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Abstract Cooperative behavior among a group of agents is studied assuming adaptive interactions.
Each agent plays a Prisoner’s Dilemma game with its local neighbors, collects an aggregate payoff
and imitates the strategy of its best neighbor. Agents may punish or reward their neighbors by remov-
ing or sustaining the interactions, according to their satisfaction level and strategy played. Whenever
an agent prefers to dismiss an interaction, the corresponding neighbor is replaced by another ran-
domly chosen agent, introducing diversity and evolution to the agents neighborhoods. Numerical
and analytical study shows the existence of a full-defective state coexisting with a highly coopera-
tive steady state. The latter equilibrium solution is composed mostly by cooperative agents, with a
minor population of defectors that exploit the cooperators. It is shown how the network adaptation
dynamics favors the emergence of cooperators with highest payoff. These “leaders” are shown to
sustain the global cooperative steady state. Also we find the surprising result that on average, the
average payoff of defectors is larger than the average payoff of cooperators, recovering the dilemma
at a macro scale. Whenever “leaders” are perturbed (e.g. by addition of noise), an unstable situation
arises and global cascades with oscillations between the nearly full defection network and the fully
cooperative outcome are observed.
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1 Introduction

The emergence of collaboration in a group of agents has been traditionally discussed in the past us-
ing the Prisoner’s Dilemma (PD) game (Weibull 1996). Axelrod and Hamilton (1981) showed how
cooperation may be sustained by reciprocity in a population of agents meeting repeatedly with a
certain degree of rationality. In evolutionary game theory, one general assumption is that players do
not have any preference with whom to play, thus they are randomly selected and matched. However,
in many social and economic environments this assumption does not hold and agents in fact display
repeated encounters with only a subset of a large population (Kirman 1999). This specific feature is
naturally modeled with the aid of a network, where economic agents sit and interact only with their
neighbors. This work will focus on the dynamics of the PD played on a network, with the attractive
feature that the network itself is allowed to adapt according to the strategy and satisfaction level of
the individual agents. Examples of other work using a network of interaction as a fundamental con-
stituent range from herd behavior and information dispersal in financial markets1, market-structure
modeling (Kirman 1993), and firm competition in an oligopoly (Ferrer, Ania, and Vega-Redondo
1999, Goyal and Joshi 1999).

Studies using PD games with fixed local interactions have shown that cooperation could be es-
tablished for a range of parameters, before defection invades the whole population (Nowak and May
1992, Nowak and May 1993, Lindgren and Nordahl 1994, Lindgren 1997, Huberman and Glance
1993, Kirchkamp 1995, Cohen, Riolo, and Axelrod 1999). However it is well known that in many
social systems individuals are continuously creating or suppressing interactions according to the
benefits of the relationship. One example occurs in scientific collaboration networks, where scien-
tists usually work in small groups of collaborations, and the relationships evolve under performance
and self-interest of the individual members.

This paper address the problem of how cooperation may be sustained when local interactions
evolve. Our results indicate that cooperation may be sustained as a result of heterogenous neighbor-
hoods which arise in the dynamical evolution. In particular, a PD game on an adaptive network is
studied, where cooperation can be promoted and sustained by local interactions and a network adap-
tation process. Our contribution follows the bounded rationality paradigm. This includes a limited
capacity to anticipate future opponents strategies, and in particular the network adaptation deals with
the following assumptions: (i) depending on the strategy played and a satisfaction criteria, every link
is evaluated for continuing or suppressing the interaction, (ii) individuals are not capable of com-
puting a priori the best response as to whom connect, and they instead rely on a random selection
of new partners, (iii) in the expectation of obtaining a benefit, individuals a priori always accept
the proposed new interactions with new neighbors, (iv) the total number of links in the network is
conserved. The latter point assumes a constrained resource environment, and introduces a limitation
into the possible network configurations.

The proposed game considers that each agent either plays cooperation (C) or defection (D) with
all its local neighbors, as prescribed by the interaction network. In other words, we do not take into
account memory and we label each agent as either a C- or D-agent. The strategy is revisited each
time step by imitating the neighbor’s strategy with highest aggregate payoff. This very simple strat-
egy update algorithm, already showed to promote cooperation in some region of the PD parameter
space2. The network dynamics considered affects only links between D-agents. We argue that these
links are ’disliked’ by both agents, so given a certain probability, one of the agents may exchange
the neighbor with a randomly chosen agent from the whole network. In other words, the network
adaptation drives unsatisfied D-agents to ‘search’ for other C-agents to exploit.

1 See for example Bannerjee (1992), Cont and Bouchaud (2000) or Eguiluz and Zimmermann (2000).
2 See Nowak and May (1992), Nowak and May (1993), Lindgren and Nordahl (1994), Lindgren (1997) and

Huberman and Glance (1993). Kirchkamp (1995) studies also a cellular automata representation and several
learning rules, and compares results from Nowak and May (1992) and Huberman and Glance (1993).
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We have established results on the existence and stability of steady states. By steady state we
refer to a state of the system where the network and strategies remain stationary. These states are
composed of chains of cooperators, with defectors only exploiting C-agents. In order to understand
the robustness of steady states, and the evolution of the network, we have also studied how the
perturbations affect these equilibria. We show how perturbations may actually grow, maintain or
destroy the chains of cooperators. These perturbations can lead to global oscillations between states
with a large fraction of cooperators and another state with a large fraction of defectors, or even a
complete all-defector state.

The emergence of global cooperative steady states is found to depend exclusively on the survival
of certain C-agents with maximum payoff in the network, which from now on we label C-leaders.
We establish conditions for the evolution of the payoff of C-leaders and wealthy C-agents which
is directly connected to the same network adaptation performed by D-agents. Interesting dynamics
arise in a certain region of parameters, where a competition between C- and D-leaders is observed.
A close study of this competition shows that there are certain perturbations which induce global
cascades in the system, where C-leaders may be destroyed. The asymptotic outcome of whole pop-
ulation depends crucially on the survival of C-leaders, and a full defective network is reached when
all C-leaders disappear.

With the aid of extensive numerical simulations we study for a wide range of networks and
PD parameters how cooperation performs. Previous results with fixed networks

�
, cooperation was

shown to dominate up to a critical value of the PD parameters, where defection invaded the whole
system. In our case, depending on the initial conditions, either the cooperative steady state or the
all-D network is always reached. One of the surprising result we find is that in general the average
payoff of D-agents is larger than that of C-agents, which also points in the direction that cooperation
is sustained mainly due to the C-leaders. Finally, we study the robustness of steady states by intro-
ducing exogenous perturbations, such as errors in the imitation of a neighbors strategy. We find that
these exogenous perturbations affect the survival probability of C-leaders. The network is robust up
to a certain noise threshold, after which a full defective outcome is reached.

The paper is organized as follows. In Section 2 we define the evolutionary network model. Sec-
tion 3 describes the formal analysis, including steady state solutions and stability, as well as a result
on the payoff evolution of C-leaders. In Section 4 we show numerical experiments describing how
a highly cooperative state is reached, topological properties of the asymptotic networks, a detailed
explanation for the large cascades observed for certain parameters and a robustness study when
exogenous perturbations are allowed. Finally in Section 5 we discuss our results and open problems.

2 The model

We consider a game where � agents play the Prisoner Dilemma on a network � . Each agent �
plays with a subset known as the neighbors, which will be allowed to evolve as specified below.
Each interaction among two agents is represented in � by an undirected link, and the neighbors of
agent � will be denoted by �������
	�� . We will consider random networks as a good representation of
social networks, where each agent has a different local environment of interaction (Amaral, Scala,
Barthelemy, and Stanley 2000). An important parameter of the network is the average connectiv-
ity � , which corresponds to the average number of links each agent has. We consider in general
networks where the total number of agents � is much larger than the typical connectivity � .
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Lets denote ��� the strategy of agent � , where ����� � corresponds to play Cooperation (C), and�����	� corresponds to play Defection (D). These will be referred generically as C-agents or D-agents,
respectively. The payoff matrix for a 2-agents PD interaction is:

C D
C 
��

 �����
D ����� ���
�

where ����
�������� , and ��������
 . For the remaining of the paper we take 
 � � �
�!�	��" � , and the
incentive to defect, � , is restricted to

� �	����� .
As discussed in the Introduction, we follow the bounded rationality paradigm. Agents are as-

sumed not to have the computational power to anticipate strategic moves of opponents (agents have
no memory), nor compute a priori the best agent to whom connect. Their rationality only allows
them to play the same strategy with all its neighbors, observe the aggregate payoff of its neighbors
and its strategy (from the payoff obtained), and whenever the agents changes opponents they rely on
a random selection of new partners. In this context we let the agents update both their strategy and
their local neighborhoods ������� by a very simple prescription. The game occurs in discrete time # and
each step is divided into three stages: (S i) every agent plays the PD game with its neighbors, (S ii)
every agent imitates the strategy of the best neighbor, (S iii) every agent applies a network dynamics
which adapts its local neighborhood.

We use a synchronous update, where all the agents decide at the same time their strategy and their
respective new neighborhood for the next time step. An alternative specification would correspond
to select each time step a single random agent, an perform the above steps with data corresponding
at that time of update. This is known as asynchronous update and is not explored in this work.

The first two stages are straightforward and follows (Nowak and May 1992),

(S i) each agent � plays a PD game with each neighbor using the same strategy � � , and collects an
individual payoff $%� for time # ,

$ � �&# �'�(� �*)+� 
-, � �/. � � � � )+� �0, � � � . )+� �0� � (1)

where � � is the local connectivity of agent � (number of links it has; it is also the cardinality of
������� ) and )+� is the number of C-neighbors of agent � :

) ��� 1243�5+6 �87 �
2 (2)

(S ii) each agent � revisits its current strategy by simply imitating neighbor’s strategy with highest
aggregate payoff. We introduce the imitation map 9 �����;: �=< � ,

9 �����0�?>�@ 	 � � � �BAC> �
D s.t. $FEG�IH%J�K243�5B6 �87 �L$ 2 ��$ � �MD (3)

which points to the agent’s � neighbor with highest payoff3. In the remaining of the paper we
will say that agent � is imitating from agent N if NO�P9 ����� . The discrete time # evolution for the
imitation rule becomes: ��� �&#Q, � �0�(�SR 6 �87 �*# � (4)

Agent � is said to be satisfied when 9 � � �T� � ; otherwise it will be unsatisfied and a neighbors
strategy will be imitated. Notice that this allows for agents to be conformists, which would cor-
respond to unsatisfied agents which imitate the same strategy they already have.

3 If there is more than one neighbors with the same maximum payoff other than agent U itself, then one is
picked randomly. If agent U has the maximum payoff then VLWXUZYQ[\U .
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A very simple strategy update was chosen in order to compare with previous results obtained
by several authors on non-adaptive networks

�
. In the literature other learning rules were explored.

Young (1999) studies a coordination game with local interactions, where a majority local rule seems
better motivated (a sort of local best reply model, Blume (1993)), in order to study the selection
of an equilibrium. Also Kirchkamp and Schlag (1995) discussed an evolutionary process where the
learning rule itself reproduces and mutates, in order to find the best learning rule for local interacting
agents.

The specification of how each agent adapts its neighbors is based on a discussion in Kirman
(1999). The first step in the evalution procedure takes into account a local satisfaction measure.
For this we allow only unsatisfied ( ���� 9 ����� ) agents to review their neighborhoods. The second
step involves a classification of neighbors depending on the expected payoff. An agent will have
an incentive to maintain an interaction with a neighbor if the payoff received matches the possible
maximum (given the strategy played); otherwise the agent will consider to dismiss the interaction.
An application of this argument to the three possible pairwise interactions is straightforward. Two
C-agents connected by a link will on each side try to maintain the interaction, because the payoff
obtained is the highest allowed by its strategy. On the contrary, two D-agents connected by a link,
receives the minimum payoff allowed by its strategy, so each agent will try to dismiss this interaction.
A C-agent and a D-agent connected by a link, will have opposite reactions. On one hand, the C-agent
will try to dismiss the interaction, while on the other the D-agent will try to maintain it. For the sake
of simplicity, we assume that this opposite reaction balances. Thus the dissatisfaction experienced
by a C-agent of being exploited by a defector, offsets the satisfaction of a D-agent for exploiting a
C-neighbor. In conclusion, given this assumption only unsatisfied D-agents reviews its interactions
with D-neighbors.

To complete the network adaptation, we assume that whenever an unsatisfied D-agents dismisses
a D-neighbor, it randomly selects a new agent from the whole network � and engages in a new
interaction. The selected agent always accepts the new neighbor, because a priori the unknown new
neighbor can improve its aggregate utility. Notice that D-neighbors do not contribute to the aggregate
payoff of C-agents. Therefore cooperators are insensitive to the number of D-agents they have or
receive. As a consequence, the total number of links (interactions) in the system � � ��� is conserved
throughout the whole dynamical evolution. The network adaptation is defined as a stochastic process
by introducing a new parameter � 	�� � � ��� which corresponds to the probability for an unsatisfied
D-agent to dismiss and find a new neighbor and introduces a time scale for the network evolution.

In summary, the network adaptation stage considered in this paper is:

(S iii) each agent � revisits its current neighborhood if unsatisfied ( ����	9 ����� ), by the following
Network Dynamics (ND): if � is a D-agent then break the link with other D-neighbor � � 	 �������
with probability � , and replace it by randomly choosing agent � � uniformly from the network � .
This rule will adapt the local connectivity for each agent. We have that,

�
	�� �*#+, � � � �
	�� �*# � .�� � ��	�
 �&#+, � � � �
	�
 �&# ��, � (5)

while the local connectivity of � remains invariant

� � �&#Q, � � � � � �*# � (6)

and only the set ������� changes by replacing � � <�� � . It is clear that this rule conserves the total
number of links, and thus the average connectivity � .

The above definition of ND allows unsatisfied D-agents be engaged in adapting their local neigh-
borhoods (� � � ) as long as they have D-neighbors. This adaptation corresponds to a form of
“searching” of other C-agents from whom to exploit a better payoff. If succeeded, this will increase
the aggregate payoff in the next time step, and below we discuss in detail the different scenarios
which may occur in subsequent time steps. On the other hand, C-agents are conservative in nature,
and as discussed above, they do not have an incentive a priori to endogenously adapt their neighbors:
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they may only accept new neighbors. Thus the network update considered establishes an asymmetric
behavior as long as �O��� .

We will restrict the use of “conformist” to unsatisfied C-agents imitating other C-agents. D-
agents are not conformists in a strict sense because they can change their neighborhood (when �\�� ). Finally, we remark that unlike other studies in adaptive networks, we do not allow an indirect
payoff due to the neighbors’ neighbors, as for example in (Watts 1999, Goyal and Joshi 1999).
Therefore we analyze the evolution based on strict first neighbors interactions.

3 Analysis

In this section we provide results on the organization and stability of the network, by having a close
look to the steady state solutions. These states arise in a dynamical evolution of the game whenever
�O��� , and corresponds to network configurations and individual strategies which remain stationary
in time. The multiplicity of these solutions is huge, for a fair number of agents. However they have
certain common features that we now reveal. Also, and very interesting, perturbations acting on them
may produce significant changes to the whole network. The more complicated dynamical aspects of
evolution will be dealt in Section 4, where numerical simulations will be helpful. Also in this section,
we introduce the notion of leaders, which is important in order to understand how the asymptotic
steady state may be reached: either a nearly full cooperative state, or a full defective one. These
results will be exemplified in Section 4.

3.1 Existence of steady states

As defined above, steady states will refer to equilibrium states where the network configurations and
individual strategies remain stationary in time. For the sake of clarity, lets first consider some simple
examples. Consider the steady state in the non-empty ( � ��G� ) adaptive (� �	� ) network composed
by only C-agents. In this case, agents are either satisfied if they have the maximum payoff of their
neighborhood, i.e. 9 ����� � � , or otherwise conformists (if they are unsatisfied) because they imitate
their same strategy from a better agent. In both cases, they will not change their individual payoff,
nor their local neighborhoods, for there are no D-agents in network � . In the other extreme, for a
network composed of only D-agent’s, the average payoff remains stationary in time, but the network
configuration and the individual payoff will be perpetually evolving4. From the above definition, we
will not consider the latter example a steady state, and we refer to this state as all-D network5. This
state is of interest for it is one of the possible asymptotic states the dynamics of the system may
reach.

Lets introduce the notion of chain of agents. Due to the strategy update we implemented, forward
iteration of the imitation map 9 ����� starting from any agent � , traces a connected component in the
network configuration with non-decreasing payoff. Thus a chain of agents starting at agent � and
length @ is defined as the subset > �B�
9 � � �M�S" "8�
9 E � � � � �M��9 E � � � � �MD 	 � , where $ R � � $ R�� with@ .C����� ��� � � , and ends whenever agent 9 E � � � � � is satisfied ( 9 E � � � �(9 E � � � � � ). In particular
we will discuss the behavior of chains of cooperators and defectors.

The above definition in terms of payoff suggests the introduction of other helpful notions. Lets
define a local maximum in payoff as the agent � with all its neighbors N 	 � � ��� satisfying $ �'� $ 2
with at least a neighbor N imitating from the local maximum, � � 9 �8N � . However, we distinguish as
a passive local maximum the extreme situation where none of the neighbors N imitates from agent
� : 	�N 	 ������� , � �� 9 �8N � and $TR 6 2 7 � $F�-� $ 2 . Finally a local minimum in payoff corresponds

4 Unless they all have the same number of neighbors so that everyone is satisfied, and ND does not apply; a
very unlikely situation we do not consider.

5 Notice this state is absorbing for once the system reaches this state, the dynamics itself cannot remove it.
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to an agent � such that all neighbors N satisfy $-� � $TR 6 2 7 . Figure 1 illustrates several chains of
cooperators, ordered vertically by their corresponding individual payoff of the agent. For example
the chain > � �
9 �����M��9 � �����M��9 	 � ��� D has attached also two passive local maxima (agent N and � ). Also the
figure illustrates the possibility of branching points, where two or more chains of cooperators meet.

D
C

C

local max.

C

C
C

D

C
C

C

Π

CC C

local min.

l(i)

i

. .
.j

l(l(l(i)))

l(l(i))

passive local max.

k

Fig. 1 Schematic diagram of several chains of cooperators Vertical axis corresponds to the total individual
payoff ��� . Each arrow denotes an application of the imitation map. Agent V � WXULY is a local maximum, D-agents�

and � are passive local maxima, while several local minima are also shown. Agent V 
 WXUZY is a branching point,
where two chains meet.

In general under an adaptive network where ��� � , non-trivial steady states may arise. Chains
of cooperators are a possible stable situation, for ND does not apply. On the other hand, a chain of
defectors is unstable, for ND applies on all its members except the local maxima. Thus in steady
states configurations defectors cannot form chains, and may only have C-neighbors. More specifi-
cally D-agents must be passive local maxima in order for their strategy not to be replicated by its
neighbor chains of cooperators, i.e. no agent imitates D-agents. In conclusion, the only stationary
situation in terms of strategy and network configurations leading to steady states involves C-agents
forming chains, where replication of C-strategy takes place, while D-neighbors do not form chains
and are passive local maxima. In particular D-agents may become solitary or ostracized6 (without
links).

As one can imagine, in general the multiplicity of chains is huge when the total number of agents
� is large. Denote �����2 the number of C-neighbors C-agent N has, while ���	�2 the number of C-
neighbors D-agent N has. A chain of @ ��� cooperators > �F� 9�
 � � �M��9 � � � �4��"8" ��9 E � � � � �MD must satisfy
the following ordering,

� ���R ��
 � 6 	M7 �	�
� �	�� , � � ���� � � ���R � 6 	M7 � 	B� 	 � � � @ .���� and
� 	 ���*9�� � � � � (7)

in order to be a stationary configuration.
In conclusion we have,

Proposition 1 A steady state exists only when D-agents are either passive local maxima which in-
teract exclusively to C-agents in a chain (satisfying Eq. (7)), or are ostracized (have no links).

In other words, a steady state is composed exclusively of a network of cooperators, and defectors
only exploit a number of C-neighbors satisfying Eq. (7). In a dynamical evolution for �T� ��� �

, the
imitation dynamics is much faster than the network evolution, and strategies equilibrate faster than
the neighborhoods. Therefore a useful indicator to control whether the system reached a steady state
for the numeric simulations in Section 4 is to monitor when the number of links between D-agents
vanishes.

6 See ?) for PD game with the possibility of ostracism.
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3.2 Stability of steady states

Once established the properties of the steady states, we investigate their stability. We will show that
particular perturbations will grow cooperative networks, while some other may trigger large scale
dynamics in the whole network.

(b)(a) (c)

i

C

C
C

DΠ

C
C

C
l(i)

j

D
C C

C
i

C

C
C

D

C
C

C
l(i)

C

j

D

C
C

i

C

C
C

D

C
C

C
l(i)

C

D
j

C
C

Fig. 2 Schematic diagram showing different types of perturbations to a chain of cooperators � . By the ND, D-
agent

�
chooses as new neighbor agent U establishing a new link (dashed line) at time � . The diagram illustrates

the payoffs computed at ����� after performing the stage (S i) and before (S ii): (a) � � W������4Y
	 �
� W������4Y ,
constructive perturbation, (b) �
��� ��� W������4Y�	�� � W������MY�	 � � W������MY , neutral perturbation and (c) � � W������MY�	
����� ��� W������MY�	�� � W������4Y destructive perturbation.

Consider a steady state, decomposed in a collection of chains of cooperators >�� 2 D . Stability can
now be studied on each component � 2 . For this, lets assume the network is “close” to a steady
state, where the total number of links between D-agents is close to zero, and most chains � 2 are in
equilibrium satisfying Eq. (7). By the network update, the remaining clusters of D-agents will change
their D-neighbors repeatedly “searching” for C-neighbors. These perturbations will affect not only
the defectors own payoff, but may produce changes in the local neighborhood of the new chosen
agent. Different situations may arise depending on the actual payoff of the perturbing D-agent, and
in which C-agent the perturbation falls.

In Fig. 2 we show a schematic diagram showing 3 different cases which may arise. Consider a
chain of cooperators � receives the new D-neighbor N at time step # after performing stage (S iii).
On time step #�, � the payoffs $%� �
$ 2 and $TR 6 � 7 are again computed at stage (S i) and their relative
value may fall in any of the possibilities shown in Fig. 27:

– The first situation corresponds to the payoff relation $ 2 �($F� (see Fig. 2a). If 9 �8N � � � , then at
the end of this time step the perturbation D-agent will become a C-agent by imitation. However,
if 9 � N � points to another D-agent, then we may guarantee only that there is a finite probability that
the D-perturbation becomes a C-agent. This occurs when in a number of time steps (depending
on � ) ND applies, and D-agent N changes 9 �8N � by a new neighbor which may either have a lower
payoff than N (so that � � 9 � N � in the next time step), or the new neighbor is a cooperator with
a larger payoff than N . In both cases, agent N imitates C-strategy in the following time step. Of
course, during these intermediate time steps the network also evolves, and again we can only
conclude a finite probability for the switch of strategy. In conclusion depending on the neighbor-
hood structure of the D-perturbation N , there is a finite probability that N becomes a cooperator.
We will refer to this type of perturbations as constructive, and is a primary mechanism to enlarge
the cooperator’s population.

7 Note that in the following, we assume the elements of  ;W � Y do not have any other direct link to the chain in
question � . However, the perturbation

�
may affect other chains as well, which in turn may affect � . To simplify

matters we do not discuss this effect, which will be negligible when we work with a large number of agents ! ,
and when we are sufficiently “close” to a steady state.
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– The second situation corresponds to the payoff relation $-R 6 �87 � $ 2 � $F� (see Fig. 2b). By a
similar argument as in the previous case, depending on the composition of � �8N � there is a finite
probability that D-agent N becomes a passive local maximum in a number of steps, so we will
refer to these perturbations as a neutral perturbation. If at time step # , � , 9 �8N � �?N , then with
probability one the perturbation N becomes a passive local maximum to N . This is a primary
mechanism where D-agents may survive, with a continual explotation to C-agents.

– The third situation corresponds to the payoff relation $ 2 � $TR 6 �87 � $ � (see Fig. 2c). This
corresponds to a destructive perturbations for D-strategy is replicated “downhill” (in payoff)
through the chain composed of ��� �P> � ��9 � � �����M�S" " D . By this mechanism one expects an increase
in the defectors population.

We have established that:

Proposition 2 Given an adaptive game (� ��� ), a perturbation at time # of a D-agent N to a C-agent
� belonging to a chain � � > " "8� � ��9 �����4�
9 � �����M�S" "8" D containing at least 2 cooperators, can generate
different outcomes depending on the payoff relation between $ 2 �*# , � � , $�R 6 � 7 �&#�, � � , and $ � �&#�, � � .

(a): (constructive perturbation) If $ � �&#;, � � � $ 2 �&#', � � there is a finite probability that in the
subsequent time steps the chain of cooperators enlarges by incorporating N . The probability is
one if 9 � N � � � at time step #B, � .

(b) (neutral perturbation) If $FR 6 �87 �*#+, � � ��$ 2 �&#Q, � � ��$T� �&#Q, � � there is a finite probability that
in the subsequent time steps D-agent N becomes a passive local maximum to � . The probability is
one if 9 � N � � N at time step #B, � .

(c) (destructive perturbation) If $ 2 �*# , � � � $TR 6 �87 �&#0, � � � $T� �&# , � � then with probability one
replication of D-strategy starts over a portion of the original chain > � �
9 � � � � �4��"8" D 	�� , enlarging
the defectors population.

A very interesting recursive property may appear in the destructive perturbations above. Lets
denote agent �%�(9 � � � at time step # . At time step #�,\� , agent � displays a considerable payoff jump,$ � �*#Q, � � � �4$ � �&#Q, � � �	$ � �*#+, � � , and must be considered a new perturbation to agent � . From
Proposition 2 it depends on the payoff of $%R 6 	M7 �&#�,C� � , $ 	 �*# , � � , $T� �&#�, � � , a constructive, neutral
or destructive perturbation may occur. If a constructive perturbation results for time step #+, � , then
part of the ’downhill’ destructive perturbations may be recovered into C-agents from � � . If a neutral
perturbation results, then agent � becomes a passive local maximum, and the original chain � ends
at the new local minimum at agent � . Finally if agent � becomes a new destructive perturbation to9 � � � , then this would have accomplished the interesting feature that destructive perturbations may
also travel “uphill” in payoff function. The above dynamical process is illustrated in Fig. 3, where
a schematic simulation is shown (together with the downhill replication process) and a sequence of
uphill perturbations reach the local maximum and completely destroy the original chain of cooper-
ators. Below we study conditions under which these perturbations may occur, and are found to be
very important in the development of cooperative steady states.

3.3 Leaders evolution

The network adaptation shapes the steady state network in a very heterogenous manner. We define a
C- or D-leader, as the agent which has the maximum payoff among their respective subpopulation.
Out of all the cooperators, the chains local maxima are candidates to be the C-leader. Likewise for
D-agents, among all the passive local maxima, there will be one with the maximum payoff and will
be the D-leader. We now describe an important property leaders share, responsible for the asymptotic
network evolution.

Let’s denote � [ � ] the C [D] agent with the maximum payoff in the whole system. Due to
the “searching” done by unsatisfied D-agents, it is clear that if the leaders payoff satisfy $��P�$	� ,(� , then any link received by leader � from any D-agent will be necessarily of constructive
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Fig. 3 Schematic diagram showing the evolution of an uphill destructive cascade. At time � [�� a D-agent
selects a C-agent as a new neighbor. The subsequent time steps show how the replication of D-strategy not only
goes downhill in payoff function, but also uphill. The latter perturbations are allowed if the payoff gap between
neighbor C-agents have are below a specific bound (see Eq. (12)).

type, following Proposition 2a. Then, for each perturbation received by the leader on time step # , the
leaders payoff evolves on the next time step as,

$ � �&#Q, � � � $ � �&# ��, � � $ � ��$ � ,�� (8)

In fact, this result also holds for all C-agents � which satisfy $-� ��$ � ,%� . We will refer to this subset
of C-agents as “wealthy agents”, and provided the condition is satisfied, its payoff (and connectivity)
is always non-decreasing in time.

However, an unstable situation occurs whenever the C-leader does not have the largest payoff in
the whole network. In this case the leader � has a finite probability of receiving a D-neighbor with a
larger payoff, which will produce a drastic event in the subsequent time steps: � and its associated
chains will replicate the D-strategy. As an extreme situation consider C-leader � leading a number
of chains of cooperators, and the rest of the population consists of D-agents. We can easily find a
lower bound on $ � such that the other C-agents have a chance of survival:

$ � ��$�� , � (9)

where � is the D-agent with minimum payoff among defectors. Otherwise all perturbation the C-
agents receive from the D-agents will be destructive. In this case, depending on the actual configura-
tion of the chain and the perturbations received, the evolution of the network has a large probability
of reaching the all-D network.

The above discussion establishes two bounds on the payoff of C-leaders for their development
and survival,

Proposition 3 Let’s consider � [ � ] as the C- [D-] agent with the maximum payoff among their
respective subpopulations and � as the D-agent with minimum payoff among its subpopulation. If
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�O��� and the network is not in a steady state then:
(a) If $ � �&# � ��$ � �*# � ,�� , each perturbation received by � at time step # will be of constructive type
and increases the leader’s payoff: $ � �&#�, � �/�?$ � �&# � , � . The same result holds for all C-agents
� , labelled “wealthy agents”, such that $ � ��$	��, � .
(b) If $ � �&# � ��$ � �*# � , perturbations received by all C-agents at time # will be destructive, and drives
the system towards the absorbing all-D network.

One important consequence of Proposition 3-a is that it provides conditions such that coopera-
tive leaders emerge in the dynamical evolution of the proposed game. In other words the payoff of
wealthy agents does not follow a random stochastic process; on the contrary, they have a nondecreas-
ing payoff in time provided the condition on leaders payoff is satisfied. Another consequence of this
result is that the wealthy agents are constantly absorbing perturbations of unsatisfied D-agents, thus
helps the network approach a steady state.

3.4 Example: Full capacity cooperators chain.

In the previous section we studied the dynamics of leaders; we now turn to a tractable example for
the dynamics of a chain. Consider a chain �-� > � ��"8"8" � ��� ��, � ��"8" " @CD (where for simplicity we have
renamed the agents such that 9 ����� � � , � , 	 � �� @ ) which is said to be with “full capacity”, i.e.
each C-agent � �� @ (except the leader) in the chain satisfies � ���R 6 �87 � ������ , � . Lets assume that
all chain members (except the absolute maximum @ ) have exactly � passive local maxima D-agents
(exploiters), and denote by

� � � ���� the number of C-neighbors the C-agent � has. We can now
study in some detail how after a destructive perturbation acts on agent � , a new constructive, passive
or destructive perturbations may be produced as a function of the parameters �Z���
� � , and the integer
pair � � � � � .

Consider that at time # any of the � exploiters of � receives a perturbation such that Proposition 2-c
holds. At time # , � , agent � becomes a D-agent with a payoff $ � �&#�, � � � � � , �!� . Now the condition
that � becomes a new passive local maximum to agent �Q, � � 9 ����� is

� ,��-�($ � �*#�, � � � � , � .
This is true for the interval of � defined by,

� � � �� � � , � . � �� ��� � � , �/. � �� � � � � �� (10)

In Fig. 4a we show the locus of � � � �� as a function of � for different pairs of integers � � ��� � . The
region in between the parallel lines corresponds to where Eq. (10) is satisfied, and therefore the
perturbation generates a new passive local maximum (P in Fig. 4). Below this region, we have
constructive perturbations (denoted by C), where after Proposition 2-a agent � becomes again a
C-agent after some finite steps. Above the region P, we have destructive perturbations (D in Fig. 4),
where the D-agent � becomes the best neighbor of �', � , thus becomes a perturbation satisfying
again Proposition 2-c. Then on the next time step (and for the special assumption of a chain in full
capacity), agent �Q, � satisfies the condition of a destructive perturbation on agent �B,�� , and so on
until the chain is completely destroyed.

Another alternative scenario occurs if the original perturbation on � is passive, for if � � � the
new chain is not in a steady state. The “search” done by � and its � D-neighbors, will gradually
improve the payoff of � , until it becomes a destructive perturbation to ��, � 8.

Another way to illustrate how vulnerable are full capacity chains is to fix � and � , and study from
Eq. (10) the possible

�
’s which give passive perturbations,

� � �L��������� � � � . � �� .�� � � �
�/. � �� .�� � � � �L��������� � (11)

8 This is true when �
� 

�
��� 	���		� � �� ��� ; for 
�	 � this cannot happen in a PD game above defined, with

���
����� .
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Fig. 4 Stability diagram for local perturbations: constructive (C), passive (P) and destructive (D) perturbations.
(a) Locus of � ��� �� � 
 in the PD parameter space W ��� � Y . (b) Locus of � � � 
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�Y in terms of incentive to defect � .
The curve corresponding to 
;[ � case falls very close to the 
'[ � case (

� [ ��� � ).
Table 1 Cooperator chains with gaps which inhibit uphill perturbations. For this example we took

� [ ��� � , and
a fixed number of 

	���
�� [�� passive local maximum.

� � 
�
� � 
�
� � 
 � 
�
� ��� � 
�
� ��� � 
�
� ���
1.55 4 7 11 17 26
1.55 5 9 13 21 32
1.55 6 10 16 24 38
1.75 5 10 17 29 51
1.95 5 11 20 40 77

Figure 4b shows the dependence of
� � �Z���
� ��� � as � is increased, and shows how vulnerable to de-

structive perturbations “full capacity” chains are.

3.5 Payoff gaps and protection to leaders.

The previous example shows that chains with a small payoff difference between consecutive agents
in the chain (e.g. � and 9 ����� ), are easily wiped out by uphill perturbations. In order for steady states to
become more robust to these perturbations, the chain must develop “payoff gaps”, where $ R 
 6 � 7��$ � . More precisely, consider a perturbation reaches agent � and in order for an uphill perturbation
not to develop the payoffs must satisfy:

$TR 
 6 �87 ���M$F� , � � � �� (12)

before receiving the perturbation. For the purpose of illustration we show in Table 1 examples of
‘minimal’ chains which satisfy Eq. 12 and uphill perturbations are inhibited, where we have assumed
a fixed number of passive local maxima � � � ����� � , and different values of � . The values were
obtained by iterating the function � ���4, � � ���L����� �M,�� �� (where �"!� is the largest integer greater than
! ). Clearly these minimal chains which do not allow uphill perturbations have payoff gaps which
increase for larger � . Thus an important conclusion is that in a dynamic evolution one expects uphill
perturbations to occur more frequently for larger � .

The above characterization is important because we may now distinguish those ’dangerous chains’
such that their payoff gaps do not inhibit uphill cascades and reach the local maximum or C-leader.
A C-leader is ’protected’ when all its associated chains are not dangerous. Notice that whenever the
C-leader replicates the D-strategy, a large multiplicative effect occurs, for all the chains connected
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to the C-leader will replicate by downhill perturbations the D-strategy. It is clear that this will give
origin to a large cascade affecting large portions of the whole network (see Section 4.5).

A closer analysis of the network dynamics reveals a mechanism which reduces the number of
dangerous chains and provides protection to the C-leader (and possibly C-local maxima). Given the
payoff of the D-leader � , on each chain in the C-cluster lets focus on the particular agent ��� such that
the payoffs of agents 9 ����� � and 9 � ����� � satisfies,

$TR 
 6 ����7 ��$ � ��$TR 6 ��� 7 (13)

Consider only perturbations which arise from unsatisfied D-agents which do not belong to the C-
cluster, i.e. these perturbations which do not arise from an uphill process. It is straightforward to
show using Proposition 2 that agent 9 ����� � may only receive neutral perturbations, while 9 � ����� � the
perturbations are only of constructive type. Thus the payoff gap

� �*9 ����� � � � $TR 
 6 �	� 7 . $�R 6 ����7 will
be nondecreasing in time, for this payoff level of � . Note that the payoff of � fluctuates in time, thus
this effect will increase payoff gaps of different pairs of agents. The precise condition for a chain to
become inmmune to an uphill cascade, corresponds to Eq. 12 with � � ��� .

On the other hand, if the chain is not protected and an uphill cascade develops, then on the next
time step there is a finite probability that a new uphill perturbation occurs. In particular agent � �
becomes the new D-leader and a new ��� agent must be selected on each chain of cooperators. In the
numerical examples in Section 4.5 we will show this process in action. We summarize these results
in:

Proposition 4 Suppose there exists a C-local maximum � with a cluster of agents forming chains
of cooperators. Suppose that the D-leader � satisfies $ � � $ � , � , then for each chain in the
cluster there exist two agents ��� and 9 � ��� � which satisfy Eq. (13). Then the payoff gap of the chain� �*9 � ��� � ��� $TR 
 6 � � 7 . $TR 6 � � 7 is nondecreasing function in time, whenever the payoffs of agents ���
and 9 � ����� � satisfies (12). Under this conditions the mechanism effectively reduces the number of
dangerous chains in the cluster by one.

The application of the above result to each dangerous chains connected to the C-leader, may
effectively protect the C-leader from uphill perturbations. A consequence of this result is that only
when all C-local maxima in the network are protected the network will reach surely a cooperative
steady state, for there will be an invariant number of wealthy C-agents $ � � $ � ,(� which will
absorbe continuously constructive perturbations and drain the total number of perturbations. Clearly,
the above statement provides sufficient conditions such that a steady state may be reached; in com-
puter simulations a steady state may still have dangerous chains which have not been exploited by
uphill perturbations.

4 Numerical simulations

We will now address by the use of computer simulations how the dynamic model evolves in time,
and the central question of how cooperation performs in such an adaptive environment. Our results
show that cooperation emerges as a steady state for the whole range of

� �(� �G� and all networks
studied. Also, surprisingly, the average payoff of defectors is larger than that of cooperators. This
points to the existence of leaders, which have a very important role in determining the asymptotic
evolution in time of the system. The main parameters in this investigation will be the incentive to
defect � , the network adaptation rate � , and the connectivity of the network � .

The statistical measures we studied have been

– the fraction of cooperating agents (C-agents), denoted ��
'� �
������ � � � �
� � .
– the probability of having a link between two C-agents, � ��� , between a C-agent and a D-agent,
� ��� , and between two D-agents, � ��� . These quantities satisfy:� � � ��� , ��� ��� , � ��� (14)
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Finally, in most simulations we took � � � ��� agents, and started with an initial � " � � fraction of
C-agents randomly distributed in the network � . Any initial fraction of C-agents above this value
was observed not to influence the final outcome. Of course if too few initial cooperators are present
in the network, the C-leader may not be wealthy enough to promote cooperation, and the final state
is an all-D network (see section 3.3). Also all time series have been evolved during an initial ��� time
steps without network adaptation (nor indicator measurements), to allow for a transient behavior
due to the random initial distribution of strategies. The starting network is random: � �-��� links are
distributed randomly among the � agents in the network.
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Fig. 5 (a) Time series of fraction of cooperative agents ��� . (b) Corresponding time series of the different
links probabilities: two C-agents (� 
�
 ), a C and a D-agent (� 
�� ), and two D-agents (� ��� ) having a link.
(c) Distribution of C- and D-links for the steady state at T=800. (� [ ��� ���	� , � [ � � 
�� , � [�� ).

4.1 Temporal evolution and steady states characteristics

A typical time series evolution of cooperation fraction � 
 is displayed in Fig. 5a. First notice that the
cooperative fraction increases on average steadily, until most of the network agents are cooperative.
Computation of the density of all the possible links among agents, reveal that the number of links
between D-agents, decreases also on average steadily. The steady state is reached at 
(����� � when
there are no links between D-agents (� ��� �?� ) and the chains of cooperators satisfy (7), as Propo-
sition 1-a shows. On the other hand the number of links between C- and D- agents is low (most of
the time below 20 %). Therefore the structure of the steady state network is composed by chains of
cooperators together with exploiting D-agents.

A closer look at the distributions of links corresponding to the steady state is shown in Fig. 5c,
which reveal differences in how C- and D-agents connect. In general one obtains an exponential
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Fig. 6 Time series of fraction of cooperative agents ��� . (Bottom) Corresponding time series of the different
links probabilities: two C-agents (� 
�
 ), a C and a D-agent (� 
�� ), and two D-agents (� ��� ) having a link.
(��[ ��� � � , � [ � � � � , � [�� ).
decrease in the number of links between C-agents with C-agents (C-C links), while D-agents exploit
a narrow distribution of C-agents. Notice also that the maximum number of links C-C links may
become several times the average connectivity � , and there is approximately 10% of solitary D-
agents without links at all.

Extensive numerical simulations reveal that there are two types of temporal evolutions in our
model. For approximately �-� � " � � the evolution is characterized by a roughly steady increase in
� 
 (as shown in Fig. 5a), a relatively constant � � � , while � ��� decreases on average monotonously
until complete extinction. On the other hand, when � � � " � � some runs display global oscillations in
the fraction of cooperators. In this case, � ��� , � ��� and � ��� are coupled together, and follow always
the trend displayed in Fig. 6. The figure shows a typical time evolution where several large global
cascades developed, before settling into a cooperative steady state. The number of large cascades
may vary significantly from run to run. The final outcome of the above temporal evolution may
either be a cooperative steady state, or the all-D network. The origin of these large cascades and
the asymptotic outcome relies on a strong interaction between C- and D-leaders, and a detailed
discussion is delayed up to section 4.5.

4.2 Cooperation enhancement

We now characterize with numerical experiments how cooperation performs asymptotically in time
for various values of incentives to defect � , networks adaptations � and connectivity � .

Figure 7 displays the results of the fraction of C-agent ��
 as a function of the incentive to defect� . The experiment was runned for ��� random realizations, and a maximum time of integration of

 � � ��� � time steps. Given the network adaptability ��� � " � chosen, the total time of integration
was sufficient in order for the system to reach either a steady state, or the all-D network. As before, a
steady state was found whenever the links between D-agents disappeared (� ��� �	� ). To characterize
solely the cooperative steady state for � �?� , we did not include in the statistical average of Fig. 7
those runs reaching the all-D network. The � 
 � � absorbing state is present in the whole range of� , and our results show that depending on the initial condition, the system may reach either of them.

Numerical simulations with different network connectivities � , does not change the general
behavior of the fraction of cooperation. For � �(��" � the average cooperation is over 94% for � � � � ,
89% for � ��� , and 75% for � ��� for ���	� . We also tested regular lattices as initial networks, as
those studied in Nowak and May (1992). The resulting final network was random, and no trace of the
initial regular lattice was observed: e.g. comparison of the average asymptotic value of � 
 starting
with a regular first neighbors lattice was statistically insignificant to that of starting from a random
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Fig. 7 Fraction of cooperation � � as a function of � for � [��	
�� ��� � ��� and ��[ � � � . The filled symbols indicate
that all the averaged runs reached a steady state. The non-adaptive case �F[ ����� [ � (dashed line) seldomly
reached a steady state, and the average was performed on all final conditions, including all-D networks. The
maximum integration time was � [ � � � � time steps and 50 random realizations for every point.

� � � lattice. For a network adaptation � � � " � , cooperation was enhanced and the difference
between � ��� and � � � � was reduced to become nearly identical at � � � .

On the other hand, for smaller values of � , the network adaptability occurs less frequently, and a
larger integration time was required to reach a final state. Making numerical simulations with a fixed
integration time 
 � 
 � , and performing an analysis of the average value of ��
 � 
 � � as a function of
� , shows a continuous crossover from the high cooperation level found in cooperative steady states
to those found in non-adaptive networks � �(� .

For comparison, results on a random non-adaptive networks (�\�P� ) is also included in Fig. 7.
Our results are in agreeement with those obtained by other authors9: the fraction of cooperation
decreases as � increases, up to a critical � � where defection always dominates. As long as there is
a single D-agent, for �%� � � the system asymptotically goes to the all-D network. For � � � and�!� � " � we have obtained an approximate � ��� � " � � .

This marks a strong contrast between adaptive and non-adaptive networks. In the latter case
partial cooperation is found up to a critical � � , after which cooperation disappears. The former
case displays an enhanced cooperation throughout the whole range of � , which coexists with the
absorbing all-D network. In the case of non-adaptive network D-agents can get a larger profit only
at the boundaries where they meet C-agents to exploit (Nowak and May 1992). By enumerating the
finite neighborhood configurations possible at the boundary of C- and D-agents in regular networks,
one may find a lower bound on � such that D-strategy is replicated by the boundary C-agents (thus
the D-agents advances and invades a cluster of C-agents). With the adaptive network considered
here, clusters of D-agents tend to dissapear and only D-agents exploiting a large number of C-agents
is able to replicate D-strategies.

9 (Nowak and May 1992), (Szabó and Töke 1998) used regular lattices but not a strict Prisoners Dilemma
game because they considered the PD parameter

� [ � . In this case the one-shot game does not have a unique
Nash equilibrium. Despite this, the fraction of cooperators is analogous to the results obtained in Fig. 7.
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4.3 Wealth distribution

Although cooperation in steady states is highly enhanced throughout the network, we find an uneven
wealth distribution among agents. The surprising result is that the average payoff of D-agents in a
steady state is found to be larger than C-agents, and increases with larger � .

A comparison is illustrated in Fig. 8, where the wealth distribution for a low and a large value
of � is shown. This is a specific consequence of the selective adaptability of the network, and does
not occur with fixed and regular neighborhoods as those studied in previous works (Nowak and May
1992, Lindgren 1991). The network adaptation favors D-agents to search for C-agents to exploit,
until they become satisfied (or become C-agents). Once in steady states, D-agents are passive local
maxima, and have reached the maximum payoff allowed by its neighborhood. C-agents, do not have
such mechanism and only those agents with sufficiently large payoff may also increase its payoff (by
Proposition 3). The overall effect is that in general we observe that D-agents are wealthier than C-
agents. In other words, our numerical findings points that with network adaptability both populations



18 M. G. Zimmermann and V. M. Eguı́luz

of agents may be better off in a steady state: C-agents may become more numerous, but on average
poorer than defectors.

More detailed numerical simulations show that the unevenness in wealth distribution occurs
in particular in the region of incentive to defect � where Nowak and May obtained only partial
cooperation. As a measure of uneven wealth distribution, consider the computation of the average
payoff for C and D agents at steady state, labelled $�� and $�� , respectively. Figure 9 shows how the
average over different realization of $�� . $�� behaves as a function of � . In general we find that on
average defectors have a better profit than cooperators. For small � �(��" � � �
� " � (slow convergence to
a steady state) the uneven wealth distribution is observed for the whole range of � . For � � � (very
fast convergence to a steady state) the result holds for most of the range of � . There seems to be a
relation between the speed a steady state is reached and the possibility of D-agents to improve on
average their payoff past their C-agents rivals.

4.4 Leaders and topology of cooperators clusters

The uneven wealth distribution found in the previous section, features a novel result for standard
evolutionary game theory. A priori one would end in a contradiction in our model, if one would
apply the common assumption that strategies with average highest payoff tend to dominate the whole
population. On the contrary, we find that the sustainability of our networks depends crucially on the
payoff relation of a minor number of agents, and these are precisely those agents with maximal
payoff on each subpopulation. In this section we present more detailed numerical results, which
reveal some other leaders properties.

An illustration of the maximum payoff cooperators and defectors may reach in a steady state is
shown in Fig. 10. We have performed a numerical study varying the incentive � , with fixed �O� � " �
and � � � , averaging over

� � runs. We find a steady growth with � for the maximum payoff of both
C- and D-leaders. Also, due to the imposed conservation of the total number of links in our model,
the maximum payoff acquired by C-leaders depends on the average connectivity � of the network:
for large values of � , C-leaders may acquire larger payoffs.
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Fig. 10 Payoff of C- and D-leaders as a function of � . (� [ � � � , � [�� , averaged over 30 runs).

The structure of the network changes as a function of � at steady states. On the one hand, we have
computed the number of C-local maxima which are all candidates of being C-leaders. Figure 11a
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shows the results. For low � there is a large fraction of competing local maxima in the steady state,
while for large incentive � the number reduces drastically reaching approximately �(� � C-agents or
roughly � " � �

of the whole network. On the other hand, we have measured the relative size of the
cluster of the agents connected to the C-leader as a function of � . Figure 11b, shows that for high� approximately half of the population is associated with that of the leaders cluster. These results
indicates that for larger � , the structure of the network depends very strongly on the robustness of
only a few local maxima with a very large payoff, and the C-leader dominates at least half of the
C-population.

A typical network structure may be obtained by displaying only the links corresponding to the
neighbors of C-agents from which they imitate. Figure 12 offers such view. The local maxima are
observed to lead large clusters of C-agents. It is clear that an exogenous perturbation flipping the
strategy of any of the local maxima will result in a large dropout of cooperation in very few time
steps. This will affect of course other chains due to the links not shown in Fig. 12. Thus the vulner-
ability of the network to stochastic perturbations is dramatically increased for large � .

Finally, in the discussion on chains robustness (Section 3.5), we argued that in order for uphill
perturbations not to occur, the “payoff gaps” between neighboring agents had to be sufficiently big
(see table 1). A closer look at the resulting chains on any particular steady states reveal that in
general “gaps” are very frequent and large. In Table 2 we reproduce the payoffs for several chains
on a particular steady state. The results show that indeed at steady states gaps for agents with high
payoff develop. In the next section we will relate this result with the occurrence of avalanches and
large cascades.
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Fig. 11 Leaders characteristics for � [ � and �O[ ��� ��� � � � � . (a) Distribution of number of maximum local
maxima at steady state. (b) Fraction of agents which belong to the C-leader cluster ( � [ � , averaged over 30
runs).

4.5 Leaders and global cascades

We now turn to a detailed discussion of the role of leaders in the global cascades described above. As
before, we denote the C-agent with maximal payoff by � , while the D-agent with maximum payoff
by � .
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Fig. 12 Partial network displaying only C-agents and the links corresponding to the evolution of the imitation
map VLWXUZY for each agent. The most connected agent corresponds to a C-leader. Agents without a link have been
withdrawn ( ! [�� � ��� � [ � � 
 � � ��[ ��� � ��� � [�� ).
Table 2 Examples of chains of cooperators for � [ � � � � .

� ��
�
� ��
�
��� ��� ��
�
� 
 � ��� ��
�
��� � ��� ��
�
� � � ���
1.55 7 12 15 21 37
1.55 5 13 16 24 38
1.55 5 13 21 26 38
1.55 9 14 17 32 38

Proposition 3-a showed how the payoff of a C-leader is a nondecreasing function of time, as
long as it is larger than the payoff of � . Figure 13 illustrates a numerical simulation where the
(rescaled) payoff of the C- and D-leaders are shown along with ��
 as a function of time, where
several large global cascades developed before settling into a cooperative steady state at 
 � � ��� .
The simulation illustrates the leaders payoff increase on each period where $ � ��$ � , � . Moreover
we find that whenever $ � � $	� , the maximum [minimum] of � 
 is approximately reached if $ �
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increases [decreases]. Thus destructive perturbation dominate when $ � ��$ � , and may even affect
the maximum C-agent; see for example at 
 � � � � , where a drop of $ � is observed. It remains to
be explained what is the mechanism by which a D-leader may increase its payoff past a C-leader?
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Fig. 13 Time series of � � and the rescaled maximum payoff of C- and D-agents. ( � [ � � � � , ��[ ��� � � , � [ � ).
To answer this question we performed a close inspection to the evolution of a D-leader. Our

results show that it is the occurrence of uphill perturbations on a chain of cooperators connected
to the C-leader, which allows in very few time steps for a D-leader to increase its payoff past the
C-leader. As discussed in Section 3.5, uphill perturbations are inhibited if the payoff “gap” between
C-agents in a chain is sufficiently large (see eqn. (12)). This boundary where uphill perturbations are
inhibited increases linearly with � , thus for large � these perturbations will appear more frequently.
In accordance, we have found from numerical experiments that for �O� � " � � and �(� ��" � � large
global cascades could easily be observed, and it became easier for larger � .

Consider a chain of cooperators whose local maximum is the C-leader and the whole chain
allows the development of uphill perturbations. Alternatively the discussion is also valid for a chain
associated to a local maximum with large payoff. As a D-agent perturbs this chain at one point,
uphill perturbations will create a “wave” of new D-agents moving along the chain with larger and
larger payoff (see for a schematic simulation Fig. 3). At some point, the payoff of these newly
created D-agents will become so large that they will effectively become an uphill “wave” of new
D-leaders. This phenomenon is visually observed in Fig. 13, where at 
 � � ��� the slope of the
D-leader’s payoff changes abruptly. Also note that the maximum payoff attained by a D-leader at
any oscillation is approximately �M$ � , which occurs when the C-leader � is perturbed by an uphill
perturbation becoming a D-leader. Whenever a C-leader is perturbed, then a new C-leader with less
payoff is selected, as for example at 
 � � ��� in Fig. 13.

Once uphill perturbation affect a C-leader (or a local maximum with a similar payoff), downhill
perturbations will start. This will generate a large global cascade replicating D-strategy on all the
remaining chains associated to this local maximum. Unlike the uphill perturbations which occurs at a
rate proportional to the network adaptation � , this process occurs deterministically on every time step
until the whole cluster of C-agents disappears. Also, the evolution of the D-leader follows closely
the rapid decrease of the fraction of cooperation. On each time step of the downhill replication of
D-strategy, there is a D-leader � �&# � which will have a lower payoff than the D-leader at the previous
time step � �&# . � � . This occurs because at time # , the previous D-leader replicated its strategy to
all its C-neighbors, reducing completely its payoff. Thus the payoff of D-leaders decreases steadily$	� �&# � ��$	� �&# .�� � until a new D-leader from another chain is selected.

The subsequent time steps after the leaders cluster replicates D-strategy depends on the network
structure left by the global cascade. If another C-leader exists with a payoff such that $ � ��$	��,�� ,



22 M. G. Zimmermann and V. M. Eguı́luz

then cooperation may be recovered and the time series of � 
 shows a minimum. Otherwise, the
C-leader may be affected by more destructive perturbations driving it towards the payoff lower
boundary (Proposition 3-b) where C-chains may survive. This may drive the whole C-population
to extinction, reaching the full defective state.

If the fraction of cooperation reaches a minimum, cooperation may build up again. However we
find that the number of oscillations is finite, and the system either reaches a steady state of the all-D
network. We have already described two mechanisms by which global cascades will be hindered and
a steady state may be reached:

(a) we have already seen in the discussion after Proposition 3-a, that the existence of “wealthy”
C-agents such that $%�!� $ � ,(� , will absorbe a number of constructive perturbations, which
effectively decrease the number of links between unsatisfied D-agents.

(b) by Proposition 4 the payoff gaps for all wealthy agents is nondecreasing, making it possible to
‘protect’ the C-leader from uphill perturbations. Therefore the number of “dangerous” chains
which favour uphill perturbations right up to the C-leader decreases.

Clearly from the above discussion, both effects disappear whenever $ � � $ � , and the “pro-
tection mechanism” to C-leaders from uphill perturbations ceases. If a dangerous chain is perturbed
then large global cascade is ignited, which in very few time steps affects a large fraction of the whole
network. On the other hand, if “protection” of the C-leader was guaranteed, then there would be no
dangerous chains to perturb. In this case, the maximum attainable payoff the uphill perturbations
may reach without affecting the leader is also $ � � $ � . An example of this is observed in Fig. 13
at 
 � � � � , where the perturbation did not affect the C-leader at all, and the size of the cascade
was small. By mechanism (a) above, the network reached a steady state by a steady reduction on the
available unsatisfied D-agents links.

We have performed several other computer simulations to visualize different dynamic evolution
of the network for various values of � and � . For small values of the adaptability parameter � , as
shown in panel (a), the typical time for the network to reach a steady state is very large, and the
leader � increase its payoff very slowly. The fraction of cooperators increases on average as the
leader increases its number of links, and only small cascades are shown. In this case, the network
has many local maxima, and the cascades do not affect a large portion of the network.

For a higher value of � , the structure of the network has fewer local maxima, and large cascades
are possible. Panel (b) shows that the fraction of cooperation grows steadily, and suddenly when an
uphill perturbation wipes off the cluster, most of the network is affected. This particular run also
illustrates how even after having a large $ � the asymptotic solution is the all-D network. The key
factor to sustain cooperation is to have several “independent” local maxima, with large payoff.

A very interesting situation occurs in panel (c) at # � � � � , where the network is composed
of mostly unsatisfied D-agents together with a very wealthy leader � (which at least has sufficient
neighbors to keep up its payoff). Note how the leader is able to increases its number of links by the
intense (unsuccessful) “searching” done by D-agents, and by # � ����� the fraction of cooperators
also increases. This recovery is a clear example of the importance of a wealthy leader, which enables
a full cooperative final outcome. Also note that small size uphill cascades for # � � ��� did not reach
the C-leader and wealthy agents just absorbed all the unsatisfied D-agent links.

4.6 Noise and errors

In typical evolutionary game theory studies, one is interested to contrast the main results of the
original game to those from another perturbed game, which takes into account random variations of
the assumed rationality, i.e. errors are possible.

To this end we have modified our model to account for two different types of noise. The first type
assumes the imitation process is not perfect and there is a probability ��� � � that the opposite strategy
is imitated. The second type of noise consists of taking at each time step a fraction � ������� of agents
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Fig. 14 Time series of � � and the rescaled payoff of the cooperator leader ( ��� ) and the D-agent with maximum
payoff ( ��� ). (a) � [ ��� � � � , �0[ � � ��� , (b) ��[ ��� ��� , � [ � � � � , (c) ��[ ��� ��� , � [ � � � � ( � [ � ).

and randomize their strategies. Thus on average there is a probability � ������� that the agent switches
spontaneously its strategy.

In both cases we find that for small � � � � or � � � ��� there is a region of the incentive to defect� where cooperation is sustained, but now there is a critical value � � where defection sets in. The
nature of the transition is that these perturbations affect those agents with highest payoff, which are
known to sustain cooperation. Also we have seen that after a large cascade, the cooperative state may
be recovered if there is a C-leader with sufficiently large payoff. The speed at which the cooperative
state forms depends on the network adaptation rate � and the noise intensity, which introduces further
randomness. Therefore, there is always a sufficiently strong noise intensity which perturb most C-
local maxima before they ever regenerate, driving the system to the all-D network.

We display in Fig. 15 two time series of � 
 and the payoff of the maximal C- and D-agents,
showing the two possible asymptotic states. Both panels show how the C-leader is affected by the
noise perturbations, and new C-local maxima take its place. In Fig. 16 we display how the fraction of
cooperation changes as � is increased for fixed values of the � � � � and � � � ��� . The value of the sharp
transition depends on that of the chosen noise intensities.
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Fig. 15 Time series of � � , and rescaled maximal C- and D-payoff where the imitation has a probability �������+[
��� � � of making an error copying the strategy at each time step. (a) � [ � � 
 � , (b) � [ � � � � . ( � [ � , ��[ ��� � � ,� [ ��� � ).
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Fig. 16 Fraction of cooperation vs. � for different types of noise. ��� � � corresponds to the probability that
imitation reads the opposite value, while � �	��

� is the probability that an agent is selected and its strategy
randomized. 100 runs have been averaged. (� [ ��� � � , � [�� , � [�� � � ).
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5 Discussion

Social and economical interactions are frequently based on the ability of the agents to choose and
refuse partners depending on their own interests. In this paper we have proposed, assuming the
bounded rationality of agents, a framework that naturally incorporates such possibility. We have
presented numerical and theoretical results of a Prisoner’s Dilemma game played in an adaptive
network, where the agents have the possibility to change their local neighborhood depending on
their level of satisfaction and

In other recent studies of network evolution the adaptation does not depend on the outcome of
a game, but instead links are created or destroyed according to a balance between benefit and cost
these represent (Watts 1999, Jackson and Watts 1999, Goyal and Joshi 1999, Bala and Goyal 1999).
The paper of Goyal and Joshi (1999) studies network formation where the costs incurred to form a
new link is taken only by one of the agents. The agent receiving a link does not incur in a cost and
just shares the benefit. If the link benefits both agents, then it is established, otherwise it is discarded.
In our case, we have followed a different approach. Our agents cannot assess a priori if the receiving
link will be entirely beneficial or not, but as it is costless, it is willing to accept it. Also as only
D-agents are responsable for the initiative of neighborhood adaptation, they are mostly interested in
finding a C-agent to exploit. Thus in order to avoid a generation of (costless) links, we specifically
study an evolution where the number of links is conserved.

Another related work to ours is that of Ashlock, Smucker, Stanley, and Tesfatsion (1995), where
the network is not assumed a priori, but is determined endogenously from expected payoffs agents
have across them. If this payoff exceeds a given threshold, then the agent makes an offer to play with
that neighbor; next, it revises all offers it receives and refuses those which are below his threshold.
Therefore the game is carried out on a network which is formed in a pre-play stage, depending on
the outcome of the previous game. Their main result also includes that cooperation is highly en-
hanced, although a steady state is never reached for exploiter D-agents migrate continuously among
C-agents. Our approach assumes agents computation capabilities to be much more restrictive, and
C-agents cannot explicitly refuse to play with D-agents. In our model steady states display D-agents
exploiting C-agents. This results from two assumptions: (i) satisfied D-agents do not review their
neighbors, and (ii) the desire a C-agent has to dismiss an interaction with a D-neighbor exactly
balances the effort of the D-neighbor to maintain the interaction.

Our approach focuses in a specific coupling between the network adaptation mechanism with the
agents strategy. C-agents play a conservative role, while unsatisfied D-agents “search” for new C-
agents in order to improve their payoff. The searching stops whenever all D-agents become satisfied,
reaching a steady state configuration. In some sense, the network adaptability is analogous to a
mutation process (as in the traditional evolutionary game theory) to the network, which succeeds in
finding an ‘optimal’ compromise to the roles assigned to each agents subpopulation. This solution
makes (i) D-agents in steady state become satisfied, with a higher average payoff (with respect to
C-agents), and (ii) C-agents are in general unsatisfied (but conformists), with a lower average payoff.

In a more detailed description, the searching capabilities of defectors has an interesting effect
towards the evolution of network “leaders”. The C-leader is selected among those C-local maxima
with largest payoff. These special agents are responsible of sustaining cooperation, for whenever
their payoff is larger than the D-leader, its payoff increases by accomodating new C-neighbors.

Our numerical findings show that as a result of the network adaptation, the network topology
becomes more hierarchical as � increases (the number of C-local maxima decreases in steady states).
In this case the emergence of wealthy leaders makes the sustaintability of cooperation rely heavily on
them, specially under some destructive endogenous perturbations produced by searching D-agents.
These special perturbations may occur for given network configurations, through ’dangerous chains’,
and may affect a C-leader. When this happens, global cooperation is temporally abandoned and
a large cascade of D-strategy replication is started. However, the payoff of D-agents soon drops
until once again cooperation slowly recovers when the C-leader is the wealthiest agent in the whole
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network. If the latter does not happen, then by more destructive perturbations there is probability
that the system reaches the all-D network. We also remarked that there exists a mechanism by which
the ‘dangerous’ chains in the network decrease in number, providing the possibility that the leader
may be well protected and inhibiting large cascades.

Our main conclusion shows that cooperation among a set of selfish agents may display coopera-
tion based on evolving local neighborhoods. Notice that this is true even when the network adaptation
is very small, changing only the time scale when a cooperative steady state is reached. Also very re-
markably, if one considers the average payoff of agents, the social dilemma holds, for on average
defectors are wealthier than cooperators.

Finally we mention the work of Cohen, Riolo, and Axelrod (1999) which show the relevance of
context-preservation, i.e. dynamics where the neighborhood remained unaltered get better average
payoff than those dynamics that do not preserve the neighborhoods. The framework we have pre-
sented in this paper, allows us to study a different dynamics with variable adaptation. Our results
show that cooperation can be sustained even in situations where the neighborhoods are not fully
preserved, with the fraction of cooperation being similar to the preserved one. However, our model
differs from the situations studied by Cohen, Riolo, and Axelrod (1999) in which the adaptation of
the network is independent of the process of decision making, i.e. there is no feedback from the
payoff to the network evolution. In our framework, the feedback between payoff and network adap-
tation is clear: the adaptation of the network only takes place locally for the unsatisfied agents. This
difference is fundamental to explain the results we have obtained.
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