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Abstract
Human action recognition remains an important yet challenging task. This work proposes a novel action recognition sys-
tem. It uses a novel multi-view region-adaptive multi-resolution-in-time depth motion map (MV-RAMDMM) formulation 
combined with appearance information. Multi-stream 3D convolutional neural networks (CNNs) are trained on the different 
views and time resolutions of the region-adaptive depth motion maps. Multiple views are synthesised to enhance the view 
invariance. The region-adaptive weights, based on localised motion, accentuate and differentiate parts of actions possessing 
faster motion. Dedicated 3D CNN streams for multi-time resolution appearance information are also included. These help 
to identify and differentiate between small object interactions. A pre-trained 3D-CNN is used here with fine-tuning for each 
stream along with multi-class support vector machines. Average score fusion is used on the output. The developed approach 
is capable of recognising both human action and human–object interaction. Three public-domain data-sets, namely MSR 
3D Action, Northwestern UCLA multi-view actions and MSR 3D daily activity, are used to evaluate the proposed solution. 
The experimental results demonstrate the robustness of this approach compared with state-of-the-art algorithms.

Keywords Action recognition · DMM · 3D CNN · Region adaptive

1 Introduction

Action recognition is a key step in many amazing applica-
tions areas. Potential areas of interest are wide. They include 
automated security monitoring, [1]; social applications [2]; 
intelligent transportation [3]; smart hospitals [4]; and homes 
[5].

Action recognition methods can be based on a number 
of different sources of features such as space-time interest 
points [6], improved trajectories of features and fisher vec-
tors [7, 8]. These techniques model motion in video data 
which are obviously an important source of information 
that can be used to help recognise actions. Instead of points 
of motion, less localised sources of motion can also be 

considered to model the motion of the body as a whole such 
as motion history images (MHIs) [9] and for the boundary 
as with motion boundary histograms (MBHs) [7]. Depth can 
also be incorporated with techniques such as depth motion 
maps (DMMs) [10].

These sources of, what might be considered handcrafted 
features are rich in information but not necessarily always 
able to capture all the relevant aspects of motion that might 
be needed to help a classifier to distinguish between differ-
ent actions.

The introduction of deep learning techniques such as 
convolutional neural networks (CNNs) [11] presented sig-
nificant advantages for many machine learning applications, 
not least computer vision including action recognition, see, 
e.g., [12]. Deep learning-based features extracted using, for 
example, CNNs have shown great performance over many 
traditional handcrafted features due to, in simple terms, their 
capability to learn the important aspects of actions from 
the huge amount of variation that can potentially occur in 
images and video sequences. This property has also enabled 
deep learning-based techniques to have improved invariance 
to, for example, pose, lighting and surrounding clutter [13]. 
It can also be seen that the inherent structure of CNN-based 
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techniques enables the preservation of the important rela-
tions in both the spatial and temporal dimensions [14]. As 
a part of the success of the deep learning-based methods, 
many variations in the architectures and approaches have 
been proposed.

1.1  Contributions

This work makes a number of novel contributions which are:

• Region-adaptive depth motion map (RA-DMM). Vari-
able emphasis is placed on different regions in the motion 
maps with the aid of spatially localised estimates of 
motion using optical flow.

• A system that combines multi-synthesised views and 
multi-resolution motion information with multi-resolu-
tion appearance information (RGB) within a deep learn-
ing framework for action recognition. The appearance 
information is important for assisting with object interac-
tions. Whilst the multi-resolutions assist with recognising 
the same actions performed with differing speeds. The 
synthesised views improve view invariance thus helping 
to further distinguish between actions.

• A hierarchical approach to action recognition in terms 
of recognising gross poses (i.e. standing, sitting, lying) 
and then specialised networks for the action recognition. 
This has the advantage of improving action recognition 
for the same action but in different poses. For instance, 
mobile phone usage whilst standing or sitting is more 
easily recognised given the gross pose information.

Section 2 gives an overview of related work, some disadvan-
tages and some further information regarding the contribu-
tions that this work makes. Following that, the methodology 
in sect. 3 describes the approach proposed here in this paper. 
Section 4 presents the experiments and results. Finally, Sec-
tion 5 presents the conclusions.

2  Related work

A number of techniques process single video frames as static 
CNN features [15, 16]. Others [15, 17, 18] have processed 
short video clips where video frames were employed as 
multi-channel inputs to 2D CNNs. A further development 
is the use of 3D CNNs where Ji et al. in 2013 [12] used 3D 
convolutions to incorporate both the spatial and temporal 
information of actions in video.

An extension to the conventional single-stream CNN 
model was proposed for the first time by Simonyan and 
Zisserman in 2014 [15] for action recognition. It used a 
two-stream approach to learn single-frame appearance 

information in combination with stacked optical flow of 
multiple frames which yielded improved performance.

More recently, deep learning techniques have increas-
ingly been used to utilise temporal information for action 
recognition tasks. A unique architecture was proposed in 
[19] using a long-term recurrent CNN with both RGB and 
optical flow inputs.

Temporal periods over which temporal information is 
learned and recognised can be very short, e.g. 2 frames as 
in [20]. Incorporating more temporal information can help 
improve action recognition performance, as shown by, for 
example, [12, 16, 21], and multi-temporal resolution, as used 
by [14]. These methods utilised a range of different features 
but the advantage of the multi-temporal resolution approach 
is the ability to adapt to different actions carried out at dif-
ferent speeds.

A deeper 3D CNN network called C3D was built in [21], 
and the learned motion features used different massive pub-
lic video data-sets. The features were shown to be compact 
and efficient as well as providing superior performance. The 
C3D model included eight convolution layers, five pooling 
layers, two fully connected layers.

In [22], a DMM-pyramid architecture was used to train 
both a traditional 2D CNN and 3D CNN to keep the partial 
temporal information of depth sequences for action recog-
nition. The experiments achieved comparable results with 
state-of-the-art methods in terms of a number of different 
data-sets.

A CNN model obtained from ImageNet was used in 
[23]. It was used to learn from multi-view DMM features 
for action recognition where a video was projected onto dif-
ferent viewpoints within the 3D space. Different temporal 
scales were then used from the synthesised data to constitute 
a spatiotemporal pattern of an action. Finally, three fine-
tuned models were employed independently on the result-
ing DMMs. However, a fixed number of temporal scales of 
DMM still made the spatiotemporal information limited to 
action sequences carried out over a limited range of time. 
This would also equally need more spatiotemporal informa-
tion in order for it to be recognised. In addition, some actions 
included object interactions which might be very difficult to 
discern purely from raw depth data.

In [24], a 3D CNN structure was designed to capture 
spatiotemporal features for action recognition. A support 
vector machine (SVM) classifier was then used to classify 
actions based on the captured features. Experimental results 
showed some competitive results on the KTH action recog-
nition data.

Similarly, a 3D CNN was proposed in [25] to automati-
cally extract spatiotemporal features. Then, however, a 
recurrent neural network (RNN) was used to classify each 
sequence considering the learned features for each time 
step. The experiments on the KTH data-set demonstrated 
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impressive performance in comparison with state-of-the-art 
approaches. Another use of a 3D CNN was by Taylor et al. 
in 2010 [20] with a Restricted Boltzmann Machine to learn 
spatiotemporal features.

An efficient approach was proposed by Liu et al. in 2017 
[26], which used a joint-pooled 3D deep convolutional 
descriptor applied to skeletal feature data on action recogni-
tion data. The experimental results demonstrated promising 
performance. Temporal information was exploited in [27], 
which used a deep long/short-term memory (LSTM) method 
on skeleton-based data sequences, which was then combined 
using a fusion-based approach with appearance information 
and employed for action recognition.

Deep learning-based action recognition was also pre-
sented in [28] using depth sequences and skeleton joint 
information combined. A 3D CNN structure was used to 
learn the spatiotemporal features from depth sequences, and 
then joint-vector features were computed for each sequence. 
Finally, the SVM classification results of the two types of 
features were fused for action recognition.

The 3D positional information in depth data can be fur-
ther emphasised, as was done by [29] where multiple views 
were derived of the depth data. The authors applied it to 
dynamic depth images rather than incorporating it into a 
DMM formulation.

The formulation of the DMM has also been considered. 
For instance, in [30], the authors weighted the DMM based 
on a function that varied the amount of influence from more 
recent frames. In [31], the authors extended this to multiple 
functions. In another approach in [32], the authors combined 
wearable inertial sensor data with depth camera data to 
weight DMMs. This latter approach is interesting; however, 
it requires the individual to wear and provide an additional 
source of data. Furthermore, the motion information is not 
spatially localised.

All these different sources of features are useful but most 
of them do not consider the way the motion might be carried 
out over different ranges of time. For example, the number 

of frames used in the optical flow stacking ranged between 
7 and 15 frames, such as 7, 10 and 15 frames as used in 
[12, 16, 33], respectively. This can be considered important 
in cross-actor and even for the same actor at different time 
points or similar. Appearance information is also not com-
monly used. Also, little attention is given to how different 
image regions that might be considered of higher relevance 
for different actions. Furthermore, they do not consider the 
effect of higher level information (e.g. pose) on the underly-
ing learnt feature space.

At a lower level, it can also be considered preferable to 
obtain motion information from multiple contiguous frames 
in addition to the spatial information. Therefore, more suit-
able approaches are needed to capture extra temporal infor-
mation as well as to keep the complexity of the model as low 
as possible. To this end, we propose a new hierarchical pose 
detection and action recognition system. The pre-trained 
C3D model is adapted here to learn multi-resolution fea-
tures from both the spatial and temporal dimensions using 
different contiguous frames of RGB data. Furthermore, we 
propose an adaptive Multi-resolution depth motion map cal-
culated across multiple views with important action infor-
mation learned through the 3D CNN model to provide extra 
motion-based features that emphasise the significance of 
moved parts of an action. In addition, multi-resolution raw 
appearance information (i.e. RGB) is used to exploit vari-
ous spatiotemporal features of the RGB scene which helps 
to capture more specific information that might otherwise 
be difficult to obtain from depth sequence information alone 
such as object interactions and finer image details. Our adap-
tive action recognition system is illustrated in Fig. 1.

Our automated system is developed and evaluated based 
on three well-known publicly available data-sets including 
the Microsoft Research (MSR) Action 3D data-set [34], the 
Northwestern UCLA Multiview Action 3D data-set [35] and 
the MSR daily activity 3D data-set [36]. The experimental 
results demonstrate the robustness of our approach compared 
with state-of-the-art algorithms.

Fig. 1  Framework of our hierarchical region-adaptive multi-time 
resolution depth motion nap (RAMDMM) and multi-time resolu-
tion RGB action recognition system. Each pose, Cartesian projection, 
view and time window has a separate 3D CNN and SVM. The sys-

tem is configured here to detect two poses, across seven views and 
three time resolutions in the three Cartesian planes. The RGB infor-
mation is also detected across three time resolutions. This results in 
2(3 × 7 × 3 + 3) = 132 separate 3D CNNs and SVM classifiers
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3  Methodology

Traditional depth motion maps (DMMs) are formulated 
on 2D planes by combining projected motion maps of an 
entire depth sequence. This does not consider the higher 
order temporal links between frames of depth sequences. A 
DMM can encapsulate a certain amount of the variation of 
a subject’s motions during the performance of an activity. 
Unfortunately, difficulties can arise for activities that have 
the same type of movements but performed over different 
temporal periods. Our formulation therefore includes mul-
tiple time resolutions, referred to as Multi-resolution DMM 
(MDMM). Moreover, some actions or parts of actions are 
performed with different intensities. The differences in depth 
information captured at points of fast motion are accentuated 
using a region and motion-adaptive formulation producing 
a region-adaptive MDMM (RAMDMM). This adaptivity 
helps to further differentiate between actions, particularly 
with differences in depth due to positioning compared with 
actions with fast motion. Parameters used throughout this 
work are listed in Table 1.

3.1  Depth motion maps

The basic DMM (as used in, e.g., [10, 37, 38]) includes 
projecting each depth frame onto three orthogonal Carte-
sian planes. The motion energy from each projected view 
is then stacked. This can be through a specific interval or 
through the entire sequence to generate a depth motion 
map (DMM), �v for each projection view,

where v ∈
{
xy, yz, xz

}
 indicates the Cartesian projection; 

mt
v
 is the projected map of the depth information at time 

frame t under projection view v; and N is the number of 
frames that indicates the length of the interval. DMMs can 
be represented by combining the three generated DMMs �v 
together where important information on body shape and 
motion is emphasised. Average score fusion is used here, to 
be discussed shortly in Sect. 3.3.

(1)�v(t) =

t+N−1∑
t�=t

|mt�+1
v

− mt�

v
|

Table 1  Table of parameters 
and notation

Symbol Description

�v(t) DMM, view v, time t
v ∈ {xy,yz,xz} Views, front, side, top
N Number of frames
mt

v
Projected depth map, view v, time t

� ∈ {�1, �2, �3} Window/temporal lengths
�v,� (t) DMM, view v, time t, temporal length �
ox , oy Depth map horizontal & vertical optical flow components
gt
v
, gt

v,�
Depth map magnitude optical flow

t′ Intermediate time value
�x , �y Rotation matrices
� , � Rotation angles
� Camera viewpoint
� of
v,�
(t) DMM, view v, time t, temporal length � , adaptively weighted

� of
v,�,�

(t) DMM, view v, time t, temporal length � , adaptively weighted, view angle �
�
xyz

ij
Output of CNN layer i, feature map j, position x, y, z

bij Feature map bias
w
pqr

ijm
Kernel value, layer i, feature map j from feature map m, position p, q, r

Pi,Qi,Ri ith layer kernel sizes
CNN�

v,�,�
 , CNNv,�,�

3D CNN with � frames
� �
v,�,�

(t) Adaptive DMM for view v, window � and angle �
cv,�,�(t) , SVMv,�,� SVM result for view v, window � and angle �
cdmm(t) Average score fusion over all motion SVM results for v ∈ V  , � ∈ � & � ∈ A

c
rgb
r (t) RGB action classification (SVM) for r frames

crgb(t) Average score fusion over all RGB SVM results
r ∈ R RGB frame set
c(t) Average score fusion between motion and appearance results
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3.1.1  Multi‑resolution‑in‑time depth motion maps

Mostly, a fixed number of frames have been used by other 
researchers or even the entire number of frames of an 
action sequence video to generate DMMs. But a length 
of an action is not known in advance. Hence, multi-res-
olution-in-time depth motion maps are needed to cover 
different temporal intervals and rates of an action.

To produce a Multi-resolution DMM (MDMM), the 
depth frames from a depth sequence are combined across 
three different ranges where each has a different time inter-
val. This means that various values of temporal length � 
are set to generate the MDMMs for the same action (depth 
sequence). As � ∈ N+ in traditional DMMs, this can be 
improved by � ∈

{
�1, �2, �3

}
 where �i ∈ N+ are differ-

ent temporal windows used to properly cover an action’s 
motion regardless of whether it carries important infor-
mation over a short or long duration. Each of these three 
durations produces a different DMM. The values of � are 
selected to cover short, intermediate and long durations, 
where long would typically correspond to an entire depth 
sequence for the various video sequences considered here.

These MDMMs for each depth sequence can be calcu-
lated with:

where v ∈
{
xy, yz, xz

}
 ,  �  = �i and, for example, 

� ∈
{
5, 10, All

}
 (as used here) are the various lengths of 

depth sequence used to obtain an MDMM for each single 
frame.

3.1.2  Adaptive motion mapping

As already considered, different actions can be performed 
over different time periods. The MDMM is able to include 
motion information across a range of temporal windows. 
However, each action can also be performed at different 
speeds by different people and with movement in differ-
ent locations in an image. Hence, an adaptive weighting 
approach based on the movement is applied to continu-
ously weight the interest regions to adapt to any sudden 
change in an action.

To adapt various changes in an action, an adaptive 
weighting approach based on the magnitude of the optical 
flow motion vectors is employed to build a region-adaptive 
MDMM. Firstly, motion flow vectors are extracted using 
optical flow as explained in [39] on consecutive frames. 
Then, the motion magnitude for each single pixel is com-
puted and normalised between two consecutive frames.

(2)�v,�(t) =

t+�−1∑
t�=t

|mt�+1
v

− mt�

v
|

Optical flow is computed between two consecutive pro-
jected motion depth map frames, i.e. mt

v
 and mt−1

v
 . The 

result of the optical flow function is the motion flow vec-
tor o with vector elements ox and oy in the vertical and 
horizontal directions, respectively. The motion magnitude 
of the flow vectors of each pixel can be calculated using: 
g = o

2
x
+ o

2
y
 . As the motion magnitude changes based on 

the type, speed and shape of an action movement, this can 
be utilised to improve the DMM calculation formula by 
including the motion magnitude in the DMM equation as 
a weighting function. This helps to add increased consid-
eration for higher interest regions of a DMM template as 
well as providing low consideration for other regions. In 
addition, it can make the DMM template adapt to different 
movements in an action movement. The new RAMDMM 
can be formulated as follows:

where gt�+1
v

 is the motion magnitude for view v at time point 
t� + 1 . Figure 2 shows samples of DMM templates illustrat-
ing some differences between traditional DMMs and the 
region-adaptive DMM method.

3.2  Multiple views

The 3D characteristics of the depth sequences mean that 
it is possible to calculate different viewpoints of the same 
data. This can help to improve the model by making it 
view invariant. A virtual camera can be rotated with a spe-
cific value in 3D space, which can be seen to be equivalent 
to rotate the 3D points of the depth frames.

The virtual camera can be moved within the depicted 
space, for instance, from point � to �′ . The first step is to 
move from � to �b with rotation angle � around Y-axis, 
then from �b to �′ with rotation angle � around X-axis. 
This is performed by the rotation matrices:

(3)� of
v,�
(t) =

t+�−1∑
t
�
=t

(
|mt

�
+1

v
− mt�

v
| × gt

�+1
v

)

Fig. 2  Samples of traditional (top row) and adaptive weighted (bot-
tom row) DMM templates (left to right): bend, tennis serve, forward 
kick and two hands wave
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and

The right-handed coordinate system is used for the rotation 
where the original camera viewpoint is � . Hence, the new 
coordinate of 3D point after rotation can be considered as 
follows:

where �′ is the new coordinate, and the corresponding depth 
value for the synthesised depth frames.

Our view projection method on depth sequences is similar 
to [29] except applied here to enable extraction of DMMs. 
Some results of multi-view projection are presented in Fig. 3 
with different values of � rotation angles. It can be noticed 
that more discriminative information can be obtained by 
computing RA-DMM based on the synthesised depth 
frames.

Sequences of synthesised depth frames with differ-
ent viewpoints can be synthesised from a series of these 
multi-view projections. This can contribute to better data 

(4)�x =

⎡
⎢⎢⎣

cos(�) 0 sin(�)

0 1 0

− sin(�) 0 cos(�)

⎤
⎥⎥⎦
,

(5)�y =

⎡
⎢⎢⎣

1 0 0

0 cos(�) − sin(�)

0 sin(�) cos(�)

⎤
⎥⎥⎦
,

(6)�� = �x�y�

augmentation for training processes in addition to better 
overall feature extraction.

In terms of the DMM formulation, multi-view extends 
the formulation with an additional dependency term, i.e.

where � ∈ A  is from a sequence of angular values where 
A = (−45, ..., 45) . Here, A = (−45,−30,−15, 0, 15, 30, 45) 
so that |A| = 7.

3.3  Feature extraction, classification and fusion

An effective approach was presented for action recogni-
tion in [21] to learn spatiotemporal features using a 3D 
convolutional neural network which was also trained on 
a number of different large video data-sets. The training 
settings were kept the same as the original C3D model.

A 3D CNN is able to capture temporal information 
based on 3D convolution and pooling operations which 
are performed in the spatial and temporal dimensions.

The C3D network has eight convolution layers and five 
pooling layers that followed on from each other. Two fully 
connected layers and a softmax loss layer are used to rec-
ognise at the individual action label level. The numbers 
of kernels are 64, 128, 256, 256, 512, 512, 512, 512 for 
the convolution layers. The size of all kernels in the 3D 
CNN was set to 3 × 3 × 3 with stride 1 × 1 × 1. For the 3D 
pooling layers, the kernel sizes were set to 2 × 2 × 2 with 
stride 2 × 2 × 2 except for the first pooling layer which had 
a kernel size of 1 × 2 × 2 and a stride of 1 × 2 × 2 in order 
to preserve the temporal information at the early stages. 
The fully connected layers have 4096 output units each. 
The network structure is summarised in Fig. 4.

Conventionally, the value at position (x, y, z) on the jth 
feature map in the ith layer can be formulated as follows:

(7)� of
v,�,�

(t) =

t+�−1∑
t
�
=t

(
|mt

�
+1

v,�
− mt�

v,�
| × gt

�+1
v,�

)

Fig. 3  Samples of original and synthesised depth frames ( 1st row) 
with RA-DMM ( 2nd row) after multiple viewpoints rotation when 
(left to right): � ∈ (0, 30, −30, 45, −45) respectively

Fig. 4  A summary of the network structure used here. This structure was used for the MV-RAMDMM stream and again for the RGB stream
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where tanh(.) is the hyperbolic tangent function, bij is the 
bias for this feature map, m indexes over the set of feature 
maps in the (i − 1) th layer connected to the current feature 
map, wpqr

ijm
 is the value at the position (p, q, r) of the kernel 

connected to the m feature map in the previous layer. The 
kernel sizes Ri , Pi and Qi are the temporal and spatial (height 
and width) dimensions, respectively.

Each value of the Cartesian projections v, time resolution 
� and view � has a separate 3D CNN model that is trained 
based on a set of actions. The 2D output of each 3D CNN 
is then split into temporal feature vectors, and concatena-
tion of the three orthogonal views is used to form a single 
feature vector. The dimensionality of each resulting feature 
vector is then reduced using Principal Component Analysis 
(PCA) determined from a covariance matrix of all the fea-
ture vectors. The projected feature vectors are then fed into 
different multi-class support vector machines (SVMs) [40] 
that are trained to recognise actions. The 3D CNN is trained 
to use a fixed number of input frames ( � = 16 ) for the depth 
information, i.e.

where � �
v,�,�

(t) is a scaled and colour-mapped (jet) version 
of the multi-view region-adaptive multi-temporal resolu-
tion feature data � of

v,�,�
(t) for time t. The input frame size 

of the pre-trained C3D network is also fixed. A padding 
technique and interpolation are used here to resize frames 
to the required dimensions. Following the 3D CNN feature 
extraction process, feature concatenation and dimensionality 
reduction, the SVM classification is performed:

Classification vectors are then combined across all Cartesian 
planes, resolutions and views using average score fusion of 
the form:

3.4  Multi‑resolution spatiotemporal RGB 
information

Some types of actions and motions, especially those 
that interact with objects, can be perceived better with 

(8)

�
xyz

ij

= tanh
(
bij +

∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

w
pqr

ijm
�
(x+p)(y+q)(z+r)

(i−1)m

)
,

(9)
CNN �

v,�,�
(t)

= CNN v,�,�

(
� �

v,�,�
(t),� �

v,�,�
(t − 1),… ,� �

v,�,�
(t − �)

)

(10)cv,�,�(t) = SVM v,�,�

(
CNN �

v,�,�
(t)
)
.

(11)c
dmm(t) =

1

|V × � ×A|
∑
v

∑
�

∑
�

cv,�,�(t).

appearance information rather than, for example, depth due 
to the differences in the characteristics of the object in terms 
of appearances. In addition, it is somehow difficult to capture 
the DMM information of these objects, especially when the 
object’s state is fixed or the size is relatively small.

Therefore, RGB data are utilised in this work as a source 
of the appearance information within our 3D CNN network 
model to capture discriminative spatiotemporal information 
of both subjects and interacting objects. Moreover, different 
temporal scales are used to cover different temporal ranges 
in the RGB scene, the same as for RAMDMM. This can 
help to mitigate against problems that might arise due to 
variations in the speed at which actions are performed that 
could result with different action performers. Three temporal 
scales are employed across three independently fine-tuned 
C3D models (in fixed mode for � = 16 but then updated 
to use a variable number of inputs with � ∈ {10, 25} ), the 
outputs of which are fed into three independently trained 
multi-class support vector machines (SVMs). The outputs of 
the SVM classifiers are then combined together via average 
score fusion to form the multi-resolution RGB information:

where crgbr  is the action classification vector for the RGB 
image frames taken across a time window of r frames.

An overall average score fusion is then used to derive the 
final classification vector, given by

3.5  People detection and pose classification

The action recognition system can be made to perform well 
across a wide range of actions; however, this task can be 
further enhanced if the person performing an action can be 
localised in the image space. This helps remove extrane-
ous background clutter and distractors. The performance of 
the system can also be further enhanced if the pose of the 
person can be detected prior to action recognition. It can be 
considered that this would help to provide the classification 
system with a better defined delineation between different 
actions performed in different poses. For instance, using a 
telephone whilst standing or sitting could produce a range of 
features that may not be that well connected in feature space 
or separated from other features from other actions.

Person detection is performed here using the Faster 
R-CNN [41] person detector based on the AlexNet [11] 
model as a network structure but transformed into a region 
proposal network (RPN), with the use of a ROI max pooling 
layer and classification layers.

(12)c
rgb(t) =

1

|R|
∑
r∈R

c
rgb
r
(t)

(13)c(t) =
1

2

(
c
rgb(t) + c

dmm(t)
)
.
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A few samples from the RGB data of the utilised data-
sets are used to create the ground-truth training data. After 
training, the created Faster R-CNN network is then used 
for person detection on the RGB data. This can help to 
eliminate the noise of the background environment in the 
action recognition process as can be seen in Section 4.

Pose detection is performed here using a specially 
adapted AlexNet pre-trained model [11] using transfer 
learning to classify the pose of an occupant out of three 
specified poses (sitting, standing and laying).

4  Experiments and results

Three public data-sets are used to evaluate the proposed 
method for action recognition: Northwestern UCLA Mul-
tiview Action 3D data-set [35]; Microsoft Research (MSR) 
Action 3D data-set [34]; and the MSR daily activity 3D 
data-set [36].

The overall steps and parameter values that are 
employed on the data-sets for feature extraction and action 
recognition are summarised as follows:

• Project the original depth sequence into different views 
with � ∈ (45, 30, 15,  −15,−30,−45) , which results in 
six synthesised views of the data and the original at 
� = 0;

• Compute Cartesian projections of the seven views;
• Compute motion vectors’ magnitude using optical flow 

algorithm over the original and synthesised sequences;
• Compute RA-DMMs for each sequence of original and 

synthesised sequences;
• Each action sequence is split into 16 frame subsequences 

in terms of RA-DMMs and 10-, 16-, 25-frame subse-
quences for the RGB information to train the 3D CNNs;

• Compute RA-DMM of each sequence of original and 
synthesised sequences using subsequence concatenation, 
dimensionality reduction and then average score fusion 
of three map templates;

• Multi-resolution RA-DMM computed using average 
score fusion for RA-DMM windows (5, 10, all );

• Multi-view RAMDMM computed using average score 
fusion of SVM classifiers for all RAMDMM across dif-
ferent views;

• Multi-resolution RGB (depth in MSR 3D action data-
set) information computed using average score fusion of 
SVM classifiers for {10, 16, 25} frames;

• Overall proposed system achieved with average score 
fusion between MV-RAMDMM and MR-RGB.

A summary of the parameter values can be seen in Table 2.

4.1  Northwestern UCLA data‑Set

Northwestern UCLA Multiview action 3D data-set [35] has 
three Kinect cameras used to capture RGB, depth and human 
skeleton data simultaneously. This data-set includes ten dif-
ferent action categories: pick up with one hand, pick up with 
two hands, drop trash, walk around, sit down, stand up, don-
ning, doffing, throw and carry. Each action is performed by 
ten actors. In addition, this data-set consists of a variety of 
viewpoints.

We evaluate our proposed method with two different 
training and testing protocols for this data-set:

• Cross-subject training scenario: In this setting, we use 
the data of nine subjects as training data and leave the 
data of the remaining subject as test data. This is use-
ful to show the performance of the recognition system 
across subjects. Furthermore, this is a standard criteria 
for comparison with the state of the art.

• Cross-view training scenario: As this data-set contains 
three view cameras, we use the data of two cameras as 
training data and leave the remaining camera as test data. 
This kind of setting is used to demonstrate the ability of 
the recognition system to perform with different views 
and to get another standard criteria to compare with the 
state of the art.

These settings give the opportunity to evaluate the proposed 
system with variations for different subjects and different 
views. The proposed method achieves an interesting set 
of results for the complete system demonstrating state-of-
the-art performance as can be seen shortly. But first, let us 
examine the performance of the individual streams with 
individual inputs.

4.1.1  Multi‑resolution‑in‑time appearance information

To start, the classification performance using multi-tempo-
ral resolution RGB data as an input to the 3D CNN model 
(C3D) is investigated together with the multi-class SVM 
classifier based on the aforementioned evaluation scenarios. 
Three temporal resolutions are used in terms of the RGB 
model including 10, 16, 25 windows. The trainable layers are 
adapted in the 3D CNN model when a nonconformant input 

Table 2  Table of parameter values

Symbol Values

� ∈ � {5, 10, All}

� ∈ A (−45,−30,−15, 0, 15, 30, 45)

� 16 (C3D specific)
r ∈ R For RGB where R = {10, 16, 25}
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is used, i.e. � ∈ 10, 25 . An average score fusion is employed 
between the three SVMs to produce the multi-temporal 
resolution of the RGB data for action recognition. Table 3 
includes the results of the different temporal resolutions for 
the RGB data in addition to the average score fusion result.

As we can see in Table 3, the fine-tuned C3D model 
achieves good performance in terms of cross-subject and 
cross-view classification schemes. The model already 
achieves relatively good recognition rates, particularly as 
the temporal window increases. It can be seen that C3D 
with multi-class SVM classification on RGB data alone 
with 25 temporal frames achieves the highest recognition 
performance of 88.23% and 70.32% in terms of cross-sub-
ject and view evaluation schemes, respectively. This reduces 
to 78.12%, 61.79% and 67.44%, 56.71% when 16 and ten 
temporal frames are used, respectively. Finally, the highest 
overall recognition performance is achieved when average 
score fusion is employed, combining the outputs of the three 
temporal results, again for RGB scene information only.

4.1.2  Multi‑resolution‑in‑time region‑adaptive depth 
motion maps

The region-adaptive DMM (RADMM) templates are cal-
culated across the three temporal resolutions to form the 
multi-resolution DMM template, referred to as RAMDMM. 
These are used to learn discriminative features encapsulating 
depth, time and motion information. Results demonstrating 
the improvements achieved for the depth across multiple 
time windows are shown in Table 4. A similar trend as was 
seen for the appearance information can be observed for 
these results, i.e. a greater time window increases recog-
nition performance, which is further improved by average 
score fusion for all time windows combined.

4.1.3  Combining RAMDMM‑, multi‑view‑ 
and appearance‑based multiple sequences

The depth, time and motion information is then further com-
bined across multiple synthesised views to produce MV-
RAMDMM-based action recognition. At the end, an average 
score fusion is employed between the MR-RGB and MV-
RAMDMM to utilise appearance, motion, shape and histori-
cal information based action recognition. Table 5 includes 
the results of the proposed method at different stages in the 
action recognition. The results in Table 5 appear to show 
that the different views of RAMDMM encapsulated within 
the MV-RAMDMM streams help to significantly improve 
the recognition rate for both the cross-subject and cross-
view settings. In addition, an average score fusion between 
MV-RAMDMM and MR-RGB gives the opportunity to 
share a variety of important information for action recog-
nition, improving the recognition accuracy in comparison 
with individual model classification reaching to 97.15 % and 
86.20 % in terms of cross-view and cross-subject evaluation 
schemes, respectively. This can be compared to state-of-the-
art approaches as seen in Table 6.

Table 3  Results of the fine-tuned C3D model with a multi-class SVM 
classifier for different time resolutions of the RGB data for the North-
western UCLA data-set.

Settings RGB
10

RGB
16

RGB
25

RGB
fusion

Cross-subject 67.44 78.12 88.23 91.51
Cross-view 56.71 61.79 70.32 72.20

Table 4  Results of the proposed model used RADMM and RAM-
DMM templates in terms of the Northwestern UCLA data-set

Settings 5 10 All RAMDMM

Cross-subject 79.14 86.10 91.32 93.87
Cross-view 61.20 67.22 75.95 77.15

Table 5  Results of the proposed model used RAMDMM, MV-RAM-
DMM templates and average score fusion with MR-RGB in terms of 
the Northwestern UCLA data-set

Settings RAMDMM MV-RAMDMM MV-
(RAMDMM+RGB)

Cross-subject 93.87 96.30 97.15
Cross-view 77.15 84.52 86.20

Table 6  A comparison between the proposed method and state-of-
the-art approaches in terms of Northwestern UCLA data-set

Paper Cross-subject Cross-view

Virtual view [42] 50.7 47.8
Hankelet [43] 54.2 45.2
MST-AOG [35] 81.6 73.3
Action Bank [44] 24.6 17.6
Poselet [45] 54.9 24.5
Denoised-LSTM [46] – 79.6
tLDS [47] 93.0 74.6
MVDI [29] – 84.2
kine-CNN [48] – 75.6
R-NKTM [49] – 78.1
Denoised-LSTM [50] – 79.6
VE-LSTM [51] – 87.2
E-TS-LSTM [52] – 89.2
Ours 97.2 86.2



 Pattern Analysis and Applications

1 3

It can be seen in Table 6 that Virtual view [42] and Han-
kelet [43] methods are limited in their performance, which 
reflects the challenges of the Northwestern UCLA data-set 
(e.g. noise, cluttered backgrounds and various viewpoints). 
To mitigate these challenges, MST-AOG was proposed in 
[35] and achieved 81.60%. Our method achieves a significant 
improvement of 18% over MST-AOG and some comparable 
performance for the cross-view setting due to the big chal-
lenge in a cross-view setting. A confusion matrix of the pro-
posed method is shown in Figure 5 using spatial and motion 
information in terms of the Northwestern UCLA multi-view 
action 3D data-set.

4.2  MSR 3D action data‑set

The Microsoft Research (MSR) Action 3D data-set [34] is 
an action data-set consisting of depth sequences with 20 
actions: high arm wave, horizontal arm wave, hammer, hand 
catch, forward punch, high throw, draw cross, draw tick, 
draw circle, hand clap, two hands wave, side-boxing, bend, 
forward kick, side kick, jogging, tennis serve, golf swing, 
pick up and throw. Each action is performed three times, 
each by ten subjects. A single point of view is used where 
the subjects were facing the camera whilst performing the 
actions. The data-set has been split into three groups based 
on complexity: AS1, AS2 and AS3 as used in many studies 
see, for example, [10, 34, 38, 53].

The action subsets are summarised in Table 7. All valida-
tion schemes make use of the three subsets.

Three evaluation schemes are considered in the litera-
ture (see, for example, [54]) in terms of the MSR action 3D 
data-set:

• One-third evaluation scheme: One-third of the instances 
are used as training samples and the reminder as testing 
samples. The one-third scheme splits the data-set using 
the first repetition of each action performed by each sub-
ject as training, and the rest for testing.

• Two-thirds evaluation scheme: Two-thirds of the 
instances are used as training samples and the remainder 
as testing samples. The two-thirds scheme splits the data-

set into training samples using two repetitions of each 
action performed by each subject, and testing uses the 
rest of the data.

• Cross-subjects evaluation scheme: half of the subjects 
are used as training samples, and the other half are used 
as testing samples. Any half of the subjects can be used 
for testing, e.g. 2, 4, 6, 8 and 10, and the rest for training, 
i.e. 1, 3, 5, 7 and 9 (as used here).

Each subset has eight actions that can be used to evaluate the 
proposed method in terms of 1/3, 2/3 and cross-subject vali-
dation schemes. These can help to assess the performance of 
the proposed method against different training settings such 
as shortage of training samples, many training samples and 
variations between different subjects.

Similar to the experiments conducted above for the 
Northwestern UCLA 3D action data-set, a series of pro-
gressive sets of experiments are carried out.

4.2.1  Depth information

This data-set only has depth information (no appear-
ance information). Therefore, instead of RGB-based 
appearance information, the depth frames are used. The 
pre-trained C3D network is individually implemented 
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Fig. 5  Confusion matrices of the proposed method, using view-set-
ting validation scheme in terms of Northwestern UCLA data-set

Table 7  Subsets of MSR action 3D data-set [34]

AS1 AS2 AS3

Horizontal arm wave High arm wave High throw
Hammer Hand catch Forward kick
Forward punch Draw tick Side kick
High throw Draw cross Jogging
Hand clap Draw circle Tennis swing
Bend Two-hand wave Tennis serve
Tennis serve Side-boxing Golf swing
Pick-up and throw Forward kick Pick-up and throw

Table 8  Performance of the C3D model based on multi-resolution 
depth information in terms of MSR 3D Action data-set

Subsets Scheme Depth
10

Depth
16

Depth
25

Depth
fusion

AS1 1/3 64.80 65.32 72.87 74.51
2/3 75.30 76.71 77.14 80.10
Cross 47.82 53.81 57.20 60.20

AS2 1/3 58.40 61.23 67.01 71.40
2/3 61.72 68.18 74.89 76.72
Cross 50.61 51.59 55.20 56.91

AS3 1/3 65.23 69.10 71.60 74.82
2/3 69.17 78.43 80.94 81.10
Cross 51.21 57.51 59.88 61.13



Pattern Analysis and Applications 

1 3

based on depth data (instead of RGB) with various tem-
poral frames 10, 16, 25 for the different MSR evalua-
tion schemes. Then, an average score fusion is employed 
between the models to show the effect on the recogni-
tion rate. Table 8 includes the results of the C3D network 
implementation based on depth data alone.

Again, the recognition performance is improved with 
greater temporal windows and with different temporal 
dimensions combined by average score fusion, making the 
system more robust against speed variations. This demon-
strates the utilisation of shape and temporal information 
from the depth sequences in the recognition process.

4.2.2  Multi‑resolution‑in‑time region‑adaptive depth 
motion maps

The performances of the multi-stream 3D CNNs, SVM clas-
sifiers and average score fusion across the different clas-
sifiers are now demonstrated for different lengths of the 
region-adaptive DMM (RA-DMM) templates on the MSR 
3D action data-set. As before, these constitute the RA-
DMM for multiple time resolutions to form the RAMDMM. 
Table 9 includes the results of the recognition model based 
on RADMM and RAMDMM information templates for dif-
ferent temporal windows.

The results in Table 9 includes the recognition perfor-
mance for individual RADMM information along with 
multiple RADMM (RAMDMM). These results appear to 
show that learning actions’ features based on RAMDMM 
is better than using either traditional DMM or individual 
length RADMMs. Moreover, it appears to show that shar-
ing a variety of information available from the features by 
average score fusion between different models can improve 
the performance of the recognition system.

4.2.3  Combining RAMDMM‑, multi‑view‑ and depth‑based 
multiple sequences

Table 10 shows the effects of the multi-view RAMDMM 
(MV-RAMDMM) templates and the effect of the multi-
resolution spatiotemporal information on the recognition 

Table 9  Performance based on different lengths of RADMM, RAM-
DMM, average score fusion in terms of MSR 3D Action data-set

Subsets Scheme 5 10 All RAMDMM

AS1 1/3 72.10 79.34 95.32 96.53
2/3 78.33 85.49 96.19 98.70
Cross 62.95 63.87 85.50 88.31

AS2 1/3 74.42 77.13 94.11 95.90
2/3 76.16 80.21 95.86 96.91
Cross 57.39 62.04 80.27 83.89

AS3 1/3 76.89 81.56 95.87 97.20
2/3 80.29 84.98 96.92 98.38
Cross 63.70 66.87 87.16 90.42

Table 10  Performance of the 
recognition model based on 
RADMM, MV-RAMDMM, 
average fusion of 
MV-RAMDMM and MR-RGB 
C3D models in terms of MSR 
3D Action data-set

Subsets Scheme RAMDMM MV-RAMDMM MV-
(RAMDMM+depth)

AS1 1/3 96.53 97.90 99.21
2/3 97.86 98.70 99.91
Cross 88.31 91.28 97.95

AS2 1/3 95.90 97.40 99.08
2/3 96.91 97.89 99.94
Cross 83.89 89.11 95.89

AS3 1/3 97.20 98.33 99.89
2/3 98.21 98.76 99.96
Cross 90.42 94.80 95.77
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accuracy of the system also combined with the depth 
sequences investigated in Section 4.2.1.

Figure 6 shows the confusion matrices of the recogni-
tion system using the proposed models under cross-subject 
evaluation schemes in terms of AS1, AS2 and AS3 subsets 
of MSR 3D action data-set.

Further, a comparison between the proposed method and 
the state-of-the-art approaches for human action recogni-
tion is presented in Table 11 in terms of the MSR Action 
3D data-set under the aforementioned evaluation schemes.

It can be seen that our method outperforms the state-of-
the-art approaches for the majority of cases and in others 
achieves at least comparable performance. Even though 
some of them are DMM-based methods such as [59] and 
[10], our method achieves greater recognition rate in the 
range of 1–6%. This appears to indicate that MV-RAM-
DMM- and spatiotemporal information-based features 
can provide more powerful discrimination. Our approach 
utilises adaptive multiple hierarchical features that cover 
various periods of an action. In addition, the pre-trained 
recognition model uses a diverse range of layers which 
improves the chances to obtain the most accurate recogni-
tion performance.

4.3  MSR 3D Daily activity

The Microsoft Research (MSR) daily activity 3D data-set 
is among the most challenging data-sets because of a high 
level of intra-class variation, and many of the actions are 

based on object interaction. An action with object interac-
tion is where the subject is interacting with an object when 
performing an action. This data-set has been captured by a 
Kinect sensor. It consists of depth and RGB sequences and 
includes 16 activities: drink, eat, read book, call cellphone, 
write on a paper, use laptop, use vacuum cleaner, cheer up, 
sit still, toss paper, play game, lay down on sofa, walk, play 
guitar, stand up and sit down. Performed by ten subjects, 
each subject performs an action twice in two different poses 
(standing and sitting).

Different evaluation schemes have been considered in 
the literature in terms of MSR daily activity 3D data-set. 
Here, similar to [23], a cross-subject validation is per-
formed with subjects 1, 3, 5, 7, 9 for training and sub-
jects 2, 4, 6, 8, 10 for testing. The person and pose detec-
tion steps are used to detect and localise a person within 
a frame, and pose detection is used to identify the pose, 
whether sitting or standing.

Table 11  Performance of the 
proposed method compared to 
the state-of-the-art approaches 
in terms of the MSR action 3D 
data-set [34]

Method Accuracy %

1/3 Scheme 2/3 scheme Cross subject scheme

AS1 AS2 AS3 Av. AS1 AS2 AS3 Av. AS1 AS2 AS3 Av.

Li et al. [34] 89.5 89.0 96.3 91.6 93.4 92.9 96.3 94.2 71.9 72.9 79.2 74.7
DMM-HOG [10] 97.3 92.2 98.0 95.8 98.7 94.7 98.7 97.4 96.2 84.1 94.6 91.6
Chen et al. [38] 97.3 96.1 98.7 97.4 98.6 98.7 100 99.1 96.2 83.2 92.0 90.5
HOJ3D [53] 98.5 96.7 93.5 96.2 98.6 97.2 94.9 97.2 88.0 85.5 63.6 79.0
Chaaraoui et al. [55] – – – – – – – – 91.6 90.8 97.3 93.2
DMM-HOG-KECA [56] – – – – – – – – 90.6 90.7 99.1 93.5
Vemulapalli et al. [57] – – – – – – – – 95.3 83.9 98.2 92.5
STOP [58] 98.2 94.8 97.4 96.8 99.1 97.0 98.7 98.3 91.7 72.2 98.6 87.5
DMM-LBP-FF [59] 96.7 100 99.3 98.7 100 100 100 100 98.1 92.0 94.6 94.9
DMM-LBP-DF[59] 98.0 97.4 99.3 98.2 100 100 100 100 99.1 92.9 92.0 94.7
tLDS [47] – – – – – – – – 96.81 89.14 98.83 94.85
CNN, SAE [60] – – – – – – – – – – – 74.6
3D CNN, DHI [61] – - – – – – – – – – – 92.8
VB-DMM [62] 98.0 97.4 99.3 98.2 98.6 100 100 99.5 99.1 92.3 98.2 96.5
DRN[63] – – – – – – – – 99.9 99.8 100 99.9
DMLAE[64] – – – – – – – – – – – 84.0
Ours 99.2 99.1 99.8 99.3 99.9 99.9 99.8 99.9 97.9 95.8 95.7 96.5

Table 12  Results of using multi-temporal resolution RGB data for the 
MSR 3D daily activity data-set

RGB
10

RGB
16

RGB
25

RGB
All

Sit 53.73 57.50 64.48 65.90
Stand 51.20 56.81 61.11 63.79
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4.3.1  Multi‑resolution‑in‑time appearance information

Firstly, multiple temporal resolutions (10, 16, 25) of RGB 
information are investigated separately with the fine-tuned 
C3D models. The outputs of these models are, as usual, 
classified using different SVMs. As before, the SVM out-
puts are combined using average score fusion. The results 
for this purely multi-temporal appearance-based recogni-
tion subsystem are shown in Table 12.

It can be seen in Table 12 that, as before, the robust-
ness of the proposed model improves with an increase in 
the number of frames included in the system with the best 
combining the results from all temporal resolutions. This 
data-set is often considered to be much more complicated 
than others due to the two different scenarios for each sin-
gle action, but the hierarchical strategy with the fine-tuned 
model is able to achieve comparable results based on RGB 
raw data. Moreover, a reasonable overall performance is 
also achieved that reaches 64.85% when an average recog-
nition rate is employed.

4.3.2  Multi‑resolution‑in‑time region‑adaptive depth 
motion maps

As before, the RADMMs templates for three different tem-
poral windows are computed and fed into fine-tuned C3D 
models, multi-class SVMs, the results of which constitute 
the RAMDMM for action recognition. Competitive results 
are achieved using these improved multiple temporal reso-
lutions as can be seen in Table 13

For MV-RAMDMM, the performance reaches 89.00% 
and 86.00% within sitting and standing poses as presented 
in Table 14.

Further improvements can be seen by involving the 
multi-resolution spatiotemporal RGB information. Aver-
age score fusion improves the recognition of some objects’ 
interaction actions and accomplishes 89% and 86% in 
terms of sitting and standing poses, respectively. The 
overall recognition rate of all data-sets can be calculated 
by taking the average of the two poses’ recognition rates 
which reaches 87.5%. Figure 7 shows the confusion matrix 
of the hierarchical recognition system in terms of MSR 3D 
daily activity data-set.

A comparison between the proposed method and state-
of-the-art approaches for action recognition is introduced 
in Table 15 in terms of MSR 3D daily activity data-set.

In Table 15, it can be seen that limited accuracy was 
previously achieved by LOP [36]- and DMM [10]-based 
approaches. Local HON4D was designed in [65] to tackle 
this kind of limitation and achieved a recognition rate 
of 80.00%. Actionlet Ensemble in [36] and SNV in [66] 
achieved a recognition rate that reaches 85.75% and 86.25%, 
respectively. These used a combination of depth and skel-
eton data. A recent method in [23] indicated the importance 
of DMM information and suggested the use of temporal 
depth motion maps and fine-tuned convolutional models. 
It achieved a relatively competitive result of 85.00%. Our 
method achieves comparable results with an improvement 
over some methods using our MV-RAMDMM and the spa-
tiotemporal information of the C3D model. However, our 
method performed worse than the Range Sample [67] tech-
nique. This can be explained due to the noisy, complex and 

Table 13  Results of RADMM, RAMDMM and MV-RMDMM with 
MR-RGB in terms of sitting pose of the MSR 3D daily activity data-
set

5 10 All RAMDMM MV-RAM-
DMM

MV-(RMDMM 
+ RGB)

65.19 70.57 79.90 81.32 87.76 89.00

Table 14  Results of RADMM, RAMDMM and MV-RMDMM with 
MR-RGB in terms of standing pose of the MSR 3D daily activity 
data-set

5 10 All RAMDMM MV-RAM-
DMM

MV-
RMDMM+RGB

64.92 68.70 77.18 78.66 83.53 86.00
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Play game 0 0 6 0 0 70 10 0 0 0 14 0 0 0 0 0
Play guitar 0 5 0 0 0 0 82 0 0 0 3 0 10 0 0 0
Read book 0 0 0 0 0 0 0 80 0 0 6 0 0 0 0 14
Sit down 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0
Stand up 0 0 0 0 0 0 0 0 11 85 4 0 0 0 0 0

Still 0 0 0 0 0 9 0 0 4 0 87 0 0 0 0 0
Toss paper 1 0 0 0 0 0 0 0 1 0 2 96 0 0 0 0
Use laptop 0 0 0 0 0 0 8 0 0 0 2 0 90 0 0 0

Use vacuum cleaner 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0
Walking 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

Write on a paper 0 0 0 0 0 2 0 8 0 0 1 0 0 0 0 89

C
al
lc
el
lp
ho

ne

C
he

er
up

D
ri
nk

E
at

L
ay

do
w
n
on

so
fa

Pl
ay

ga
m
e

Pl
ay

gu
ita

r

R
ea
d
bo

ok

Si
td

ow
n

St
an

d
up

St
ill

To
ss

pa
pe

r

U
se

la
pt
op

U
se

va
cu

um
cl
ea
ne
r

W
al
ki
ng

W
ri
te

on
a
pa

pe
r

Call cellphone 64 0 21 2 0 0 0 0 0 0 0 13 0 0 0 0
Cheer up 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Drink 11 0 81 2 0 0 0 0 0 0 0 6 0 0 0 0
Eat 1 0 8 90 0 0 0 0 0 0 0 1 0 0 0 0

Lay down on sofa 0 0 0 0 89 0 0 0 11 0 0 0 0 0 0 0
Play game 0 0 3 0 0 67 3 0 0 0 22 0 5 0 0 0
Play guitar 0 0 0 0 0 0 88 0 0 0 5 0 7 0 0 0
Read book 0 0 0 0 0 0 0 84 0 0 2 0 2 0 0 12
Sit down 0 0 0 0 4 0 0 0 94 2 0 0 0 0 0 0
Stand up 0 0 0 0 0 0 0 0 10 83 7 0 0 0 0 0

Still 0 0 0 0 0 15 0 0 0 7 78 0 0 0 0 0
Toss paper 2 1 0 0 0 0 0 0 0 0 7 92 0 0 0 0
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Fig. 7  Confusion matrices of the proposed method through standing pose (right) and sitting pose (left) in terms of daily activity 3D data-set
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dynamic background of this data-set which can introduce 
significant noise in the RAMDMMs. Moreover, the Range 
Sample [67] method contained a technique that used skel-
eton data to eliminate the noise from the background. The 
confusion matrices in terms of MSR daily activity 3D data-
set are shown in Fig. 7.

5  Conclusions

A novel feature representation technique for RGB-D data 
has been presented that enables multi-view and multi-tem-
poral action recognition. A multi-view and multi-resolution 
region-adaptive depth motion maps (RA-DMMs) represen-
tation is proposed. The different views include the origi-
nal and synthesised viewpoints to achieve view-invariant 
recognition. This work also makes use of temporal motion 
information more effectively. It integrates it into the depth 
sequences to help build in, by design, invariance to varia-
tions in an action’s speed. An adaptive weighting approach 
is employed to help differentiate between the most impor-
tant stages of an action. Appearance information in terms 
of multi-temporal RGB data is used to help retain a focus 
on the underlying appearance information that would oth-
erwise be lost with depth data alone. This helps to provide 
sensitivity to interactions with small objects. Compact and 
discriminative spatiotemporal features are extracted using a 
series of fine-tuned 3D convolutional neural networks (3D 
CNNs). In addition, a pose estimation system is employed to 

achieve a hierarchical recognition structure. This helps the 
model to recognise the same action but with different posi-
tions. Multi-class support vector machines (SVMs) are used 
for action classification. Then, late score fusion technique is 
employed between different streams for the final decision.

The proposed method is robust enough to recognise 
human activities even with small differences in actions. 
This is in addition to achieving improved performance that 
is invariant to multiple viewpoints and providing excellent 
performance on actions that partly depend on human–object 
interactions. The system also remains invariant to a noisy 
environment and errors in the depth maps and temporal 
misalignments.

The proposed approach has been extensively validated on 
three benchmark data-sets: MSR 3D actions, Northwestern 
UCLA multi-view actions and MSR daily activities. The 
experimental results have demonstrated the great perfor-
mance of the proposed method in comparison with state-of-
the-art approaches.
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