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Abstract

We consider the small mass asymptotic (Smoluchowski—Kramers approximation) for the Langevin
equation with a variable friction coefficient. The friction coefficient is assumed to be vanishing within
certain region. We introduce a regularization for this problem and study the limiting motion for the
1-dimensional case and a multidimensional model problem. The limiting motion is a Markov process on a
projected space. We specify the generator and the boundary condition of this limiting Markov process and
prove the convergence.
© 2012 Elsevier B.V. All rights reserved.

MSC: 60J60; 60H10; 60J50; 60B10

Keywords: Smoluchowski-Kramers approximation; Diffusion processes; Weak convergence; Boundary theory of
Markov processes

1. Introduction
The Langevin equation

ugt =b@') —rgl +o(g)W,, gy =qeR', ¢ =peR" (1.1)

describes the motion of a particle of mass p in a force field b(g), ¢ € R", subject to random
fluctuations and to a friction proportional to the velocity. Here W; is the standard Wiener process
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in R”, A > 0 is the friction coefficient. The vector field b(g) and the matrix function o (g) are
assumed to be continuously differentiable and bounded together with their first derivatives. The
matrix a(q) = (a;;(q)) = o(q)o*(q) is assumed to be non-degenerate.

It is assumed usually that the friction coefficient A is a positive constant. Under this
assumption, one can prove that g} converges in probability as 4 |, 0 uniformly on each finite time
interval [0, T'] to an n-dimensional diffusion process ¢;: for any x, T > 0 and any pg =peR?,
gy = q € R" fixed,

. Mmoo —
}}%P <021za5XT |9y — qtlga > K) 0.

Here ¢, is the solution of equation

X 1 1 .
= 7bg)+0@)W. g0 = gy =q €R". (1.2)

The stochastic term in (1.2) should be understood in the Itd sense.

The approximation of ¢! by g, for 0 < u <« 1 is called the Smoluchowski—Kramers
approximation. This is the main justification for replacement of the second order equation (1.1)
by the first order equation (1.2). The price for such a simplification, in particular, consists of
certain non-universality of Eq. (1.2): the white noise in (1.1) is an idealization of a more regular
stochastic process Wf with correlation radius 8§ < 1 converging to W; as 8 | 0. Let q % be the
solution of Eq. (1.1) with W, replaced by Wf. Then limit of g/* 9 as w, 8 | 0 depends on the
relation between p and §. Say, if first § | 0 and then u | 0, the stochastic integral in (1.2) should
be understood in the Itd sense; if first « | O and then § | 0, ¢/ 8 converges to the solution of
(1.2) with stochastic integral in the Stratonovich sense (see, for instance, [5]).

We considered in [6] the case of a variable friction coefficient A = A(q). We assumed in that
work that A(g) is smooth and 0 < A9 < A(g) < A < oo. It turns out that in this case the solution
q' of (1.1) does not converge, in general, to the solution of (1.2) with A = A(q), so that the
Smoluchowski—Kramers approximation should be modified. In order to do this, we considered
in [6] Eq. (1.1) with W, replaced by Wf described above:

) 8 FNATR) 811 8 1,8
uigl’ =bg"’) — rMgHg " ol W, ¢ =q. 4y’ =p. (1.3)

It was proved in [6] that after such a regularization, the solution of (1.3) has a limit qf as
© 4 0, and q‘f is the unique solution of the equation obtained from (1.3) as u = 0:

-8 ) S\ 1o )
q; = —-b(q;) + o(g)W,, 9 =q. (1.4)
T T g T 0

Now we can take § |, 0in (1.4). As the result we get the equation

1 .
q, — b o W N =4q, 15
q; @) (gr) + )L(qt)(f(%) t q0 =4 (1.5)

where the stochastic term should be understood in the Stratonovich sense. We have, for any
8,k, T > 0 fixed and anypg"s = p fixed, that

limP ( max |¢*° — ¢° >k ) =0,
a0 <O§t§T|qt q; Ird
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and we have

lim E max |¢° — =0.
§—0  1e[0,T] 19; — 41l

So the regularization leads to a modified Smoluchowski—Kramers approximation (1.5).

In this paper we study a further generalization of the problem considered in [6]. Keeping
the assumptions on uniform boundedness and smoothness of A(e), we drop the assumption that
0 < X0 < A(g) and instead assume that A(q) = O for ¢ € [G] C R"” and A(g) > O for
q € R" \ [G]. Here G is a domain in R” and [G] its closure in the standard Euclidean metric.
For simplicity of presentation we assume in the rest of this paper that o (e) is the identity matrix.
(In Section 3 we further assume that b(e) = 0.) In order to use the results of [6] we introduce a
further regularization of problem (1.5). We consider the problem

e
t

q b(g)) + Wi, g5=gq, £>0 (1.6)

= —_ 0
rgi) + ¢ rgy) +e

and we study the limit of ¢¢ as ¢ | 0. This limiting process can be regarded as a limiting process
of the system

TR R R ,8, . L8, . ,8, . 1,8,
wgl "t = b ) — g gt WL gyt =q. @ =p (17

as first u | Othen § | O and then ¢ | O.
System (1.6), in [t6’s form, can be written as follows:

Va(gp) 1
200gp) +e)  Ag) +e

‘If = Wb(qf) - W;, ¢1<8) =q. (1.8)

However, as will be shown later, for non-compact region [G], it is sometimes more convenient
to consider the projection of the above system onto another space X. (In particular, in Section 3
the space X is a cylinder X = S!xa—=1,b+1]fora < 0,b > 0.) Let us work with system
(1.8) on X and compact region [G]. It turns out that, in the limit, to get a Markov process with
continuous trajectories, one has to glue all the points of [G] and form a projected space €. Let
the projection map be & : X — €. We will prove, for the 1-dimensional case (Section 2) and
a multidimensional model problem (Section 3), that the processes ¢¢ = m(¢g%) converge weakly
as ¢ | 0 to a continuous strong Markov process g, on €. We will characterize the generator of
this Markov process and specify its boundary condition. In particular, we will show thatas ¢ > 0
is very small, certain mixing within [G] is likely to happen for the process g¢. This mixing is
the key mechanism that leads to our special boundary condition. We expect that (see Section 4),
within the region that the friction is vanishing, similar mixing phenomenon will happen for the
general multidimensional case.

It is worth mentioning here that some related problems are considered in [12,13,15,16]. It is
also interesting to note that the limiting process for our two dimensional model problem (see
Section 3) shares some common feature with the so called Walsh’s Brownian motion (see, for
example [1]).

However, at this stage we are not able to prove, in the most general multidimensional case
(except for the 2-d model problem in Section 3), the convergence of ¢¢ = m(¢¢) in (1.8) to some
Markov process q;. We will formulate a conjecture about this in Section 4.
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2. One dimensional case

Let us consider in this section the 1-dimensional case. Besides the usual assumptions made in
Section 1 we suppose that our friction A(e) satisfies A(g) > 0 for g € (—o0, —1) U (1, 00). Let
A(g) = 0for g € [—1, 1]. Eq. (1.8) now takes the following form:

& / &
FPLLC DR L P — = S @.1)
Mar) +e 2(Mgr)+e)°  Mg) +e
We suppose that gg € [a — 1, b + 1] for some a < 0 < b. The process ¢; is supposed to be
stopped once ithitsg =a — 1 org =b + 1.
Our goal is to study the asymptotic behavior of (2.1) as ¢ | 0. To this end we shall write
the process (2.1) as a strong Markov process subject to a generalized second order differential
operator in the form Dye D= (see [4,2,11]). We have

q X
ut(q) = /o (A(x) + &) exp <—2/0 b(y)(A(y) + 8)dy) dx, 2.2)

q X
v¥(q) = 2/0 (A(x) + &) exp (2/0 b(Y)(A(y) + 8)dy> dx. 2.3)

For fixed ¢ > 0, the functions u® and v® are strictly increasing functions in their arguments.
As ¢ | 0, they will converge uniformly on finite intervals to the functions u and v defined by

q X
u(g) = /0 Mx)exp(—z /0 b(y)My)dy)dx, 24)

q X
v(g) = 2/0 A(x) exp (2/0 b(y)x\(y)dy) dx. 2.5)

The functions u and v are strictly increasing outside the interval [—1, 1] and have constant
stretches on [—1, 1].

Consider a projection map 7: we let 7([—1,1]) = O and n(q) = g + 1 forqg < —1 and
7(g) = g — 1 for ¢ > 1. Consider the process g¢ = m(g?). Process g¢ for fixed ¢ > 0, in
general, is not a Markov process.

Let us define two functions # and v as follows: #1(g) = u(g—1) forg < 0Oand u(q) = u(g+1)
forg > 0and #(0) = u(1) =u(—1) =0; () = v(g — 1) forg < 0and V(g) = v(g + 1) for
g > 0and v(0) = v(1) = v(—1) = 0. Here the functions u and v are defined in (2.4), (2.5). The
functions % and 7 are continuous strictly increasing functions on [a, b].

Define a Markov process ¢; on [a, b] as follows. The generator A of g; is A = DyDy. The
domain of definition D(A) of operator A consists of all functions f that are continuous on [a, b],
are twice continuously differentiable in g € [a, b] \ {0}, with finite limit limg_ 0 Af (q) (taken
as the value of Af(0)) and finite one-sided limits lims g LO=—FO D; fO) = D; f(0) =

u(8)—u(0)
limg o %. Also we have limg_,, Af(q) = limgz_, Af(g) = O (taken as the value of

Af(a) and Af (b)).

Lemma 2.1. There exists the Markov process q; on [a, b).

Proof. The existence of such a process could be checked similarly as in [7, Section 2]. For the
sake of completeness and comparison with results in the next section we shall check it here. To
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this end we use an equivalent formulation of the Hille—Yosida theorem (see [7, Section 2] also
[17, Theorem 2]). We check three conditions.

e The domain D(A) is dense in the space C([a, b]). This is because we can approximate
every continuous function f with one that is constant in a neighborhood of 0. After that
in the interior part of the intervals [a, 0) and (0, b], at a positive distance from 0, with a
smooth function. The approximating smooth function satisfies our boundary conditions since
Af(0) = Df f(0) = Dy f(0) =0.

e The maximum principle: if f € D(A) and the function f reaches its maximum at a point
xo € [a, b, then Af (xg) < 0.If xg # 0 we have f/(xg) = 0and f”(x¢) < 0 and

o) u"(xo)
V' (xo)i' (x0) V' (x0) (@ (x0))?

If the maximum is achieved at 0, we consider the expansion

DyDy f (xo) = f(xo) 0.

fx) = f(0) + Dy f(0)(u(x) — u(0)) + (Af(0) + o(1)) fo @W(y) —v(0)du(y).

The last integral is O (#(x)v(x)) as x — 0. Since Dy f(0) > 0 and D; f(0) < 0, by our
boundary conditions at 0 we get Dy f(0) = 0. This implies that Af(0) < 0.

e Existence of solution f € D(A) of Af — Af = F for all F € C([a, b]). On each of the
intervals [a, 0) and (0, b] the general solution of equation Af — DyDy f = F, F € C([a, b]) can
be written as

@) = @) + GE@).

HEre fi(q) satisfy thf equation Afi — D;D;fi = F, f+ (0+) = 0 (or f_ 0—) = 0),
DI fT(0) = 0 (or D7 f~(0) = 0) and G*(q) satisfy the equation A\G* — DyDzG* = 0,
G (0+) = ki (or G(0-) = k), DFGH(0) = ki (or D7 G™(0) = k3). Here ki and k5
are constants. Our boundary condition gives kf’ =k, and k; = k, . The boundary condition
Dy Dy f(a) = DyDy f~(b) = 0 singles out a unique f € D(A). O

We have the following.

Theorem 2.1. As ¢ | O, for fixed T > 0, the process qf converges weakly in the space
Co.71(la, b)) to the process q;.

The proof of this Theorem is based on an application of the machinery developed in [7], [8,
Chapter 8] and [9]. We shall use the following lemma, which is Lemma 3.1 of [8, Chapter 8, p.
301]. We formulate it here in the terminology that meets our purpose.

Lemma 2.2. Let M be a metric space; Y, a continuous mapping M — Y (M), Y (M) being a
complete separable metric space. Let (X7, P%) be a family of Markov processes in M; suppose
that the process Y (X;) has continuous trajectories. Let (y;,Py) be a Markov process with
continuous paths in Y (M) whose infinitesimal operator is A with domain of definition D(A).
Let T > 0. Let us suppose that the space Cio,71(Y (M)) of continuous functions on [0, T with
values in Y (M) is taken as the sample space, so that the distribution of the process in the space
of continuous functions is simply Py. Let ¥ be a subset of the space Cio,0)(Y (M)) such that for
measures (L1, [ty on Y (M) the equality f Fdu, = f Fduy forall F € W implies 1 = (y. Let
D be the subset of D(A) such that for every F € ¥ and A > 0 the equation \.f — Af = F has
a solution f € D.
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Suppose that for every x € M the family of distributions Q% of Y (X%) in the space
Cio,71(Y (M)) corresponding to the probabilities of P%, is weakly pre-compact; and that for every
compact K C Y (M), for every f € D and every A > 0,

Ei/o MY (X)) = AF(Y(XP)1dt — f(Y (%))

as & | O uniformly in x € Y~ (K).
Then Qf converges weakly as € |, 0 to the probability measure Py ).

Proof of Theorem 2.1. Making use of Lemma 2.2, we take the metric space M = [a — 1, b+ 1]
and the mapping ¥ = . The space Y (M) = n([a — 1, b + 1]) = [a, b]. We take the process g}
as (X{, P%). We take the process g; as (y;, Py).

Let ¥ be the space of all continuous bounded functions in [a, b] which are once continuously
differentiable inside [a, 0) and (0, b], with bounded derivatives. The space D C D(A) consists
of those functions f € D(A) such that they are continuous and bounded in [a, b] and are three
times continuously differentiable inside [a, 0) and (0, b], with bounded derivatives up to the third
order.

Pre-compactness of the family of distributions of the process {g%}e~o is checked in
Lemma 2.4. What remains to do is to check that for every compact K C [a, b], for every f € D
and every A > 0,

E,, [/0 e MAf(n(gf)) — Af (m(gf))ldt — f(n(qo))} -0

as ¢ | 0 uniformly in g9 € n_l(K ). This is done in Lemma 2.5. This finishes the proof of
Theorem 2.1. [

For positive § small enough, let G8) = [a — 1, —1 —=8]U[1 +68,b+ 1]. Let 0 < 8’ < 6. Let
C(8") = {—1—2¢", 1+ §}. We introduce a sequence of stopping times 79 < 09 < T| < 0] <
) <0y <---by

70 =0, oy = min{t > 1,,9° € GOB)}, T, =min{t > 0,_1:q; € CS)}.
This is well-defined up to some o} (k > 0) such that

Py: (df}q, hitsa — Torb+ 1 beforeithits —1—8"or 144" = 1.

We will then define 7441 = min{t > o : ¢f = a — lorb + 1}. And we define
Tkt < Ok+1 = Tkl + 1 < Thg2 = Ty1 +2 < 0k42 = T41 +3 < --- and so on.
We have lim, .~ 7, = lim, .o 0, = 00. And we have obvious relations qﬁn e C(),

g5, € C(8) for1 < n < k (as long as k > 1, if k = O the process may start from G () and
goes directly to @ — 1 or b + 1 without touching C(8") and is stopped there, or it may start from
(=1 —23,1+6), reaches {—1 — §, 1 + 8} first and then goes directly to a — 1 or b + 1 without
touching C(8') and is stopped there). Also, forn > k + 1 we have g =g, =a—1lorb+1.
If g5 = g0 € G(8), then we have oy = 0 and 7y is the first time at which the process ¢; reaches
C@H)orfa—1,b+1}.

Now we check weak pre-compactness of the family of distributions of the processes {g¢ }¢~0.
To this end we need the following lemma, which is Lemma 5.1 in [7]. We formulate it using our
terminology.
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Lemma 2.3. Let af"s for every e > 0,8 > 0, be a random element in Cjo,11([a, b]) such that
maxo</<7 |q; — 5f’5| < & on the whole probability space. If for every positive & the family of
distributions of E[f‘s e > 0, is tight, then the family of distributions of g¢ is pre-compact.

Now we have the following.

Lemma 2.4. The family of distributions of {q¢}¢=0 is pre-compact.

Proof. Let 8 = §/2 so that we need only one parameter 8. Between the times 0,1 and 7; the
process ¢ is either in [a, —1 — §/2) orin (1 + &/2, b], and for 0;_; < t < ' < 7; we have
lg; —q;| = la; — q;. Since we have

‘I b »(g5) o
qte—q[e,:/ [ 85 _ gs 3]ds+/ E—dWS’
¢ LAgd) +e 200(gf) +e) ¢ Mgd) te

we can estimate

Elg’ —q51* < K@)t — 1'%
The constant K (8) is independent of & provided that ¢ is small. Now we let

. ’ b(gg) +a) }
oo _ [y . 9 s d
: /0 G6/2)(4y) [ g +e 200gH) +er]”

t 1
+ 1 Ey————dW,.
/0 (7(5/2)(615)A(q‘?)_H3 s

From the above estimate we see that Zf"S for fixed 6 > O is tight. The trajectories of these
stochastic processes satisfy the Holder condition |Zf"S - Zf,’8| < H®%|t — t'|'/5 where H®? are
random variables with E(H¢%)* bounded by the same K ().

Fori > 1if qﬁl_ € C(6/2) and qgl_ € C(8) then between the times t; and o; (< T) the process
g; travels a distance at least §/2 and at least this distance in G(§/2) on the same interval either
la,—1 — §/2) or (1 + 8/2, b]. By our estimate on Holder continuity of Z; 9 this implies that
o — T > (MLM)S, i>1.1If qfi € {a — 1, b + 1} then by our definition of the stopping time
o; = 17; + 1 we can choose ¢ small enough such that the above inequality also holds.

Now we shall define the process g; 9 as follows.

eForo;_| <t < t; we take (7[68 =gt

e For 19 <t < o we take qu‘s = q~f,0 This gives maxqy<;<g, |§f"S —gf| = maxqy<s<g, |E[§O —
il <o

o If ; < T < o; we take Zif‘S = gy, for t; <t < T. This gives maxy << qu’é - g7 =
maXg </<T |Zii —q;1<8/2.

o If 6; < T. In this case if qul and 675,_ are within a distance < § from 0, we define Zj‘i{?i,i =0,
-7

55’8: <1_M>g‘9 forrl- SZ‘S M7

o] — T H 2

~ 2(t — 1)\ ~ T + 0
€,0 i 5 i i
= = 1 - . for — <t <
q: < ; T )QU, 2 -t =
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Since this is just a linear interpolation it is clear that in this case we have maxz, <<, |g; 0

g¢| < 28. Within this time interval 7; <t <1’ < o;,i > 1 we have

~e,8 ~e,8 s / s n1/5
e I e LA sl =11

- in 1oy — 5l
min5|0o; — T;
i 510 i

< QNS ged ) _ g)Us,

Another possibility is that g5 = g, = @ — 1 or b + 1. In this case we define s - g¢ for
T, <t <oj.
On the whole interval 0 < ¢ < ¢/ < T we have ﬁf’s - §§’8| < U5 L )HES | — 1|13

5
for |t/ —t| < (411%) . This means that for fixed § > 0 we have the tightness of the family of

distributions of af’a in the space Cjo,71([a, b]). Since we have checked maxo<; <7 |c7f’(S —gf| <
28, by using Lemma 2.3 with 2§ instead of § we get the pre-compactness of the family of
distributions of g in Cyo,71([a, b]). O

The proof of Lemma 2.5 is based on Lemmas 2.6-2.10. Within the proof of this lemma and
the auxiliary Lemmas 2.6-2.10, we will take ¢ | 0,8 = 8(¢) | 0,8 = §'(¢) | 0in an asymptotic
order such that 0 < ¢ <« 8§’ « 8. Although not very precise, but for simplicity of presentation we
will just refer this choice of order as first ¢ | 0, then 8’ | 0 and then § | 0. It could be checked
that such an order of taking limit does not alter the validity of the result.

Throughout the rest of this section and next section when we use symbols U, V, M;, C;, A;,
etc., they are referring to some positive constants. We will not point out this explicitly unless
some special properties of the implied constants are stressed. Also we sometimes use the same
letter for constants in different estimates.

Lemma 2.5. For every compact K C |a, b], for every f € D and every ) > 0,
(0.¢]
Ey, [/0 e MAf((g)) — Af ((g))))dt — f(JT(CIo))} -0

as € | 0 uniformly in qo € 7~ 1(K).

Proof. The above expectation can be written as

n=0

Eq |:Z [/ ' e MAf(m(gf)) — Af (m(gf)))dt
+e M f(m(gs,) — e‘“"f(ﬂ(qi,,))}

0 Tn+1
+> [ / e MIMf (e (g))) — Af (e (g))di
n=0 L

eI f( (gl ) — e f(n(qi,,))] }

=E, [Z e Yi(gE) + Y e mys (q;’;”,,)} : (2.6)
n=0

n=0
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where

a0
Vilg) = Ey [/0 e MAf((g))) — Af ((gf)dt +e*”°f(7r(q§0))}
— f((q)), 2.7)

V3(q) = Eq [/ e MAf((g)) — Af ((g))))dt + e_xflf(ﬂ(qil))]

0

- f((q)). (2.8)

We used the strong Markov property of g; . Since forn > k+1 we have ¥{ (¢; ) = ¥5(q; ) =
0 we can assume that the function /5 is taken at a point on G(6)\{a—1, b+1} and the expectation
is determined by the values of the process g° in one of the intervals either (1 + 8’,b + 1] or
[a—1, —1—8"). We will prove, in Lemma 2.6, that under our specified asymptotic order we can
have |5 (g)| < (@(8) —u(=8))*ase | 0.

We can assume that the function wf is taken at a point in [—1 — §’, 1 + §'] (in the case when
n = 0and ¢; € G(8), we also have ¥/{ (o) = 0). We can write

V@) = (Bg fras,) — F(r(g) — Byl — &) f((gL,)
0
+E, /0 M (r(gl)) — Af GrigE)dt

= (D (@) +UD (@) +UTID(q). (2.9)

We are going to prove, in Lemma 2.8, that for g € [—1 — &', 1 + §'], for a function f € D we
can have the estimate |(1)®(q)| < M (i#(8) — u(—8))>.

In Lemma 2.9 we will show that E;o0 < M (u(8) — u(—38))(V(8) — v(—4)) and E4(1 —
e™M0) < My((8) — u(=8))(T(8) — V(=8)) so that [(I1)*(q)| + |(II1)*(g)| < M, (u(s) —
u(=8)W(8) —v(=8)) forqg e [-1 =8, 1+§).

These estimates show that

[ (@)] < (I(8) — i(—8)) + M1 (i (8) — i (—8))(F(8) — T(—8))
forallg € [-1—46",1+48'].
As we only consider the arguments g; of ¥{ in (2.6) being in [—1 — 8’, 1+ &' starting with
n = 1 (otherwise ¥{ = 0), we have, by strong Markov property of g;, that

Eq eyl (g5)] < () — (~8))> + M1 (@) — i(—8)(T(3)

n=1

o0

—T(=98)) Zque—“n
n=1

< (@) — u(—8)* + M1 (u(8) — u(—8))(T(8)
o0
~ _ -1

—T(=6) Y (supyece Eqe*™)"

n=1
We will show, in Lemma 2.10, that Ege ™™ < 1 — M (8) A (—u(—38)) for all ¢ € G ().

()
—u(—95)

Since as § | O we have 0 < My <

< M3 < o0, we have
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o0

Eq ) e Y45,

n=1

< (((8) — H(=8))* + My (i (8) — i(—8)) (T(5)

= : = — 0
M (u(8)) A (—u(—9))

as 8 | 0. For n = 0 the expectation E¥/{ (g3) is small as ¢ is small.
For the second term in (2.6) we can estimate

—U(=9))

< D Ege MY (@)l < D Ege My (g)]

n=0 n=0

- <1+ _ Ms )(ﬁ«s)—i(—a))z
=\ @on A Cacoy

which converges to 0 as ¢ |, 0. This proves this lemma. [

o
S B, gl )
n=0

Lemma 2.6. We have, for q € G(8), as ¢ is small, that |5 (q)| < (u(8) — u(—8))2.

Proof. For the initial point ¢ € G(§) and the time interval 0 < ¢ < 7| the trajectory of ¢;
is traveling in one of the intervals either [1 4+ 8, 1 + b] or [a — 1, —1 — §’]. Without loss of
generality let us assume that g € [1+6, 1 +b] and we are traveling in the interval [1+8', 1+ b].
Letg = m(q). Let B(g) = b(g + 1) and A(g) = A(g + 1). Let us extend the function /(e)
to the whole line R. The extended function /l(o) is smooth, bounded, with uniformly bounded
derivatives and such that A(x) > minge[i45,1456] M(q), A(x) = A(1 +x) forx € [§, b].

Let the process q , be subject to the stochastic differential equation

2 _ B(,) @) 1

- == — o == ts
YAG) e 2(4@) +e?F  A@G) +e

’67\8 =q, 0<t<oo.

We introduce a stochastic process "7:’ 7(}'\0 = g with generator X, subject to the stochastic
differential equation

5 B@) A@) 1
4 ===~ 73~ + ==
AGq)  24°(q,)  Agy)

Notice that the modified generator A agrees with A before the process g¢ reaches qul. And

~

W,, ;}'\qu, 0<t<o0.

before the time 71 the process 27? agrees with the process g; . Therefore we have,
¥i(g) = Eg [ /0 N MGG - RFGEOM — e G ] ~ F@.
It is clear by It6’s formula that we have (also see, [10, Section 2]), for the stopping time 71,
E; [ /O MG - AF@dr — e f@l)} - f@ =0.

Notice that the function f € D C D(A) is three times continuously differentiable in [§', b].
This gives the estimate that for some positive U, V > 0 and T = T (¢) we have
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V3 ()] =

E; fo MGG - fG)) - AFE) - Af G
— e (@5 — f@l))‘

T(s)
Ea</0 e Hdi (Lip(f) - 1§ — 4

IA

T (e)
+ /O e dt (Lip(Af)) - [§ — 5]

+ (Lip(f) - [q, — qr 1 (n1 < T(e))) + VP(r; > T(¢))

IA

U E:q —q VP(t; > T(e
(os?lfa}‘@ 7ld; q,|>+ (11 = T(¢))

A

~ A 12
U max (E;;Iﬁf —q;|2) + VP(r1 = T(¢)).
0<r<T(e)

By the integral form of the stochastic differential equations of the processes Z}’f and 7q¢, we
have
. ‘[ B@) 1@y
lg, —q:1” = C == T A A 3
o [\Agy)+e 2(Agy) +e)
~ ~ 2
(8@ _ @) \],
A@y)  2(4@))°
[’ BG@) NG
+ AL T 5 T e
o [\Aqy) 2(A@,)
o~ —~ R 2
_ (B Ay ds
AGy)  2(A@g))?
! 1 1
+ [ == Y dW;
o [Ag)+e  Ag)
2
! 1 1
+ / == T == de
o [[Aqy)  Agy)

Let (1) be the Lipschitz constant of 1 (x > 1), B(A) that of # (x > A), y(&) that of

B@) A _
71% 2/1(3)* (g = &), u(8’) that of ’— (q > §). Let m(§') = miny¢ps py A(x).

We can estimate

i ( BG) @) )_(B@i)_ 1@ >:|ds|2
o [\4@)+e 204@)+23) \4@) 204Gy

q
< A (2 [a*(m(8)) + B2 m()ND),

2
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i / B@) @) _(f@)_ 1@\,
o [\A@) 2(4@H)? A@G,)  2(A@gy))?

q
2 ! ~E ~ 2
< Aoty?() / E;50 — 3, 1%ds.
0

2

! 1 1 ?
Y I I
1o [A@’iwe A(&i)}

‘ 2
E / AL ! dW
W | 1@  AG,)

We have, by using the above estimates, with a possible change of the constant C, that

t
< / &2 (m(8"))ds = *ta*(m(s))),
0

<u (8)/ Ef5° — 3, Pds.

Eilq, —q,> <C (rs%t(a%mw’)) + B2(m(8))) + & (m(8"))) + (ty*(§)
t
+ 12(8") /0 K517, — 4, |2ds) :
By the Bellman—Gronwall inequality we have

Ezlq; — q,1> < Cte®(1(@*(m(8")) + B2(m(8'))) + a>(m(8)))
X exp (C(t;ﬂ(s’) + /LZ(B/))t> .

As we can check that |a(m(8))| < m+(5,), Bm(8)) < 4(6’)’ y(§) < and | (8)| <

4(5/

2A(3 ok this gives, as & is small, that
o~ 12
Egla, — ,7)
Ofrtngaﬁ(s)( qlqt q,l
2 s 1/2
< CT(e)e (a2<m(6’)> + B2 () + %)
)

x exp (C(T ()20 + 12T (@)

I3
<CT(e)————— _—
=CTE min  A*(g) min  A8(g)
qe[1+8,1+b] qe[1+8,1+b]

Noticing that by strong Markov property P(z; > T(¢)) < Kexp(—pT(e)) for some
p >0, K > 0, we see that

€ 2
———exp | CT (6) ———————
min  A*(g) P ) min  A8(g)
gel1+8,1+b] gell+8,1+b]

+ Vexp(—pT(¢)).

lv3 (@)l < CT(e)
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Let us choose T (¢) = ,/Inln é We will then have
C
1 172 & 1 mi;l 18(q)
W@l < C(Imn=) ———————(In= et
& min  A%(q) e
ge[1+68',1+b]

/ 1
+ Vexp (—p lnln—>.
£

For fixed 8’ > 0, one can choose ¢ small enough such that

Upe” / 1
£ < + U, —p.JInln =
V2@l < min ])»4(11) 0P ( pynn 8)

qe[1+68", 1+blU[—14a,—1-5'

for some Uy > 0, p > 0and 0 < k < 1. As we choose first ¢ | 0 and then 8’ | 0, this gives that
as & is small we have |5 (¢)| < (u(8) — =8 0O

Lemma 2.7. We have, as ¢, 8,8’ are small, for g € [—1 —8',1+ 81 and C > 0, that

E(0) —W(=8)| _ () —W(O) +Ce

Py ((qs,) =) —

ud) —u(=8) |~ u@®) —u=s ’
e H®)=TO) | _#®) = u©O) +Ce
Farlaa) = =0~ 26 75| = 7@ —(—9)

Proof. Let ¢ = 7(g) € [—&, 8']. We have, for bounded positive functions Cy(8, &), C2(8, €)
and positive constants Cy, Co, C, that

7(0) — (=8

P, (m(qs,) = 8) — —525; — 52_8;
ut(q) —u*(=1-48) u(0) —u(—4)

uE(1+8) —ut(—1—8)  u(8) — u(—9)

H(0) — u(=8) + (@) — u(0) + C1(8,8)e  u(0) — u(—5)

u(S) — u(=8) + C2(8, e)e ) — w(=95)
(u(q) —u(0) + C1e)(u(8) — u(—98)) + C2e(u(0) — u(=98))
(U(8) — u(—95))?

_ (@) —u(0) + Ce
) —u(—8)

The estimate of P, (7 (qf,o) = —§) is similar. [

Lemma 2.8. We have, as ¢ is small, for g € [—1—=38', 1 48], that |(I)¢(g)| < CH(8)—u(=8))2
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Proof. We have, using Lemma 2.7, that

(D (P] = Eq f(7(qq) — f (@)
=[(f(®) — f(O)Py((qs,) = &) — (f(0) — f(=5))
x Py ((qy,) = —8) + (f(0) — f(m(g)))]
#(0) — w(=5)

< |6~ FONZs =
u(8) —u(0
~ () - f(—&)%

#(8') — w(0) + Me
u(8) — (=)
(u(0) — u(=8))(u(8) — u(0))
u(8) — u(=98)
« (f(ﬁ)—f(()) _ f(O)—f(—S))‘
u(@®) —u©)  u0) —u(=9s)
i) —w(0) + Me
u(8) — u(=9)

+Cy + Cs(u(8') — u(0))

+Cy + Cs(u(8") — #(0))

W) —(0) + Me

< C3(@) —i(=8))" + Ca—o— —

+ Cs(u(8") — w(0)).

We have used our gluing condition D; f(0) = D f(0). Now we choose first ¢ | 0 then
8 1 0, we get, as ¢ is small, that | (1) (q)| < C@(8) — u(—=8))>. O

Lemma 2.9. As ¢, 8, 8" are small, for g € [—1 — &', 1 4+ §'] we have,

Ego0 < C@@(8) — u(—8)([W(8) — v(-9)),
E, (1 —e74%) < C(U(8) — u(—=8))(F(8) — V(=3)).

Proof. We apply the well known formula for the expected exit time (see, for example
[14, Chapter VII, Theorem 3.6]) and we have

146
E, 09 =/ G®(q, r)dv®(r),
_1-s

where the Green function

uf(q) —u® (=1 —=38))(u*(1 +8) — u®(r))
ut(1+96) —ut(—1-195)
for —1—-86<qg<r<1+5§,
e (r) —u® (=1 =38)*(1+8) —u®(q))
uft(1+98) —ut(—1-195)
for —1 -6 <r<qg=<1+3§,
0
otherwise.

G(q.r) =
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Therefore it is easy to estimate
Ejo0 < @®(148) —u® (=1 =8)(v* (1 +8) —v°(=1—-19))
< ((8) — u(=8) + Cee)(V(8) — v(=8) + C7¢)
< Cu(8) — u(—=8))(W(8) — v(-9))

as desired.
This helps us to find

o0
E, (1 — e ) = AE, [ / e—“ds]
0

< AEqop < Cu(8) — u(—8))(¥(8) —v(-9)). O

Lemma 2.10. For g € G(8) and § sufficiently small, we have

lim limE e ™ < 1 — C(@(5)) A (—ii(—5)).
8100

Proof. Without loss of generality let g € [14 3, 1+ b]. The expected value M*(q) = qu_Ml is
the solution of the differential equation Dye D, M (q) = AM*®(q), M*(1+68') = M*(1+b) = 1.

There exist two solutions fl)\ (), fz}‘ (g) of the equation D,D,f = Af with fl)‘(l) =
(1 +b)=1and f}(1+b) = f;-(1) = 0. The derivatives D, f}*(x), Dy f;-(x) are increasing
functions, —oo < limgy1 Dy (f + f3)(g) < 0,0 < limgpi4p Du(f] + f3)(g) < oo (see
[4,11]).

We shall make use of Lemma 2.6. Since g € [1 + §, 1 + b] we see that op = 0. Lemma 2.6
tells us that, for k = 1, 2, we have

7
lim |E, [ /O e MM gF) = DyDufi(g)ld1 + e f;?(q?l)] - f;?(q)‘

< (#(8) — u(—8))*.

Taking into account the definitions of ff‘, fz)‘ we see that the above inequality gives

limEge™" fi'(qz) = fi (@)] = @) - H(—8)).

Since f,?(q%) = f(1+ &) when g7, = 1+ and f,?(q?l) = f(1+b) when q;, = 1 +b,
we see that for some K > 0 we have
. or (D) = A+ @) + (A +8) = f-(1+Db)fF(q)
imE e ™" — - - - T
el0 ffA+NfA+b)— ff(A+b)f5(A+8)
< K@) —i(—8))*.

(The expression

(3 +b) = A+ ) flH@) + (fF (1 +8) — f1+b) f3(q)
A+ +b)— fr(L+b)f(1+8)

is the solution of the equation Af (q) = D, D, f with f(1+8') = f(1+b) =1.)
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This gives

lim lim B, (1 — e — 1= (1 (@) + f3 (@] < K@) — i (—=8))>.
&

Taking into account that —oco < limg 1 Du(fi" + f3)(q) < 0,0 < limgpi4p Du(f] +
fz)‘)(q) < 0o we see from the above estimate that

limlimE, (1 — e™*™) > C(u(5))
810 ¢el0

forg € [1+38, 1+b] and § sufficiently small. The case of u(—3) is handled in a similar way. O
3. A two dimensional model problem

In this section we discuss a two dimensional model problem. We work with a
Smoluchowski—Kramers approximation in the plane R?. Let us suppose that the friction
coefficient A(e) depends on the y variable only: A(x, y) = A(y). Suppose for y € [—1, 1] we
have A(y) = 0.For y ¢ [—1, 1] we have A(y) > 0. For simplicity of presentation we also assume
that the drift is zero: b(e) = 0. All the other assumptions about A(e) are the same as was made
in Section 1.

In addition, we assume that for ¢ > 0,

—1 1 1+¢ 1
/ —dy = / ——dy = 0.
—e—1 A(Y) 1 A

(In the case that both integrals converge the proof of Lemma 3.1 repeat that in the case of both
integrals divergent but we do not know anything about the case of one integral convergent and
the other divergent.)

As we already introduced in Eq. (1.8) of Section 1, we are actually considering the stochastic
differential equation for the position of the particle g; € R? as follows:

VA 1
20Mg) + )3 Mg+ ¢

By taking into account our assumption on the friction coefficient A we can write the above
equation in coordinate form. Let ¢¢ = (x¢, yf). Let W, = (W', W?). We have

. &

q: =

w,, g5=q0cR* &>0. (3.1

B, x5 =xp € R,
AP+
)\'/ & 1 (32)
ce (yt) 2 & __ R
e = Yo = Yo € .

- £ 3 B Wt ’
2((y;) t¢) Alyf) +¢

Leta < 0 < b be given. Throughout this section we will assume that our process ¢ is stopped
once it exits from the domain {(x, y) € R2 :a — 1 < y < b + 1}. We therefore suppose that
yo€la—1,b+1].

Note that, similarly as in Section 2, the process yf is a strong Markov process subject to a
generalized second order differential operator in the form Dy (y) D¢ (y) where

y y
u®(y) = / (A(s) + e)ds, v (y) = 2/ (A(s) + e)ds. 3.3)
0 0
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Let
y y
u(y) =/ A(s)ds, v(y) = 2/ A(s)ds. (3.4)
0 0

We have the obvious relation u®(y) = u(y) + ¢y and v¥(y) = v(y) + 2¢y.

Let us identify points in the x direction x ~ x+27m. Therefore we get a process on the cylinder
S' x [a — 1, b + 1], stopped once it hits the boundary {y = a — 1 or b + 1}. Let

{6,8 = x; mod 27,
Y=

In the rest of this section we refer to the process ¢; as the one on a cylinder: ¢; = (67, y;)
is on the cylinder S' x [a — 1,b + 1]. When we speak about the process g¢ on the domain
{(x,y) eR*:a—1<y<b+ 1} c R? we will instead refer to the coordinate representation
s y7)-

Let ¢ be the product S' x [a, b] with all points S! x {0} identified, forming the point 0. A
generic point on € will be denoted by § = (6, ¥) where 6 € S! and ¥ € [a, b]. All points (6, 0)
correspond to o.

Let us consider the following projection map 7 : S' x [a — 1, b + 1] — €. We let

@,y—1, forl <y<b+1,
7@, y) =30, y+1), fora—1<y<—I; 3.5)
0, for —1<y<l.

Letm(q?) =¢¢ = (67, 5¢). We see that ¢ = 7 (yf) where 7 is the projection map introduced
in Section 2.

Let, as in Section 2, u(y) = u(y — 1) fory < 0O and #(y) = u(y + 1) for y > 0 and
10) = u(l) = u(=1); 73 =v( -1 fory < 0and ¥(¥) = v(y + 1) for y > 0 and
7(0) = v(1) = v(—1). The functions #(y) and v(y) are continuous strictly increasing functions
on[a,b].Let i(3) = A(F — 1) for 3 < 0and A(F) = A(F + 1) for ¥ > 0 and A(0) = 0.

Let A be the operator given, for ' # 0, by the formula

82

Af(97 S;) = u(y)DU(y)f + )\'2( )ang

(3.6)

Let D(A) be the subset of the space C(€) consisting of functions f(g) for which Af (8, y) is
defined and continuous for y # 0, the derivatives in it being continuous; such that finite limits

li DGy f (0, ), li D f(6', ), 3.7
I iSO, y) ot o iSO, ) (3.7

exist;
” lém Af@.5) (3.8)

exists and does not depend on 6;

lim Af@©@.y) = lim Af@®.5 =0; (3.9)
0'—0,y—b

0'—0,y—>a
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and

2 21
/0 9/_)21%1_)0_ Digy f(0,5)do = fo 9’—»(9,1%1—>O+ Dy £, 5)de. (3.10)
It is worth mentioning here that the above condition (3.10) in the definition of D(A) can be
replaced by the condition that limy' ¢ 50— D) f (0, y) and limg/_ ¢ 5-0+ Dic) f(6', ¥) not
depending on 6 and coinciding. In this case the proof of Lemma 3.1 remains the same.
Let us define, for f € D(A), Af(0,a) and Af (6, b) as the limits (3.9) and Af (o) as the limit
(3.8). The operator A defined on D(A) is a linear operator D(A) — C(C).

Lemma 3.1. The closure A|pa) of the operator A|pa) exists and is the infinitesimal operator
of a Markov semigroup on C(&).

(The corresponding Markov process ¢; stops after reaching the boundary of € (¥ = a or b).)

Proof. We use the Hille—Yosida theorem and we check the following.

e The domain D(A) is dense in C(C).

This is because we can approximate every function g in C(€) by a function f which is smooth,
close to g outside a neighborhood of 0 and is equal to g (o) in the neighborhood of 0. This function
f satisfies our restrictions on D(A) and can approximate the function g with respect to the norm
of C(C) as we choose the neighborhood of o small enough.

o The operator A|p4) satisfies the maximum principle: for f € D(A), if this function reaches
its maximum value at a point ¢ € € we have Af(g) < 0.

Indeed, for ¢ = (6, a) or (9, b), we have Af(q) = 0.Ifqg = (0,7), ¥ # O the first partial
derivatives at ¢ are equal to 0 and 3922 f(6,y) <0, Dy5 Dz < 0. Finally, if § = o we have

the left-hand derivative D~(~) f(6,0) > 0, the right-hand derivative D~ 76 f (6,0) < 0 and by
(3 10) both these derivatives are equal to 0. It follows then that the limit as y — 0 of the second
y-derivative is non-positive for all & € S'. Since the integral over S! of the second @ derivative
is equal to O for all y # 0, taking into account that Af (o) is equal to the limit (3.8), we have that
Af(0) <0.

It follows from the maximum principle that for A > O the operator Al — A|p4) does not
send to zero any function that is not equal to 0, and this linear operator has an inverse (that is not
defined on the whole C(€)), with [[(A1 —A|p¢ A))_1 | < A~ 1. Every bounded linear operator does
have a closure (which is just its extension by continuity), and with it the operators A/ — A|p(a)
and A|p(a) also have closures.

o Finally, to check that we can apply the Hille—Yosida theorem to the closure A|p4) we have
only to check that the bounded operator (A — A|p( A))’l is defined on a dense set. That is, for a
dense subset of F' € C(C€) there exists a solution f € D(A) of the equation

Af — Af = F. 3.11)

Let us take F (0, y) = ¢"? G(3), defining F (o) as its limit as § — 0. Of course for n # 0 we
have to have limy_,o G (y) (which limit we will take as the value G (0)) equal to 0.

We shall look for the solution f € D(A) of the Eq. (3.11) in the form £(0,5) = ¢ g(3)
(again, for n # 0 it should be g(0) = limy_.¢ g(y) = 0).

The differential equation for g(y) following from (3.11) is the ordinary differential equation

2
(A + A;( )> 83 = Dy Dayg(y) = G, (3.12)
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and it should be solved with the boundary conditions 72”(27) g(a)—Dy5)Dighgla) = x2 (b) ~—g(b) —
Dy5yDiGrg(b) = 0, Dy, )g(O) ;@)g(O) and for n # 0, g(0) = 0. From the boundary
conditions we get at once g(a) =21"'G(a) and g(b) = A7 G(b).

For n = 0, Eq. (3.12) with the boundary conditions D55y Dy5y8(a) = Dy Dygyg(b) =0
and the gluing condition ng g(0) = D;(i) g(0) is just the ordinary differential equation for
a one-dimensional diffusion process that has been considered infinitely many times, and it has
a solution for every G € Cla, b]. Let us go to the case n # 0. We are going to consider the
intervals [a, 0) and (0, b] separately; what follows is about the interval (0, b].

Similarly to how it is done in, e.g. [4], we can prove that there exist two non-negative solutions
£1(¥) and & (y) of the equation

2
<)» + G )> & () — Dy Du»6i(y) =0, 0<y <b, (3.13)
the first one increasing and the second one decreasing, £1(0) = &(b) = 0, £(b) < oo,

£(0+) = oo. The derivatives Dy ()& (¥) are increasing, Dy 5)£1(0) = 0, Di5)62(b) < 0.
It is easily checked that the Wronskian

Dii51(3) Dﬁ@){z@))
&) &)

(both summands Dg5)&1 (Y) - £2(¥) and —Dg)&2(Y) - &1 (D) are positive) does not depend on y:
WO =W > 0.
Now we define, for y € [0, b],

W(y) = det (

ISR N DR o ~ ~ [? -
g(y) = W [Sz(y)/o §1(2) - G(2)dv(z) +$1(y)/N §(2) - G(Z)dv(Z)] (3.14)
y
It is easily checked that AZ(y) — AZ(Y) = G(y) for0 <y < b.
Of course
g < Ll [Ez(y)f £E1(2)dv(2) + & (y)f Sz(Z)dv(Z)} (3.15)
Let us check that this goes to 0 as y — 0+.
We have:
£(0) = Dy Da)i (2)

A+ n2/32(2)
so the first summand in the brackets in (3.15) is less than or equal to

Di»&1(3) — Da)61(0) &0 - Daé1(9) - w
min_ [ + 232 min [ + n2/32(2)] min_ [ + n2/32(2)]’
<I=y =z=y ==y

£©7) -

and it goes to zero as y — 0+.
The second summand in (3.15) is less than or equal to

Di62(c) — Di)62(y) L EG)- Di5)&2(b) — Di)é2(c)
“min L+ n2020@)] o min (1 +n2/72(2)]

y=<z=c

£0) - (3.16)
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where ¥ < ¢ < b. The first term in (3.16) is less than or equal to

—£1(y) - Di6(5) - w
in [% 4+n2/32(z)] ~ _min [A +n2/32(z)]’
<7z=<c y=<z=c

y

and it can be made arbitrarily small by choosing a positive ¢ close enough to 0. The second term
in (3.16), for a fixed ¢ > 0, converges to 0 as y — 0+. So we get that limy_.o1 () = 0.
Now we are going to find D58 (0+). We have:

D)8 ()

1 [t N (7 N
=% [Da<y>§1(y)/~ &(2) - G(z)dv(z)+Dm)§2(y)/0 §1(2) - G(Z)dv(z)] (3.17)
y

The first integral here is equal to f}f + Cb, and it is not greater than
IGI - [&() - V() + &(c) - VD),

and the first summand is not greater than
IGI/W - [W -(c) + &(c) - V(D) - Daé1(M]-

By choosing ¢ € (0, b) close enough to 0 we make v(c) arbitrarily small; and we know
Di)&1(y) = 0as y — 0+. So the first summand in (3.17) goes to 0 as y — 0+.
The second summand in (3.17) does not exceed in absolute value

IGIl- &) - IDagy6(M|-v(3) < IGI-W-9() -~ 0§ — 0+).

Now we are looking for the solution g(y) of Eq. (3.12) with the boundary conditions under
this formula in the form g(3) = g(¥) + C - £ (¥). For the undetermined coefficient C we get one
linear equation, and it does have a solution since &1 (b) # O.

The same way we get, for n # 0, a solution g(y) for y < 0 with g(0—) = Dy5,¢(0—) =0,
gla) = n'G(a).

So we get a solution f € D(A) of Eq. (3.11) for every function F(0,y) = Zf;’:_N ein? .
G, (), G,(y) € Cla, b], such that G,,(0) = 0 for n # 0 (we take f(0) = G(0)). The set of
such functions is dense in C(€) so that the closure operator (A — A|p(a))~! is defined on the
whole C(€) which finishes the proof. [

Let g; be the Markov process corresponding to A|p(4), whose existence was proved in
Lemma 3.1. We prove the following.

Theorem 3.1. As e | O, for fixed T > 0, the processes q; = m(q;) converge weakly in the space
Cio.71(®) to the process ;.

The proof is again based on an application of Lemma 2.2.

Proof of Theorem 3.1. Making use of Lemma 2.2, we take the metric space M = S! x [a —
1, b + 1] with standard metric. The mapping ¥ = . The space Y (M) = € is endowed with
the metric d, defined as follows. For any two points (91, y1) and (62, y2) on € with ¥},
having the same sign we let d((01, 1), (82, ¥2)) be the Euclidean distance between points
(1711 cos 61, |71 sin @) and (|y2] cosba, |y-|sin6h) in R?; if 3] and 7, have different sign we
take d((01, Y1), (62, ¥2)) = d((61, 1), 0) + d(o, (82, ¥2)). With respect to this metric the space
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¢ is a complete separable metric space. We take the process (X7, P%) as ¢; and the process
(y:, Py) is taken as g;.

For the uniqueness of the solution of the martingale problem we set the space ¥ to be the
space of all continuous functions on € which has the form F(0,y) = ZQ’Z_ N el .G, (%),
G, € Cla, b] is continuously differentiable inside [a, 0) and (0, b], also G,,(0) = 0 forn # 0.
We take f(0) = Go(0). It is proved in the proof of Lemma 3.1 that the equation Af — Af = F
always has a solution f € D C D(A) forall F € ¥ and A > 0. The space D contains those
functions f € C(€) that are bounded and are three times continuously differentiable inside
Cr={0,y)eC:a<y<0landC™ ={#,y) €€:0<7 < b).

We will state pre-compactness of the family of distributions of processes ¢¢ in Lemma 3.2.
What remains to do is to check that for every compact K C € and for every f € D and every
A > 0 we have

Eq, [/0 e MIMf(m(gp) — Af (r(g))))dr — f(n(qo))} -0

as & | 0 uniformly in go € ' (K). The proof of this is essentially the same as the proof we
did in Lemma 2.5, based on the following auxiliary Lemmas 3.9 (for the proof of convergence
for processes near o) and 3.10 (for the proof of convergence for processes away from o) and
the auxiliary Lemmas 2.9 and 2.10 (for the estimates on the exit times, notice that the stopping
times o, and t, we will work with in this section are essentially the same stopping times that we
worked with in Section 2 since we are discussing about a model problem). We omit the details
in the proof. O

Let x be a real number with small absolute value. Let G(x) = {(@, y) € S'xla=1,b+1]:
a—1<y<-—-l-korl+k <y<b+1}.LetCtk) ={0,y) € S'x[a—1,b+1]: y = l+«}
and C~(x) = {8, y) € Stxa—1,b+1]: y=—1—«}.Let C(k) = CT(k) UC™(x). Let
8 > & > 0 be small. We shall introduce a sequence of stopping times 19 < 0¢9 < 7] < 0] <
T <oy <---by

790 =0, op =min{t > 7,,4; € GO)}, T, =min{t > 0,_1,¢; € C(8"}.
This is well-defined up to some oy (k > 0) such that

Pye (V4 hitsa — Lorb + 1 beforeithits —1—6"or1+8) = 1.

We will then define 7441 = min{t > o : y; = a — lorb + 1}. And we define
Tkl < Ok+1 = Tk+1 + 1 < Tgg2 = Tk41 +2 < 0k42 = Tk+1 + 3 < - - - and so on.
We have lim;, .~ 7, = lim, .o 0, = 00. And we have obvious relations qiﬂ e C(),

qf,n € C(@) for1l <n < k (as long as k > 1, if k = 0 the process may start from G(§) and
goes directly to S' x {a — 1} or S! x {b + 1} without touching C (8") and is stopped there, or it
may start from S' x (=1 =8, 1+ 6), reaches C(8) first and then goes directly to S x {a—1}
or S' x {b + 1} without touching C(8’) and is stopped there). Also, for n > k 4+ 1 we have
q;, =45, € S'x{a—1}or S" x {b+1}. If g5 = qo € G(3), then we have op = 0 and 7y is the
first time at which the process ¢¢ reaches C(§') or S'x{a—1}or S' x {b+1}.

Note that these stopping times are the same as those defined in Section 2 since our process y;
is essentially the process g; in Section 2.

The pre-compactness of the family {g% },~¢ in Cjo,7](€) for 0 < T < oo is proved in the same
way as in the one-dimensional case. We shall make use of the technical Lemma 2.3 with g&® and
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¢ replaced by 5° and §¢ and the space Cio,71(®) instead of Cjo,71([a, b]). We omit the proof
of the next lemma.

Lemma 3.2. The family of distributions of {q:}¢~0 is pre-compact in Co,11(€).

The next few lemmas establish the estimates on the asymptotic joint law of the processes
(¥, 67) at first exit from a small neighborhood of the domain within which the friction vanishes.
This is the key part to the proof of Theorem 3.1.

Let 8” > 0 be small. We consider the process g; starting from g = qo € SUx[—1=68",14+8].
Let us introduce another sequence of stopping times a1 < 1 < oz < B < -+ < Qy(e) by

ap =min{0 <t <oy : ¢, € C(0)}, B =min{a; <t <o0p:q € C(—=38")},
and for k > 2 we define
ar =min{x_; <t <o0p:q; € CO)}, Br = min{og <t <0y :qf € C(—8")}.

Here we take the convention that the minimum over an empty set is co. The number n(e) is
a non-negative integer-valued random variable such that o) < 00 and B, () = 00. If ] = o0
we set n(e) = 0.

Lemma 3.3. For gy € G(8') we have

(3.18)

u (s 8 —u(=48 8
qu(a1<oo)zl—max(u( )+ u(zo) +e >

w() +e8’ —u(—8)+¢eb

Proof. If 1 < yj = yo < 1+ &' we have

u(1+8) —u®(y)
ut (1 +8) — ut (1)
W48 —ut(148) W@ +ed

ut(1+8) —us(l) MOETE

Py (1 < 00) =

If -1 —6" < y5=yo < —1wehave

ut(y) —u(=1-125"
Ut (—1) — ut (—1 — 8)

_ W (=1 =8 —ut(=1-9)
= uE(=1) —uf(—1—9)
—U(—8) + &8
O U(=8) + &5

Py (1 < 00) =

If -1 < y5 =y0 < 1wehave Pyy(a; <o0)=1. O

Lemma 3.4. For qy € G(8') we have

Py, (B1 < oolay < 00)

88// 88//
>1—max | = , —— . (3.19)
u@)+e(6+38" —u(—=8)+e+48")
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Proof. If y;, =1 we have

ué(1+8) —uf(1)
ut(1+8) —ut(1—35")
88//
G e+

P, (B1 < oolay < 00) =

If y, = —1 we have
ut(=1) —u®(=1-19)
ut(—=1+38") —us(—1-19)
83//
—u(=8) +e(d+38")

Py, (B1 < ool < 00) =

Let M(e) — oo as ¢ | 0 be an integer. The exact asymptotics of M (&) will be specified later.
We prove the following.

Lemma 3.5. For qg € G(8') we have
Py (n(e) = M(e)|oy < 00)

88" 28" M(e)—1
> [1 — max <~ , ——= )] . (3.20)
u@) +e(6+38") —u(—=8)+e(6+48")

Proof. This is because trajectories of g¢ between times «; < ¢t < o1 are independent and by
iteratively using Lemma 3.4 we get the desired result. [

Lemma 3.6. We have

8// 5
aip1 — i =& | — (3.21)
> 7
with H; being i.i.d. positive random variables with E(H;)* < oo fori =1,2,...,n(e) — 1.

Proof. This is a result of the Holder continuity of the standard Wiener trajectory |W; — Wy| <
H;|t — s|1/ 5 and the fact that between times Bi <t < ;4 the process y; is a time-changed
Wiener process %Wt traveling at least a distance of §”. [

Let us define an auxiliary function

2(e,8,8',8", M(e))

o8 Py M(e)—1
=2|1—|1—max| = , T =
[ (u(8>+s(6+5”> —u(—a>+e(8+8”>>]

W) + 88 —w(=8") + 85’> ]

+ 2max | — , —=
(u(3)+88 —u(—98) + &b

Lemma 3.7. For gy € G(8') and for some A > 0, k > 0 and C > 0, there exists ¢g > 0 such
that for all 0 < ¢ < &g, for any 0 < 61 < 6, < 21w we have
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6, — 64
Py (65, € [01. 621, Y5, = 1 +6) = =5y, (0%, = 1 + a)'

<C exp(—A((S”)SKM(s)) +202(e,8,8,8", M(¢e))

and

0, — 61
Py, (05, € [01,02], 55 = —1 = 8) — TPqO(yﬁo =—-1- 5)‘

< Cexp(—A")’kM(e)) +202(¢, 8,8, 8", M(¢)).

Proof. As we have

xs_/t;dwl_wl(/tL)
oo A0+ 0 () +e)?)’

we set Té(¢r) = fot (/\(yfw Using Lemma 3.6 for g9 € G(8') the random time T* (o) can be

estimated from below by

. % ds 1 [ 1!
T > —_— > — 1 _j<ye<nnds > — i1 — Bi
(00) _[0 GO T 2 82[() (izsnds 2 — > @ — )

i=1
n(e)—1

1
=@ ) s

i=1

(If n(e) = 0, 1 the sum is supposed to be 0).

And we also notice that the random time 7'¢ (6p) only depends on the behavior of the process
y; and is therefore independent of the Wiener process W,1 in the stochastic differential equation
x5 = mW,‘ (see (3.2)). For the same reason the random variables ygo, n(e) and o are of
course also independent of W,!.

1/5
As we have the elementary inequality (E#) (E(H)HV* > (E%) (EH;) > 1, we
have, by Strong Law of Large Numbers

METT 1 1
lim —— _SZE( 5)2 454ZC>0 a.s.
el0 M(e) =1 = (H)) (H;) (E(H;)*)>/

for some constant ¢ > 0. (We can always assume that H; is uniformly bounded from below by a
1
(H;)>
Now we see that we can find some gg > 0 such that for all 0 < ¢ < g9 we will have

positive constant so that (E ) < oo and we can apply SLLN.)

Py, (T%(00) = (8")’k M(e)In(e) = M(e), a1 < 00) = |

for some constant x > 0.
This gives
Py, (T (00) > (8")°k M (e), Voo = 1 +8In(e) = M(e), 1 < 00)
= qo(yio =14 6|n(e) > M(e), x; < 00).
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Recall that we have 67 = x; mod2m = W) mod 27r. Using this, the independence of

T¢(o0)
T4 (0p), yéo, o and n(e) with W', and the above estimates we have, as 0 < & < &, that

Py, (05, € [01, 02, yg, = 1 +8In(e) > M(e), ay < 00)
o0
= fo Py, (T¢(00) € dr, yi, = 1+ 8|n(e) = M(e), a1 < 00)
x Pgy (W, mod 27 € [0y, 62])

o
= / Py, (T¢(0p) € dt, yf,o =14+38|n(e) > M), a; < 00)
(8")AM (¢)

x Py (W, mod 27 € [6), 62]).
Since we have the exponential decay

6 —0
P(W, mod 27 € [61,6]) — —=—

< Cexp(—Ar)

for some C > 0 and A > 0, we could estimate

[Py, (05, € 161,621, ¥5, = 1+ 8ln(e) = M(e), a; < 00)
0, — 6
2

< Cexp(—A") kM (g))

Py, (vs, = 1 +38In(e) = M(e), a1 < 00)|

for0 < ¢ < &g.
Notice that we have, by using Lemmas 3.3 and 3.5,

|Pq0(9§0 € [61, 611, y§0 =146 — Pq0(9§0 € [61, 02],
Voo = 1+8In(e) = M(e). a1 < 00)]
= [Py, (65, € [61.62], ys, = 1 +8|n(e) = M(e), ) < 00)P(n(e) = M(e), ) < 00)
— Pgy (62, € [01. 621, y5, = 1 +8n(e) = M(e), o < 00)|
+ Py (n(e) < M(e)) + Pygy (a1 = 00)
< 2(Pyy(n(e) < M(e)) + Py (o] = 00))
< 2(Pgy(n(e) < M(e)|ay < 00) + 2Py, (a1 = 00))

e8” e8! M(e)—1
<2(1—|1—max| = , —=
[ <u(8)+8(8+5”) —u(—5)+8(5+8”))]
u(dy +¢e8 —u(=98)+¢ed’
wW() +e6’ —u(—8)+¢eb
=2, 8,8,8, M).

+ 2max<

By the same argument we can estimate

6, — 0, 0, — 6
qu()(yio = 1 + 5) —

< (e, 8,88, M).

Py, (5, = 1 +8In(e) > M(e), a1 < o0)
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Summing up these estimates we have

6, — 0
2

< |Pg (05, € 101,601, y5, = 1 +8) — Pyy (05, € [01, 6021, y&, = 1+ 8ln(e)
= M(e), a1 < 00)

qu(eéo € [61, 62], yio =144 —

Py (35, = 1+9)

+ [Pyy (65, € [61. 021, 2, = 1 +8ln(e) = M(e), a1 < c0)
6y — 6
T o Py (5, = 1 +8In(e) = M(e), a1 < 00)’
6, — 01 0, — 01
+ > qu(yéo =148 — 7 qu(ygo =1446|n(e) = M(e), x; < 00)

<20(e,8,8,8", M) 4 Cexp(—AS")k M (e)),
as desired. The other inequality is established in a similar way. [
Combining Lemmas 2.7 and 3.7 we can have the following.
Lemma 3.8. For gy € G(8') and for some A > 0, k > 0 and C{, Cy > 0, there exists 59 > 0
such that for all 0 < ¢ < &g, for any 0 < 61 < 6, <21 we have
b — 01 1(0) — (=)
2 U(8) — u(=95)
< Crexp(—A(8")kM(e)) +202(e, 8,8, 8", M(e))
(8 —u0) + Cre
u(8) — u(=9)

0
Py, (02, € [61.621, y5, = 1 +8) —

= p(e), (3.22)

and
0, — 0 u(S) — w(0)
2 u(8) —u(=9)
< Crexp(—A©")kM(e)) + 202, 8,8, 8", M(¢))
%) — #(0) + Cae
uS) — u(=9)

Py, (05, € [01,02], 5y = —1 =)

= p(e). (3.23)

Now let us specify the asymptotic order of M(¢) — 00,8 = §(¢) — 0,8 = §'(¢) — 0
and 8" = 8"(¢) — O ase | 0. Since for 0 < ¥ < 1 we have the elementary estimate
l——)"=k(1+ 1 —=x)+ -+ (1 — k)" 1) < kn we can estimate

2e.8.8.8", M(s)) < 2|:M(8)'max (~ &8 L # )
70) + (0 +08") —i(—8) +e(B +08")

0S) + 88 —TH(=8) + 8
wW)+e8’ —u(=8)+¢es )|

We shall choose §” = §”(¢) « § and M (¢g) such that the requirements of Lemmas 2.6-2.8
hold. At the same time, we need

+ 2max<

(8"’ M(e) > In (3.24)

(@(8) — u(=8))?
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and

VI p— < @) — (=) (3.25)

u(d) A (—u(=9))

( 1 y yo— )2 1/5
To this end we let M(g) = In (%) and 8" = ( ”‘5)*”(*‘”ln(l;‘(a)*““‘” ) . At the same time

we keep our asymptotic order of choice of ¢, § and 8’ as in Section 2. This means that we need

1\\*? 1 1 HP PO
‘ <1“ (E)) o — o (ma) - ﬁ(—«») < O =

It could be checked that this is possible to make (3.24) and (3.25) to hold. We formulate this as a
corollary.

Corollary 3.1. Let qy € G(8'). Under the above specified asymptotic order we have, there exist
&0 > 0 such that for any 0 < ¢ < g9 we have
b — 61 u(0) — u(—9)

27 u(8) — u(—=9)
< C- @@ —u(=3)> (3.26)
h — 61 u(8) —u(0)

2 U(S) — u(—9)
< C- @) —u(=8)>". (3.27)

0
qu(eéo € [61, 62], yio =1+94)—

0
qu(eéo € [61, 62], ygo =—-1-6)—

Lemma 3.9. For any q € G(8') and for any p > 0 there exist &g = go(p) such that for any
0 < e < &g, forany f € D(A) we have, for some K > 0

B f ((q5,)) — f(r(q)] < K(@(8) — ii(—5))>. (3.28)

Proof. We have, using Corollary 3.1, that
[Eq f (m(qg,)) — f(m(g)| = |qu(9§O, 7 (¥g)) — fx(@)|

2
£(0. 0P (6%, €df, ys, = 1+38)

0

2
+ ) SO —OP O, € do.yG, = —1-8) — [(x(@)

~

1 (27 50) —u(=9)
E/O u(8) — u(—3)
1 T F(©S) — w(0)
2 Jo W) — u(—6)

+ K1 ((8) — 1 (—8))?
1 (2" 50) —u(—9)
27 /0 1(8) — u(=95)

£, 8)do

(O, =8)db — f(m(q)

(f(0,8) — f(0))do
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1 (2 () —u(0)
~ 5 ), m(f(o)—f(@,—8))d9+(f(0)—f(ﬂ(4)))

+ K1 (1#(8) — u(=8))*

(u(0) — u(—=8))(u(8) — u(0)) 1 2T £(0,8) — f(o)
u(s) — u(—9) ot Jo W) —u0)

<

do

+1f(0) = f (@) + K1 (i (8) — i(=5))

2
1 fio) —f~(0,—8)d9>
2w Sy w0) —w(=5)

< K@@(8) — u(—8))*

for some K| > 0 and K > 0. We have used the gluing condition (3.10) and our specified choice
of asymptotic order of §, 8" ande. [

Lemma 3.10. We have, as ¢, 8, 8’ are small, for qo € G(8), that

Eq, [ / e MIf () — Af (m(g))dt + e f(n(qil))} - f(n(qo))‘

0

< (U(8) — u(—8))>. (3.29)

The proof of this Lemma is essentially the same proof in Lemma 2.6 modified into a two-
dimensional version and we omit it.

Finally we would like to mention that our boundary condition given in this section also appears
naturally in other model problems. As an example let us consider the following system:

t

1
S= dWl,

i /ok(yf)Jre ! (3.30)

v = W2

Here A(e) is a smooth function on R that vanishes at 0 and is strictly positive in (0, 00);
W, and W2 are two independent standard Wiener processes on R. Let the process z£ = (x¢, yf)
on R x R, be stopped once it hits the boundary {(x, y) € R : y = R} for some R > 0. Let
0f = xfmod2r7. Letm : ' xRy — R? be the mapping defined by 7 (0, y) = (y cos @, y sin6).
For each fixed ¢ > 0, the process w{ = (67, y;) is a diffusion process on S! x [0, R] with
normal reflection at the boundary {(6, y) : y = 0} and is stopped once it hits the other boundary
{6,y) : y = R}. Let m{ = mw(wy) (i.e., we glue all points {(8, y) : y = 0}). The process m;
moves within the disk B(R) = {m € R? : |m|g2 < R} and is stopped once it hits the boundary.
In general, this process is not a Markov process. But we expect that, as ¢ | 0, this process w; will
converge weakly to a Markov process w; on B(R) with generator A and the domain of definition
D(A), defined as follows. The operator A at points (6, r) (we use polar coordinates, that is, a
point (x, y) € R? is represented by (r cos 0, r sinf)) with r # 0 is defined by

92 1 92
9, -
AR

Af(@,r) = ma—

f@,r). (3.31)

The domain of definition D(A) of the operator A consists of those continuous functions f
on B(R) for which Af(6,r) is defined and continuous for r # 0, the derivative in r being
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continuous, such that finite limit

af

lim —=—©®,r) (3.32)
0'—>0,r—0+ OF
exists;
lim  Af@,r) (3.33)
0'—6,r—0+

exists and does not depend on 6;

lim  Af(@,r) =0 (3.34)
0'—0,r—R—
and
2 ] af , B
lim L@, rdo =o. (3.35)
0o 0—=0,r—0+ ar

We define, for f € D(A), Af (0, R) as the limit (3.34) and Af (O) as the limit (3.33).

The weak convergence of w? to w; in Cjo,71(B(R)) described above shall be a result of fast
motion x; running at the local time of the slow motion y; on the boundary {(x,y) € R x R, :
y = 0}. The proof of this result shall follow the same method of this section.

4. A conjecture in the general multidimensional case

In this section we give a conjecture in the general multidimensional case. Consider the general
multidimensional problem (1.8), and for brevity assume that b(e) = 0. That is, the system has
the form

Va(g;) 1
2Mg) +e)?  Ag) +e

PR

q; =

Wi, ¢ =qecR’ 4.1

Let us work in a large closed ball B(R) = {g € R¥ : |glge < R} for some R > 0, i.e., the
process ¢ is stopped once it hits d B(R). Suppose the friction A(e) is smooth and A(g) = O for
q in some region G C B(R) while A(q) > 0 for ¢ € B(R) \ [G] (here [G] is the closure of G
with respect to the Euclidean metric in R¢). The domain G C B(R) is assumed to be simply
connected and to have a smooth boundary 0G.

Let € be a topological space consisting of all points in B(R) \ [G] and one additional point
0. The topology of € contains all the open subsets (in standard Euclidean metric) in the induced
topology of B(R) \ [G] and all the open neighborhoods of [G] in B(R) as the open subsets
of € containing o. Let us consider a projection & : B(R) — € defined as follows: for points
q € B(R) \ [G] we have m(q) = ¢ and for points ¢ € [G] we have m(g) = o. Under the above
defined topology for € the mapping 7 is continuous. Let §¢ = m(¢%) be a stochastic process with
continuous trajectories on €.

Our conjecture is about the weak convergence, as ¢ | 0, of §¢ to some Markov process §;
on €. Below we give our definition of the latter process but we point out that we are not clear
about the existence of it. Our generator and boundary condition for this process is more or less
in the spirit of martingale problems (see, for example, [3, Chapter 4]). To ensure the uniqueness
of a solution of martingale problems we need the existence of solution in a nice space of the
corresponding PDE with the specified boundary condition. We are not clear about this yet.
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The process ¢; is identified by its generator A with domain of definition D(A). For a function
f(@) on € that is continuous on € and smooth for § # o, [§|ge < R we define

VA@ Vi@, |
203(q) 202(q)
and at the points 0 and ¢ with |§|gs we define the values of Af as the limits of the values given

by (4.2) (assuming these limits exist). The domain D(A) is defined as the set of functions f such
that Af (g) = O for |[§|re = R, the generalized normal derivative

- . flg+n(g) — f(o0)
D@ = I  on @)

exists for all ¢ € G, where n(g) is the vector of the outside normal to dG, and u(q) is some
function defined in a neighborhood of dG with limg (g) i(g) = 0; and

Af(@ = Af(@), 4.2)

(4.3)

| pis@ioq =o. (44)
3G
Here do (q) denotes integration with respect to the surface area on 9G.

Conjecture. The process ¢¢ = m(q:) converges weakly in the space Cio 11(€) as ¢ |, 0 to the
process q; described above.

A further conjecture: we can define the function u as

u(g+én(q) = /08 X(q + sn(q))ds 4.5
for g € G and § > O sufficiently small.
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