48 research outputs found

    Altered brain mechanisms of emotion processing in pre-manifest Huntington's disease

    Get PDF
    Huntington's disease is an inherited neurodegenerative disease that causes motor, cognitive and psychiatric impairment, including an early decline in ability to recognize emotional states in others. The pathophysiology underlying the earliest manifestations of the disease is not fully understood; the objective of our study was to clarify this. We used functional magnetic resonance imaging to investigate changes in brain mechanisms of emotion recognition in pre-manifest carriers of the abnormal Huntington's disease gene (subjects with pre-manifest Huntington's disease): 16 subjects with pre-manifest Huntington's disease and 14 control subjects underwent 1.5 tesla magnetic resonance scanning while viewing pictures of facial expressions from the Ekman and Friesen series. Disgust, anger and happiness were chosen as emotions of interest. Disgust is the emotion in which recognition deficits have most commonly been detected in Huntington's disease; anger is the emotion in which impaired recognition was detected in the largest behavioural study of emotion recognition in pre-manifest Huntington's disease to date; and happiness is a positive emotion to contrast with disgust and anger. Ekman facial expressions were also used to quantify emotion recognition accuracy outside the scanner and structural magnetic resonance imaging with voxel-based morphometry was used to assess the relationship between emotion recognition accuracy and regional grey matter volume. Emotion processing in pre-manifest Huntington's disease was associated with reduced neural activity for all three emotions in partially separable functional networks. Furthermore, the Huntington's disease-associated modulation of disgust and happiness processing was negatively correlated with genetic markers of pre-manifest disease progression in distributed, largely extrastriatal networks. The modulated disgust network included insulae, cingulate cortices, pre- and postcentral gyri, precunei, cunei, bilateral putamena, right pallidum, right thalamus, cerebellum, middle frontal, middle occipital, right superior and left inferior temporal gyri, and left superior parietal lobule. The modulated happiness network included postcentral gyri, left caudate, right cingulate cortex, right superior and inferior parietal lobules, and right superior frontal, middle temporal, middle occipital and precentral gyri. These effects were not driven merely by striatal dysfunction. We did not find equivalent associations between brain structure and emotion recognition, and the pre-manifest Huntington's disease cohort did not have a behavioural deficit in out-of-scanner emotion recognition relative to controls. In addition, we found increased neural activity in the pre-manifest subjects in response to all three emotions in frontal regions, predominantly in the middle frontal gyri. Overall, these findings suggest that pathophysiological effects of Huntington's disease may precede the development of overt clinical symptoms and detectable cerebral atrophy

    Downloaded from

    No full text
    Kurt Leininger received his MLS from th

    Consistency And

    No full text
    tion function is essential for a shared-memory system, it is only occasionally that the memory is used in this way. For example, all references during the computation of f() are probably not even shared. Even if they are, it is unlikely that a program would want to use the values while Process 1 is computing f(). 1 So what really matters, in general, is that at a certain point in the execution of a program, a new value (or set of values) has been computed and after that point other processors will access the new values. Such a point is usually synchronized through explicit synchronization mechanisms, such as a semaphore or a barrier[Jord78]. It is generally regarded as good programming technique to synchronize explicitly, rather than depending on the memory system to provide implicit synchronization. While there are well-known methods for implementing semaphores from a memory in which all reads and writes

    Consistency of fuzzy model-based reinforcement learning

    Full text link
    peer reviewedReinforcement learning (RL) is a widely used paradigm for learning control. Computing exact RL solutions is generally only possible when process states and control actions take values in a small discrete set. In practice, approximate algorithms are necessary. In this paper, we propose an approximate, model-based Q-iteration algorithm that relies on a fuzzy partition of the state space, and a discretization of the action space. Using assumptions on the continuity of the dynamics and of the reward function, we show that the resulting algorithm is consistent, i.e., that the optimal solution is obtained asymptotically as the approximation accuracy increases. An experimental study indicates that a continuous reward function is also important for a predictable improvement in performance as the approximation accuracy increases

    Highly Available DHTs: Keeping Data

    No full text
    The research in the paper is motivated by building a decentralized /P2P XML storage on top of a DHT (Distributed Hash Table)
    corecore