125 research outputs found

    Path-Loss Prediction for an Industrial Indoor Environment Based on Room Electromagnetics

    Get PDF

    Time dynamic channel model for broadband fixed wireless access systems

    Get PDF
    Abstract Broadband fixed wireless access (BFWA) systems have been recognized as an effective first kilometer solution for broadband services to residential and business customers. The large bandwidth available in frequency bands above 20 GHz makes radio systems with very high capacities possible. Users can be offered bit rates in the order of several hundred Mbit/s, making (in terms of capacity) such radio links an alternative to optical fibre in many cases. High capacities BFWA links can be used to serve individual users directly or function as a backbone for lower capacity systems (both wire line and wireless) for local distribution of data. In addition, wireless always offers the freedom of broadband being away from the fixed access point. At mm-wavelengths the signals are sensitive to time dynamic propagation degradation caused by precipitation, vegetation and reflections/multipath from e.g. building surfaces. BFWA need to cope with location and time dependent interference and employ techniques such as interference cancellation and adaptive modulation and coding to optimise throughput during varying traffic load conditions. Multiple input multiple output (MIMO) and space-time coding, as well as adaptive (smart) antennas require knowledge of the channel dynamics as well. The objective of this master thesis is to develop a realistic time dynamic channel model for BFWA operating above 20 GHz utilising adaptive physical layer techniques. The channel model developed represents the time varying wideband channel impulse response including degradations due to multipath propagation, rain attenuation and vegetation fading. The channel model is suitable for simulating mitigation techniques for interference between base stations as well as adaptive modulation and coding techniques. The Maseng-Bakken statistical dynamic model of rain attenuation was adapted to model the rain attenuation. The dynamic vegetation effect was modelled as Nakagami-Rice distribution with K-factor depending on wind speed. A generic tapped delay line model was developed, in which the number of taps depend on maximum tap delay. This thesis is based on work in the project BROADWAN (www.broadwan.org), partly funded under the Information Society Technologies (IST) priority of the European Commission Sixth Framework Program.

    Communication Technologies for Smart Grid: A Comprehensive Survey

    Full text link
    With the ongoing trends in the energy sector such as vehicular electrification and renewable energy, smart grid is clearly playing a more and more important role in the electric power system industry. One essential feature of the smart grid is the information flow over the high-speed, reliable and secure data communication network in order to manage the complex power systems effectively and intelligently. Smart grids utilize bidirectional communication to function where traditional power grids mainly only use one-way communication. The communication requirements and suitable technique differ depending on the specific environment and scenario. In this paper, we provide a comprehensive and up-to-date survey on the communication technologies used in the smart grid, including the communication requirements, physical layer technologies, network architectures, and research challenges. This survey aims to help the readers identify the potential research problems in the continued research on the topic of smart grid communications

    Characterization of dynamic wireless body area network channels during walking

    Get PDF
    In this work, finite-difference time-domain was used for the investigation of dynamic wireless body area network channel characteristics during walking, thus accounting for dynamic aspects and body postures. This involves the study of on-body, off-body, and body-to-body communication in an empty environment, at the center frequency of 2.45 GHz. The channels were investigated in terms of fade variation and their corresponding amplitude distributions. For on-body channels, the fade variation was found to be periodic, with larger fade variations for the channels involving the nodes at the hand and thigh. For off-body and body-to-body channels, channels with the absence of line of sight experienced constructive and destructive interference as the distance between the end nodes changes, resulting in larger fade variations. For the amplitude distribution of the channels, a multivariate normal distribution was considered. The distribution has the capability of modeling channels jointly which makes it easier for network analysis and was considered because of the significant correlation between the channels. The resulting estimated multivariate distributions fit well with the simulated data, for on-body, off-body, and body-to-body channels

    Characterization of off-body area network channels during walking

    No full text
    In this work, the off-body area network channel characteristics during walking were investigated using finite-difference time-domain. The channels were investigated in terms of fade variation and the correlation between different channels. Larger fade variations were experienced by the channel with the absence of line-of-sight, due to constructive and destructive interference as the distance between the end nodes changes. The channels showed significant correlation and hence a multivariate normal distribution was considered. The distribution has the capability of modeling channels jointly which make it easier for network analysis. The resulting estimated multivariate distributions fit well with the simulated data

    On Performance Characterization of Cascaded Multiwire-PLC/MIMO-RF Communication System

    Get PDF
    The flexibility of radio frequency (RF) systems and the omnipresence of power cables potentially make the cascaded power line communication (PLC)/RF system an efficient and cost-effective solution in terms of wide coverage and high-speed transmission. This letter proposes an opportunistic decode-and-forward (DF)-based multi-wire/RF relaying system to exploit the advantages of both techniques. The outage probability, bit error rate, and system channel capacity are correspondingly chosen to analyze the properties of the proposed system, which are derived in closed-form expressions and validated via Monte-Carlo simulations. One can observe that our proposed system outperforms the wireless-only system in terms of coverage and data rate, especially when there exists a non-line-of-sight (NLoS) connection between the transmitter and receiver pair.Comment: 5 pages, 4 figure

    On the impact of link layer retransmission schemes on TCP over 4G satellite links

    Get PDF
    We study the impact of reliability mechanisms introduced at the link layer on the performance of transport protocols in the context of 4G satellite links. Specifically, we design a software module that performs realistic analysis of the network performance, by utilizing real physical layer traces of a 4G satellite service. Based on these traces, our software module produces equivalent link layer traces, as a function of the chosen link layer reliability mechanism. We further utilize the link layer traces within the ns-2 network simulator to evaluate the impact of link layer schemes on the performance of selected Transmission Control Protocol (TCP) variants. We consider erasure coding, selective-repeat automatic request (ARQ) and hybrid-ARQ link layer mechanisms, and TCP Cubic, Compound, Hybla, New Reno and Westwood. We show that, for all target TCP variants, when the throughput of the transport protocol is close to the channel capacity, using the ARQ mechanism is most beneficial for TCP performance improvement. In conditions where the physical channel error rate is high, hybrid-ARQ results in the best performance for all TCP variants considered, with up to 22% improvements compared to other schemes

    Geometry-Based Modeling of Wideband Industrial Indoor Radio Propagation Channels

    Get PDF
    In this paper, we present a geometrical scattering model for a typical class of industrial indoor environments. The proposed industrial reference model takes into account scattering components arising from metallic structures and the surrounding walls of the investigated environment. Starting from the geometrical scattering model, we derive the analytical expressions of the probability density function (PDF) of the angle of arrival (AoA), PDF of the time of arrival (ToA), and the autocorrelation function (ACF) in the frequency domain. The obtained results reveal a large difference between industrial channels and other home and office environments. The theoretical results of the reference model are validated by simulation results of a channel simulator designed by employing the sum-of-cisoids (SOC) principle. The proposed channel model is useful for the design and performance evaluation of wireless communication systems operating in industrial environments.acceptedVersionnivå

    Performance of full-duplex wireless back-haul link under rain effects using e-band 73 GHz and 83 GHz in tropical area

    Get PDF
    This paper presents rain attenuation effects on the performance of the full-duplex link in a tropical region based on one-year measurement data at 73.5- and 83.5-GHz E-band for distances of 1.8 km (longer links) and 300 m (shorter links). The measured rain attenuations were analyzed for four links, and the throughput degradation due to rain was investigated. The findings from this work showed that the rain attenuation for both frequencies (73.5 and 83.5 GHz) of E-band links are the same. The rain rates above 108 and 193 mm/h caused an outage for the longer and shorter links, respectively. The 73.5 and 83.5 GHz bands can support the full-duplex wireless back-haul link under rainy conditions with outage probability of 2.9 × 10-4 and 6 × 10-5 for the longer and shorter links, respectively. This work also finds that the heavy rain with rain rates above 80 mm/h for long link and 110 mm/h for short link causes about 94% and 0.90% degradation of maximum throughput. The application of these findings would help improve the architecture and service of full-duplex wireless E-band links that are established at other sites and in other tropical areas
    corecore