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Department of Physical Chemistry, University of Pannonia, P. O. Box 158, H-8201 Veszprém,

Hungary

E-mail: valisko@almos.vein.hu; boda@almos.vein.hu

Phone: +36-88/62-4325. Fax: +36-88/62-4548

∗To whom correspondence should be addressed

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42927753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

We investigate the individual activity coefficients of pure 1:1 and 2:1 electrolytes using our

theory that is based on the competition of ion-ion (II) and ion-water (IW) interactions (Vincze

et al., J. Chem. Phys. 133, 154507, 2010). The II term is computed from Grand Canonical

Monte Carlo simulations on the basis of the implicit solvent model of electrolytes using hard

sphere ions with Pauling radii. The IW term is computed on the basis of Born’s treatment of

solvation using experimental hydration free energies. The two terms are coupled through the

concentration-dependent dielectric constant of the electrolyte. With this approach we are able

to reproduce the nonmonotonic concentration dependence of the mean activity coefficient of

pure electrolytes qualitatively without using adjustable parameters. In this paper, we show that

the theory can provide valuable insight into the behavior of individual activity coefficients too.

We compare our theoretical predictions against experimental data measured by electrochemical

cells containing ion-specific electrodes. As in the case of the mean activity coefficients, we find

good agreement for 2:1 electrolytes, while the accuracy of our model is worse for 1:1 systems.

This deviation in accuracy is explained by the fact that the two competing terms (II and IW) are

much larger in the 2:1 case so errors in the two separate terms have less effects. The difference

of the excess chemical potentials of cations and anions (the ratio of activity coefficients) is

determined by asymmetries in the properties of the two ions: charge, radius, and hydration

free energies.
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1 Introduction

The individual activity coefficient, γi, of an ionic species i in an electrolyte solution describes the

deviation from ideality through the excess chemical potential

µ
EX
i = kT lnγi (1)

that is defined by

µi = µ
0
i + kT lnci +µ

EX
i , (2)

where µi is the chemical potential of species i, ci is its concentration, µ0
i is a reference chemical

potential independent of the concentration, µEX
i is the excess chemical potential characterizing the

effect of interaction between particles, k is Boltzmann’s constant, and T is the temperature. The

reference point is chosen in such a way that limc→0 µEX
i = 0, where c is the salt concentration.1

The salt concentration is defined as c = c+/ν+ = c−/ν− with ν+ and ν− being the stoichiometric

coefficients of the cation and the anion in a simple electrolyte with the stoichiometry

Cν+Aν− � ν+Cz+ +ν−Az−, (3)

where C and A refer to cations and anions, while z+ and z− are the valences of the ions.

The individual activity coefficient is an important quantity for several reasons. This quantity

appears in the Nernst-equation for the electrode potential, E, in a half-cell, for example,

E = E0 +
kT
zie

ln(γici), (4)

where e is the charge of the proton and E0 is a standard electrode potential. Knowledge of the

individual activity coefficient, furthermore, is crucial in many biological and technological phe-

nomena/processes such as Donnan equilibrium, ion transport, ion exchange, and corrosion.
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The individual activity coefficient, however, is not readily available from measurements. We

usually do not know its value, therefore, it is common to use the mean activity coefficient in Eq. 4

instead. The mean activity coefficient is defined as

γ± = γ
ν+/ν

+ γ
ν−/ν

− , (5)

where ν = ν++ν−. Accordingly, the mean excess chemical potential is computed as

µ
EX
± =

ν+

ν
µ

EX
+ +

ν−
ν

µ
EX
− . (6)

The mean quantities, γ± and µEX
± , can be measured accurately.2–4

The individual excess chemical potentials of the two ions, however, are not equal. To what

degree are they different is an important question that was addressed both in theoretical and ex-

perimental studies. To characterize this, let us introduce the difference of the excess chemical

potentials of the cation and the anion:

∆µ
EX = µ

EX
+ −µ

EX
− = kT ln

(
γ+

γ−

)
. (7)

Note that once we have the mean and the difference, the individual excess chemical potentials can

be calculated as

µ
EX
+ = µ

EX
± +

ν−
ν

∆µ
EX

µ
EX
− = µ

EX
± −

ν+

ν
∆µ

EX. (8)

Estimating the order of magnitude of ∆µEX is important for judging the error in Eq. 4 introduced

by using the mean activity coefficient instead of the individual one.

An important experimental fact is that µEX
± shows a non-monotonic concentration dependence:
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increasing the concentration from zero, it decreases from zero with a slope obeying the Debye-

Hückel (DH)5 limiting law, reaches a minimum at a large concentration, then increases again as

the concentration approaches saturation. This phenomenon has been addressed by several stud-

ies starting from various empirical modifications2–4,6–8 of the DH theory.5 To first degree, these

modifications tried to take the finite size of ions into account.

More developed statistical mechanical theories use a microscopic model, where the interactions

acting between the particles of the system are represented with classical pair potentials. In particu-

lar, most of the studies used the Primitive Model (PM) of electrolytes, where the ions are modeled

as charged hard spheres (HS), while the solvent is modeled as a dielectric continuum with a di-

electric constant ε(c) (in this work, we allow it to be concentration dependent). The pair-potential

describing this interaction can be given as

uPM
i j (r) =


∞ for r < Ri +R j

ziz je2

4πε0ε(c)r
for r ≥ Ri +R j,

(9)

where Ri is the radius of ionic species i, ε0 is the permittivity of vacuum, and r is the distance

between the ions. This model was applied in calculations using the mean spherical approximation

(MSA),9–19 other theories,18,20–23 and computer simulations.6,7,24 This model is used in this paper

to describe ion-ion interactions.

Two parameters of the PM (Eq. 9) have central importance in our discussion. The ionic radius,

Ri, is a molecular parameter, while the dielectric constant, ε(c), is a macroscopic (thermodynamic)

quantity, that describes the screening of the environment of the ion.

In our previous works,25–27 we have introduced the II+IW model in which the excess chemical

potential is split into two terms

µ
EX
i = µ

II
i +µ

IW
i , (10)

where II and IW refer to ion-ion and ion-water interactions, respectively. The II term can be

6



calculated on the basis of the PM using, for example, simulations (see Section 3.1). The IW term

was approximated through the Born-energy as described in Section 3.2 in detail. An important

feature of our model is that it does not use adjustable parameters. Although it would be possible,

we avoided this strategy because we were curious whether the nonmonotonic behavior of µEX
± (c)

can be understood and reproduced qualitatively without fitting. The parameters used in our model

have strong experimental basis:

• The Pauling radii, Ri, are used in Eq. 9 to compute the II term (see Table 1).

• Experimental hydration free energies of the ions, ∆Gs
i , or, equivalently, the Born radii, RB

i ,

are used in the IW term (see Table 1).

• Experimental concentration-dependent dielectric constant, ε(c), is used in both the II and

IW terms (see Table 2). This is a crucial quantity that establishes the coupling between the

II and IW terms.

The way these parameters are handled indicates the difference between our approach and earlier

studies.

Most of the earlier works fitted (increased) the radii of the ions (usually the radius of the cation)

to obtain agreement with experiments.6,7,10–17,19,23 It was said that the increased “solvated ionic

radius” took solvation into account by also including the hydration shell of tightly connected and

oriented water molecules around the ion. We criticized the idea of the “solvated radius” in our

previous papers25–27 and pointed out that important configurations corresponding to cations and

anions in contact are excluded from the statistical sample with this artificial concept.

It is an experimental fact that the dielectric constant of the electrolyte solution decreases with

increasing concentration28–37 due mainly to dielectric saturation.38–46 The increasing electric field

produced by the ions in more concentrated solutions orients the water molecules thus decreasing

their ability to adjust their orientation in the solvation shell of an ion. Consequently, the screening

ability of the solvent (expressed by its dielectric constant) decreases as the concentration of ions
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Table 1: Experimental parameters of ions studied in this work: the valence, zi, the Pauling radius,47

Ri, the hydration Hemholtz free energy,4 ∆Gs
i , and the Born radius, RB

i (computed from ∆Gs
i on

the basis of Eq. 19 with εw = 78.45).

Ion zi Ri/Å ∆Gs
i /kJmol−1 RB

i /Å
Li+ 1 0.6 -529 1.3
Na+ 1 0.95 -424 1.62
K+ 1 1.33 -352 1.95
Rb+ 1 1.48 -329 2.084
Cs+ 1 1.69 -306 2.24
Mg2+ 2 0.65 -1931 1.42
Ca2+ 2 0.99 -1608 1.71
Ba2+ 2 1.35 -1352 2.03
F− -1 1.36 -429 1.6
Cl− -1 1.81 -304 2.26
Br− -1 1.95 -278 2.47
I− -1 2.16 -243 2.82

increases. Some of the earlier works used a dielectric constant changing with concentration (either

fitted11,13,19 or experimental15–17), but they ignored the change in the solvation free energy that

should be included once an ion gets from an infinitely dilute solution (the reference state) to a

concentrated solution (a different dielectric environment). The IW term, therefore, were ignored

by most of the authors. Two notable exceptions are the papers of Abbas et al.6 and Inchekel et al.23

who took the IW interactions into account. These works were discussed in our previous papers25,27

in detail.

Our earlier works,25–27 however, considered the mean excess chemical potential. In this paper,

we report results for the individual excess chemical potentials. We compare our results to exper-

imental data despite the fact that these experiments are not as well-established as those for the

mean. A large portion of experimental data has been measured by the group of Vera and Wilczek-

Vera (VWV).48–67 These measurements are strongly debated by other experimentalists.68–75 Being

theorists, we do not feel ourselves competent to judge in this debate; we just show the data. Exper-

iments from other sources are also available.76–85 The experimental issues are briefly discussed in
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Section 2.2.

2 Previous works on the individual activity coefficients

2.1 Theory

Perhaps due to the confusion about the measurability and even the pure existence of the individual

activity coefficient, computational papers are relatively rare. Outhwaite et al.21,22 compared the

individual activity coefficients of primitive model electrolytes as obtained from various theories.

Similar studies have been published by Sørensen et al.,86–88 complemented by MC simulations.

Sloth89 developed an expression for the single-ion activity coefficient on the basis of Kirkwood-

Buff theory. Ferse and Müller90 factored the mean activity coefficient into individual ones using

a product function optimized by experimental data. Fraenkel91 applied his smaller-ion shell the-

ory8 to estimate the individual activity coefficients of various electrolytes in comparison with the

experimental data of VWV.

Lin and Lee92,93 used a parameterized equation with adjustable parameters. Their approach

is similar to ours in the respect that they divided the excess chemical potential into terms corre-

sponding to short- and long-range interactions. The short-range part was intended to take solvation

effects into account. The parameterization of Lin and Lee, however, lacked the concentration-

dependent dielectric constant. A similar approach was published by Pazuki and Rohani94 with

different definitions for the two terms. Taghikhani and Vera95 correlated the experimental data

with an MSA-based approach using concentration-dependent cation diameter.

Simulation studies impose the difficulties of system size effects due to violated charge neu-

trality when inserting individual ions (see Section 2.2). Sloth and Sørensen simulated the individ-

ual activity coefficient since 198786–88,96–98 using the Widom particle insertion method99 in the

canonical ensemble. They eventually developed a correction formula on the basis of a neutraliz-
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Table 2: Concentration dependence of the static dielectric constant of various pure electrolyte
solutions. The table contains the δS and bS parameters of Eq. 15 for 1:1 electrolytes taken from
Refs.15,17,37 For NaF, the data for NaCl were used. In the case of LiCl, the fit ε(c) = εw−15.5c+
1.96c2−0.306c5/2 was used.108 For 2:1 electrolytes, the values δS = 34 and bS = 10 were used.16

Salt δS bS
NaF 15.45 3.76
KF 12.4 2.2
NaCl 15.45 3.76
KCl 14.7 3.0
RbCl 17.0 5.0
CsCl 13.1 2.9
LiBr 20.4 4.8
NaBr 20.0 5.0
KBr 14.6 2.5

ing background.100 This correction term was used in the Adaptive Grand Canonical Monte Carlo

(A-GCMC) method developed and used in our group.101 Svensson and Woodward102 proposed a

different correction method.

Lamperski and Pluciennik103,104 simulated various electrolyte models including the solvent

primitive model (in that model, water molecules are represented by neutral hard spheres) using the

GCMC algorithm developed by Lamperski.105 Calculation of the individual activity coefficient is

an especially hard problem for explicit water models because of the high density of the system.

We are aware of only a few works106,107 that attempted the simulation of the individual activities

for usual force fields using thermodynamic integration.

2.2 Experiments

Experimental approaches are based on measurements for an electrochemical cell composed of a

reference electrode and a reversible electrode whose electrode potential depends on the activity

of a single ion species. The electrode that is selective for an ion species i can be an ion selective

membrane electrode (ISE),48–67,80–84 an ion selective glass electrode,76,83 or an electrode of the
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second type.76–79 In the case of an electrode of the second type, Ag is immersed in a solution

containing a CAν− electrolyte and the sparingly soluble salt AgA as a precipitate. This kind of

electrode is selective for the anion. The reference electrode (ref) is usually a saturated Ag/AgCl

electrode. The Electromotive Force of the cell is

Ei = Ei,0 +Si ln(γici)−Eref +EJ(c), (11)

where E0
i is a standard potential that is constant in a given measurement, Eref is the potential

of the reference electrode, and EJ(c) is the junction potential raised at the interface of the two

solutions. The junction potential generally depends on the electrolyte concentration, although

efforts to develop a salt bridge with a stable junction potential have been made.84 The common

drawback of all these measurements is that the junction potential cannot be measured directly,

so its determination requires some theoretical consideration. They commonly calculate it from

Henderson’s equation109,110 or any of its modifications.58,111–114

The proposal of the VWV group is that γi in this equation can be identified with the equilibrium

activity coefficient in the case of an ISE. They claim that if the measurement is done continuously

in a limited amount of time (a few hours), while increasing the concentration from infinite dilution

towards saturation, the parameters E0
i and Si do not change during the experiment. This seems to

a be a crucial point in their arguments. We do not discuss the debate between the VWV group and

those who question their method (Malatesta68–71 and Zarubin73–75); we direct the reader to the

original papers instead.59,60,64–75,115,116

At the heart of the debate, however, there seems to be a statement about which we have a

definite opinion. This statement originating from Guggenheim117–119 and Taylor120 is that activity

has “no physical significance for a single ion species”. The root of this opinion, in turn, is that one

cannot add a measurable quantity of ions to the system without also adding the same amount of

counterions; otherwise, one would violate the condition of charge neutrality. Our opinion, on the
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other hand, is in accordance with that of Lewis,1 Harned,111 and Brønsted:121,122 the individual

activity is a thermodynamically well-defined quantity. The requirement of charge neutrality is a

concept of the macroscopic world and an effect of long-time averages. Spontaneous violations of

charge neutrality instantaneously and locally, however, are common and expected.

This is especially true in a simulation that is supposed to mimic reality on the microscopic

level. One can add one single ion to an electrolyte momentarily without a problem. Violation

of charge neutrality is “punished” by a lowered acceptance probability of this insertion. In a next

simulation step (either time step or MC step), charge imbalance is likely to be corrected by deletion

of the extra ion. In this way, charge fluctuates in an open system, but it fluctuates around zero thus

producing a charge neutral system on average.

The issue can be lighted through Widom’s particle insertion method.99 In this simulation tech-

nique, a test particle is inserted into the system randomly, the energy cost of the insertion, ∆U , is

computed and the excess chemical potential is obtained as

µ
EX,Widom
i = kT ln

〈
exp
(
−∆U

kT

)〉
, (12)

where the brackets denote an ensemble average over numerous such insertions. If we insert an

ion, the interaction with the missing counterion is absent, so the equation converges to the correct

result only in the limit of an infinitely large system. Simulations, on the other hand, necessarily

use a finite simulation cell, so the finite system size error is always present. Sloth and Sørensen100

suggested a correction term to estimate the error. They assumed that the missing charge, Q, is

smeared over the cubic simulation cell (V = L3) as a constant volume charge of magnitude Q/V .

The interaction of an inserted ion, q, with this neutralizing background can be integrated as

µ
corr
Q =− qQ

32πε0εL
K, (13)

where K is a constant (see Ref.100). When we insert a single ion in a charge neutral solution,
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Q=−q. The correction term scales with L−1, so it goes to zero as the size of the system approaches

infinity.

The chemical potential of a charged species, therefore, can unambiguously be defined as a

partial molar quantity in the thermodynamic limit:

µi = lim
V→∞

(
∂F
∂ni

)
T,V,n j 6=ni

. (14)

Although this looks clear fundamentally, developing an actual method with which µi can be mea-

sured is far from being trivial. However, condemning the concept of the chemical potential of an

ion as senseless just because it is hard to design an appropriate experiment is putting the cart before

the horse. Therefore, we accept the works of experimentalists48–67,76–84 as honest efforts to de-

termine this well-defined physico-chemical quantity from reproducible experiments. We will use

the data of the VWV group48–67 and Hurlen77–79 for comparison, but we will also discuss other

experiments in Section 4.

3 Method

In this section, we present the methods with which we calculate the II and IW parts separately

(see Eq. 10). We emphasize that the methods and the models behind them (Eq. 9) are not unique;

different ion models and different approaches for solvation can be chosen. Although the two terms

can be computed independently, there is one crucial quantity that connects them: the experimental

concentration-dependent dielectric constant. The concentration dependence has been taken from

various sources15–17,37,108 and fitted with the following equation

ε(c) = εw−δSc+bSc3/2, (15)
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where εw = 78.45 is the dielectric constant of water (the infinitely dilute solution) at K = 298.15

K. The coefficients of the equation for the electrolytes studied in this work are found in Table 2

and in the caption of the table.

3.1 Calculation of the II term

The II term is calculated on the basis of the PM of electrolytes using the A-GCMC simulation

method of Malasics and Boda.101,123 This procedure works in the grand canonical ensemble, where

the chemical potential is the independent variable instead of the concentration. Determination of

the chemical potentials, µi, that correspond to prescribed (targeted) concentrations, ctarg
i , therefore,

requires an iterative procedure. The chemical potential for the (n+1)th iteration is estimated from

µi(n+1) = µi(n)+ kT ln
ctarg

i
〈ci(n)〉

− zie〈Q(n)〉
32πε0εL

K, (16)

where µi(n) is the chemical potential of species i in the nth iteration, 〈ci(n)〉 is the concentration

obtained from a GCMC simulation in the nth iteration, while the last term is the correction term

corresponding to the average net charge of the cubic (V = L3) simulation cell in the nth iteration,

〈Q(n)〉 (see Eq. 13). The algorithm of the A-GCMC method is robust and converges to the desired

values fast. After convergence, the chemical potentials fluctuate around the correct values; the final

results, therefore, are obtained from running averages.

The underlying model requires establishing the molecular parameters, Ri and zi, and the ther-

modynamic parameter, ε(c). We emphasize that the radii of the “bare ions” (independent of c)

are used for Ri (the Pauling radii, Table 1) and experimentally measured values are used for ε(c)

(Table 2).
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3.2 Calculation of the IW term

The IW term is obtained from experimental data using a parameterization based on Born’s treat-

ment of solvation.124 In this theory, the solvation free energy, ∆Gs
i , is assumed to be equal to the

electrostatic energy change of the inversion of a spherical ion of radius RB
i in the continuum of

dielectric constant ε(c) and is given as

∆Gs
i (c) =

z2
i e2

8πε0RB
i

(
1

ε(c)
−1
)
. (17)

The IW part of the excess chemical potential is defined as the difference in the solvation free energy

of the concentrated and dilute solutions:

µ
IW
i (c) = ∆Gs

i (c)−∆Gs
i =

z2
i e2

8πε0RB
i

(
1

ε(c)
− 1

εw

)
, (18)

where ∆Gs
i = ∆Gs

i (c→ 0) is the experimental solvation (hydration) energy in water at temperature

T = 298.15 K (Table 1). It is important to note that the radius RB
i (the Born radius, Table 1) does

not have to be the same as Ri used in the calculation of the II term. It is obtained from Eq. 17 by

writing it up for the case of infinitely dilute electrolyte:

∆Gs
i =

z2
i e2

8πε0RB
i

(
1

εw
−1
)
. (19)

Expressing RB
i from Eq. 19 and substituting it into Eq. 18, we obtain an expression for the IW term

that contains only experimental parameters:

µ
IW
i (c) = ∆Gs

i
ε(c)− εw

ε(c) (εw−1)
. (20)

This equation describes the ε(c)-dependence of the IW term and gives the correct hydration free

energy in the c→ 0 limit. Note that µ IW
i (c)> 0 because ε(c)< εw and ∆Gs

i < 0.
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4 Results

In this paper, we report results for 1:1 electrolytes LiCl, LiBr, NaF, NaCl, NaBr, KF, KCl, and

KBr, and for 2:1 electrolytes MgCl2, MgBr2, CaCl2, CaBr2, BaCl2, and BaBr2. Individual ac-

tivity coefficients are shown in Fig. 1 for the 1:1 systems and in Fig. 2 for the 2:1 systems. The

results obtained from the II+IW model are shown in comparison with the experimental data of the

VWV group58 and Hurlen.77–79 The agreement between the two experiments is usually quite good

(much better in the 2:1 case) despite the fact that the two experimental setups used different work-

ing electrodes; ISE by the VWV group58 and a reversible anion specific electrode of the second

kind by Hurlen77–79 (he measured only for the anions; the cation value was computed from that

and the mean). The agreement indicates the reliability of the overall procedure (use of ion spe-

cific electrodes), while disagreement (especially for potassium halides) sheds light on the possible

weaknesses of the electrochemical method.

A general quantitative observation is that the experimental lnγi changes in a more narrow range

in the 1:1 case (between -0.8 and 0.6) than in the 2:1 case (between -1.6 and 1.6). Our theoretical

curves reproduce this behavior by and large with different accuracy for different electrolytes as

discussed below.

The qualitative behavior of the lnγi(c) curves is also different in the two cases. In the 1:1

case, lnγi is larger for one of the two species than for the other one over the entire concentration

range (∆µEX does not change sign). In the 2:1 case, on the other hand, lnγi is larger for the anion

at smaller concentrations, while it is larger for the cation at larger concentrations in most cases

(∆µEX changes sign). A very important result is that this behavior is reproduced by our model (see

Fig. 2).

The performance of our theory can be judged from various aspects. We can look at the indi-

vidual γi curves and check the agreement with the experimental data. The other way is to check

the agreement for the mean, µEX
± , and the difference, ∆µEX. The question then arises that how
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Figure 1: Individual activity coefficients for 1:1 electrolytes. Solid and dashed lines refer to the
II+IW results for cation (C) and anion (A), respectively. Filled and open symbols refer to exper-
imental data for cation and anion, respectively. Blue circles are the data of the VWV group,58

while red triangles are the data of Hurlen.77,79 Error bars for experimental data are shown in some
representative cases.

the accuracy of our model correlates for these quantities. If the model is good for the mean,

does it mean that it is also good for the difference? Or vice versa, if the model fails for the mean,

can its prediction be still fine for the difference? This latter happens when we introduce the same

error in the µEX
i of the cation and the anion. This scenario is surely possible. The opposite (that

we introduce errors of opposite signs), however, is also possible.
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Figure 2: Individual activity coefficients for 2:1 electrolytes. Solid and dashed lines refer to the
II+IW results for cation (C) and anion (A), respectively. Filled and open symbols refer to experi-
mental data for cation and anion, respectively. Blue circles are the data of the VWV group,58 while
red triangles are the data of Hurlen.78

The behavior of our model for the mean was discussed in our previous papers in detail.25,27 The

general conclusion was that the II+IW model works surprisingly well for 2:1 electrolytes, while it

has problems in the 1:1 case. Specifically, the model cannot provide good γ± data for large cations
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(K+, Cs+). Also, the dependence of γ± on the cation radius shows the opposite behavior in the

model and in experiment (Fig. 2 of Ref.25). The results of Figs. 1 and 2 confirm these findings,

but now they provide deeper insight into the mechanisms because they show individual activity

coefficients.

For LiCl and LiBr, our results agree well with the experimental data for the anion, while they

underestimate lnγi for Li+. The agreement between the experimental data of VWV and Hurlen is

good for LiCl, but quite bad for LiBr.

In the case of sodium halides, we rather overestimate the experimental data, although the agree-

ment for NaF is quite good up to the concentration (1 M) for which experimental data are available.

More experimental data are available for NaCl beyond those shown in Fig. 1. NaCl was also stud-

ied by Zhuo et al.83 (good agreement with the VWV data), Lee et al.80 (they overestimate the

difference, ∆µEX), and Shatkay and Lerman76 (they underestimate both γi’s). For NaCl, a de-

tailed analyzis on the sensitivity of our theory on the model parameters has been published.27 For

NaBr, interestingly, the data of VWV agree with those of Hurlen, but both are different from other

measurements (Lee et al.83 and Zhuo et al.;80 they agree with each other well).

Although our model does not work properly for potassium halides, this is a case that we find

quite interesting. Hurlen77–79 deduced from his measurements that γi is practically the same for

K+ and Cl− (∆µEX ≈ 0). The VWV group,58 on the other hand, predicts that γi is smaller for K+

than for Cl− (note that the work of Dash et al.85 predicts the opposite trend). Although our results

for the mean are really off, our data for the difference support Hurlen’s findings (see Fig. 1). We

will discuss this case in the Discussions (Sec. 5) in more detail.

Electrolytes, with a divalent cation (2:1 systems, see Fig. 2) provide a much better case study

for our theory than 1:1 electrolytes do. The two ions have different charges in the 2:1 case. There-

fore, their interactions with their ionic environment are very different, so the II term is very differ-

ent for the two ions. The hydration free energies also differ considerably; they are much larger for

divalents in absolute value (see Table 1). Consequently, the IW term is also very different for the
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two ions. There are strong asymmetries between the two ions resulting in the anomalous behavior

seen in Fig. 2.

By “anomalous” we mean that the activity of the cation is smaller than that of the anion for

small concentrations, while the reverse is true for larger concentrations. In other words, the dif-

ference ∆µEX(c) has a minimum and changes sign. This behavior is absent in the case of 1:1

electrolytes because the charge asymmetry of the ions is absent.

Also, this anomalous effect is powerful in the sense that lnγi changes over a wide range (in kT

units). This indicates that the nonmonotonic behavior is the result of the balance of large energy

terms. Theories dealing with this phenomenon should account for these large energy terms. As

Fig. 2 shows, our theory reproduces this phenomenon qualitatively. This implies that the two basic

(free) energetic terms introduced in our treatment (the II and IW terms) contain sufficient informa-

tion to provide qualitative description. For quantitative agreement, of course, further microscopic

information and more detailed models would be necessary. Detailed discussion about how these

terms work together to provide the necessary balance is given in the next section.

5 Discussion

After presenting the raw data for the individual activity coefficients, we turn to understanding our

results better by considering the II and IW terms separately. Because we have too much data in

Figs. 1 and 2, we choose two representative cases to discuss the details, NaCl and CaCl2.

Figure 3 shows the results for NaCl. The II values are slightly larger (in magnitude) for Na+

because Na+ has stronger interaction with the surrounding ions due to its smaller size. Similarly,

the IW values are slightly larger for Na+ because Na+ has stronger interaction with the surrounding

water, also due to its smaller size. In our treatment, this stronger IW interaction is because the

experimental solvation free energy is larger (in magnitude) for Na+ (see Table 1). The sum of

the II and IW curves (the EX curves in Fig. 3) is smaller for Cl− than for Na+, in line with
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Figure 3: II and IW components of lnγi (EX) for Na+ and Cl− in NaCl electrolytes as functions
of concentration. Solid black and dashed red curves refer to Na+ and Cl−, respectively. Filled and
open circles are the experimental data of the VWV group58 for Na+ and Cl−, respectively.

experiments. This means that their difference, the ∆µEX term (see Eq. 7), is positive. The IW term

has a dominant effect in this, as discussed later.

Figure 4 shows the results for CaCl2. Here, the top panel shows the data for Ca2+, while the

bottom panel for Cl−. The bottom panel also shows the II and IW curves for Ca2+ to emphasize

the difference in the scales of the ordinates of the two panels. In particular, the II and IW values

range between −8.5kT and 8kT for Ca2+, while only between −2kT and 1.5kT for Cl−. The

large variation in the case of Ca2+ results in an EX curve that has a deeper minimum and steeper

upswing at larger concentrations (also, see Fig. 2). The more shallow EX curve for Cl− is a result

of the balance of the smaller (in magnitude) II and IW terms.

Now let us turn our attention to discussing the difference of the excess chemical potentials

for the cation and the anion, ∆µEX (see Eq. 7). Similar to the EX term, we can also define the

differences for the II and IW terms, ∆µ II = µ II
+−µ II

− and ∆µ IW = µ IW
+ −µ IW

− .

The top panel of Fig. 5 shows these curves for NaCl. As already seen at Fig. 3, the ∆µEX term

is always positive. The dominant term that determines the sign of ∆µEX is the IW term. Without
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and Cl−, respectively. Filled and open circles are the experimental data of the VWV group58 for
Ca2+ and Cl−, respectively. The II and IW curves for Ca2+ are also shown in the bottom panel for
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the IW term, the II term alone would provide a negative EX term in contrast to experiments, at

least, using the Pauling diameter. To achieve a large positive ∆µEX value without the IW term

(using concentration independent dielectric constant), we would need larger ionic radius for Na+

than for Cl−. Our reasoning against such fitted “solvated” radii has been given elsewhere.25–27
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For CaCl2, on the other hand (bottom panel of Fig. 5), the balance of the IW and II terms is

more complex. For low concentrations, the II term dominates, so the EX curve decreases together

with the II curve in accordance with the DH theory. At larger concentrations, on the other hand,
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the IW term becomes more and more dominant so that it tips the balance in favor of the IW term

above a certain concentration (the ∆µEX curve changes sign, see inset). This kind of balance of the

II and IW terms and their different c-dependence were also the reasons for the success of the II+IW

theory in reproducing the nonmonotonic behavior of the mean excess chemical potential.25–27

Our results show that the two simple theories that we use to estimate the II and IW terms con-

tain all the necessary physics to provide this behavior. The II term is computed on the basis of

the charged hard sphere model (Eq. 9), where these ions are swimming in a dielectric background

characterized by the concentration-dependent dielectric constant, ε(c). In this term, the determin-

ing factors are the ionic charges and radii (besides ε(c), of course). The IW term is computed from

a parameterization of the interaction of an ion with the surrounding dielectric, where the param-

eterization is based on two experimentally measurable quantities, the dielectric constant and the

hydration free energy (Eq. 20). The functional form of the IW term depending on these quantities

is obtained from the simplest possible solvation theory we can think of, Born’s treatment. In this

term, the determining factor is the hydration free energy (besides ε(c), of course).

If we fix the ε(c) function, for 1:1 electrolytes, the two determining factors are the ionic radii

and the hydration free energies. The difference ∆µEX, therefore, depends on the difference of the

hydration free energies for the cation and the anion, ∆∆Gs = ∆Gs
+−∆Gs

−, as well as on the ratio

of the cation/anion radii, R+/R−. These quantities strongly correlate, as shown in Fig. 6. This fact

supports the Born formalism, and, indirectly, our approach to handle the IW term.

The ∆∆Gs difference is usually negative because the cation is either smaller than the anion

(exceptions are the fluorides) or it is double charged (see inset). This makes the ∆µ IW difference

positive (even more so in the 2:1 case). The R+/R− ratio is usually smaller than 1. This makes the

∆µ II difference negative because the smaller cation has stronger interaction with its ionic cloud. It

is even more pronounced in the 2:1 case, because the divalent cation has stronger interaction with

its ionic cloud. These two quantitities represent two competing effects with similar magnitudes

but opposite signs. The net effect, therefore, shows the observed behavior, which is qualitatively
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Figure 6: The ratio of the Pauling radii (R+/R−)47 vs. the difference of the experimental hydration
free energies (∆∆Gs = ∆Gs

+−∆Gs
−)4 for various electrolytes.

correct in most cases.

The explanation of the fact that we have quite good agreement in the 2:1 case is that we have an

additional effect, the charge asymmetry of the ions, that is taken into account relatively correctly

in our treatment. In the 1:1 case, on the other hand, the two competing effects are quite similar,

originating only from two factors, size asymmetry of the ions (R+/R−) and the difference in their

solvation properties (∆∆Gs). Because our models are approximate, any error in the II and IW

terms separately can add up to a considerable error in their sum. We believe that this is the basic

explanation of the relatively weak performance of our theory in the 1:1 case.

To further analyze this competition, we plot the ∆µEX, ∆µ II, and ∆µ IW values for alkali metal

chlorides (Fig. 7) and alkaline earth metal chlorides (Fig. 8) as functions of R+/R− with c = 1

M. The II term is quite small in the 1:1 case, because only the size asymmetry of the ions causes

this difference. The dominant term is the IW term, which might give the impression that this is
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the term that casues the disagreement (in some cases) with experiments. This, however, can be a

false impression. The II term can also contain an error that can result in a deviation in the order

of magnitude indicated by the figure (< 0.2kT ). The different stability of the hydration shells of

the two ions, for example, can play an important role, but this is beyond the capabilities of our

modeling level. In the 2:1 case, on the other hand, both terms are large in order of magnitude,

varying between −4kT and 4kT (Fig. 8).

Figure 7 also shows why ∆µEX is small for KCl, RbCl, and CsCl. For these electrolytes, both

the II and IW terms are small. Figure 6 shows that these electrolytes are close to the crosspoint

of the two dashed line (the R+/R− = 1 and ∆∆Gs = 0 point). Because the cation and the anion in

these electrolytes are very close in nature from both points of view (II interactions and solvation),

it is reasonable to assume that the activity coefficients for them are very close. This reasoning

supports Hurlen’s findings (Fig. 1).
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However, the data of the VWV group contradict this result. Inspecting the data of VWV (Fig.

1), one sees that γi of Na+ is larger than that of anions for sodium halides, while the opposite

relation is seen for potassium halides (here the γi of K+ is smaller). This seems to be quite a large

change considering that the only difference between the two experiments is that Na+ is replaced

with K+.

We do not want to speculate about possible reasons of errors in any of the experiments, but in

the case of KCl and similar systems, we would like to emphasize that we are talking about small

effects in these cases. Any uncertainty in any of the terms of Eq. 11 (especially in the treatment of

the junction potential) can lead to errors in ∆µEX. This is exactly the reason why we tend to trust

the experimental data for electrolytes of cations and anions that are very different. These systems

are the 2:1 electrolytes and the lithium halides, for which we have relatively good agreement with

experiments.
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6 Conclusion

Our main purpose here was to understand physical mechanisms behind the behavior of the individ-

ual activity coefficients. It was not a goal of this study to produce accurate quantitative agreement

with the help of adjustable model parameters. Our model is admittedly crude neglecting many de-

tails, but the major energy terms corresponding to basic interactions are included. We think that our

simple arguments are justified by the fact that we can produce qualitative agreement with experi-

ments without any adjustable parameter, especially in the 2:1 case, where an anomalous behavior

is reproduced. Such an anomalous behavior is usually the result of competing energy terms.

Our definition of the II and IW terms is approximate, but not arbitrary; the division is made on

the basis of the different nature of the particles in question, solute and solvent. The concentration

dependence of the dielectric constant is a hard experimental fact that should be built into theories

because it has obvious large effects. The way we do it in our II+IW model is one way, but more

accurate models can and should be used. The concentration-dependent dielectric constant is a

crucial quantity coupling the calculation of the II and IW terms that otherwise can be computed

independently.

Naturally, there are errors in both the II and IW terms, because the implicit solvent model used

to describe them is simplistic. These errors seem to have a larger effect in the 1:1 case, where

the II and IW terms are relatively small. In the 2:1 case, on the other hand, charge asymmetry of

the ions causes large deviations between the terms for the two ions. Lastly, we believe that the

“solvated ionic radius” is a concept that should not be used in the description of these phenomena.

Contact positions of the “bare” ions are so important that they should not be excluded from the

statistical sample. The solvated ion, where the ion is moving together with strongly attached water

molecules, on the other hand, is a useful idea in other cases such as transport phenomena.

Support of experiments????
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