96 research outputs found

    Coverage versus supply cost in facility location:physics of frustrated spin systems

    Get PDF
    A comprehensive coverage is crucial for communication, supply, and transportation networks, yet it is limited by the requirement of extensive infrastructure and heavy energy consumption. Here, we draw an analogy between spins in antiferromagnet and outlets in supply networks, and apply techniques from the studies of disordered systems to elucidate the effects of balancing the coverage and supply costs on the network behavior. A readily applicable, coverage optimization algorithm is derived. Simulation results show that magnetized and antiferromagnetic domains emerge and coexist to balance the need for coverage and energy saving. The scaling of parameters with system size agrees with the continuum approximation in two dimensions and the tree approximation in random graphs. Due to frustration caused by the competition between coverage and supply cost, a transition between easy and hard computation regimes is observed. We further suggest a local expansion approach to greatly simplify the message updates which shed light on simplifications in other problems

    Trust Index Based Fault Tolerant Multiple Event Localization Algorithm for WSNs

    Get PDF
    This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP) localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms

    Simulating Three-Dimensional Hydrodynamics on a Cellular-Automata Machine

    Full text link
    We demonstrate how three-dimensional fluid flow simulations can be carried out on the Cellular Automata Machine 8 (CAM-8), a special-purpose computer for cellular-automata computations. The principal algorithmic innovation is the use of a lattice-gas model with a 16-bit collision operator that is specially adapted to the machine architecture. It is shown how the collision rules can be optimized to obtain a low viscosity of the fluid. Predictions of the viscosity based on a Boltzmann approximation agree well with measurements of the viscosity made on CAM-8. Several test simulations of flows in simple geometries -- channels, pipes, and a cubic array of spheres -- are carried out. Measurements of average flux in these geometries compare well with theoretical predictions.Comment: 19 pages, REVTeX and epsf macros require

    QUANTITATIVE COMPARISON OF END-TO-END AVAILABILITY OF SERVICE PATHS IN RING AND MESH-RESTORABLE NETWORKS

    No full text
    Abstract – A comparison of ring and mesh architectures for restorable transport networking is presented from the point of view of service path availability. The comparison is based on detailed simulations of the network’s response to random sequences of failures and repairs. Each type of network serves the same demands and are tested with exact implementations of the two restoration mechanisms in the face of the identical sequences of physical layer failure and repair. Results show significantly higher average service path availability in the mesh architecture. The study also shows the potential of the mesh architecture to provide very high availability to a small fraction of selected high-priority service paths when prioritization in the restoration is introduced, while keeping the availability of lower-priority service paths almost unchanged. 1

    Availability analysis of span-restorable mesh networks

    No full text
    • …
    corecore