unlikely to have a strong
effect on the general conclusions of the model.
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What implications does this work have for our understanding of the
coding strategies employed in axon guidance? In a strict sense, the pure
ratio model is not a combinatorial code, since the receptors are interchange-
able with appropriate scaling. In this case, why have three receptors when
in principle one would do? One possibility is that more than one receptor
type is already required by commissural axons for midline crossing (Ra-
jagolapalan, Vivancos, Nicolas, & Dickson, 2000; Simpson, Bland, Fetter, &
Goodman, 2000), and since this diversity is available, it is simply reused.
However, an alternative possibility is that it might not be possible to ro-
bustly achieve the widely but precisely different levels of expression that
would be required of a single receptor. From Table 2, for α = 0.5, the relative
levels of expression needed for the putative single receptor would be 0.0067
for axons projecting to the medial tract, 1.0067 for axons projecting to the
intermediate tract, and 21.0067 for axons projecting to the lateral tract. These
differ by a factor of about 3000. Since the number of receptors expressed on
the surface of a growth cone is probably no more than about 10,000, the num-
ber of receptors present on the growth cones of medially projecting axons
would need to be about 3. Even if it was possible to achieve this precisely,
the response of these axons to a Slit gradient would then be overwhelmed
by noise (Berg & Purcell, 1977; Goodhill & Urbach, 1999). While it is true
that for the shallowest gradients allowable by the model, these demands
are more reasonable (e.g., for α = 2.0, the difference in expression required
would be about a factor of ≈ 10), using multiple receptors with different
strengths of signaling is clearly a more robust strategy overall.

The model presented here does not consider the precise timing of robo
expression, that is, the way the expression of each robo receptor varies as
axons traverse the midline and then project laterally. It also does not con-
sider how local cues refine axonal targeting within a general region. One
hypothesis is that each specific Fas II tract releases an attractive factor, and
it is the balance of this attractive force with the Slit repulsion that guides
axons to a specific tract. To include such a mechanism in the model would,
however, require introducing additional parameters whose values are not
currently constrained by experimental data. Also, there is a general problem
with this hypothesis in that such an attractive force would necessarily decay
symmetrically on each side of the Fas II tract, whereas the Slit repulsion is
asymmetric on each side of the tract. The current model instead remains
agnostic about the nature of this local focusing mechanism. The model also
does not take into account the fact that many of the mutant and misexpres-
sion results listed in Table 1 are in reality just statistical tendencies and do
not occur in 100% of cases (this is particularly true in case 9). A possible
extension of the model would include probabilistic rules, for instance, that
there is noise in the measurement of the level of Slit present (Berg & Purcell,
1977; Goodhill & Urbach 1999).

Although we have shown that qualitative differences between robo re-
ceptors are not required to account for the lateral targeting of commis-
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sural axons in Drosophila, it does not rule out the possibility that qualita-
tive differences play a role. There are several other indications that qualita-
tive differences between Robo and Robo2/Robo3 do exist (Simpson, Kidd,
Bland, & Goodman, 2000). Robo2 and Robo3 are positioned close by chro-
mosomally and have closely related sequences. Their intracellular capabil-
ities are different from Robo; for instance, unlike Robo, they lack an En-
abled binding site. The different Robos certainly play qualitatively differ-
ent roles in the midline crossing of commissural axons (Simpson, Kidd,
Bland, & Goodman, 2000) and in the growth and guidance of motor neu-
ron dendrites (Godenschwege et al., 2002). Rajagopalan, Vivancos, Nicolas,
and Dickson (2000) report that experiments are now under way to gen-
erate chimeric Robo receptors, where, for example, the extracellular do-
main of Robo is coupled to the intracellular domain of Robo2. This will
give information about the relative importance of the different signal trans-
duction pathways that Robo and Robo2/Robo3 activate. The model we
have presented so far combines extra- and intracellular effects into a sin-
gle effective strength of signaling. An extension would be to split each r
value into the product re × ri, representing extra- and intracellular influ-
ences, respectively. When available, the chimeric receptor data could then
be used to constrain the additional three parameters and determine whether
there are any sets of values that are still consistent with a purely quanti-
tative model.
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