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ABSTRACT 15 

Future human or robotic missions to the Moon will require efficient ascent path and accurate orbit injection 16 

maneuvers, because the dynamical conditions at injection affect the subsequent phases of spaceflight. This 17 

research is focused on the original combination of two techniques applied to lunar ascent modules, i.e. (i) the 18 

recently-introduced variable-time-domain neighboring optimal guidance (VTD-NOG), and (ii) a constrained 19 

proportional-derivative (CPD) attitude control algorithm. VTD-NOG belongs to the class of feedback implicit 20 

guidance approaches, aimed at finding the corrective control actions capable of maintaining the spacecraft 21 

sufficiently close to the reference trajectory. CPD pursues the desired attitude using thrust vector control, while 22 

constraining the rate of the thrust deflection angle. The numerical results unequivocally demonstrate that the 23 

joint use of VTD-NOG and CPD represents an accurate and effective methodology for guidance and control of 24 

lunar ascent path and orbit injection, in the presence of nonnominal flight conditions . 25 

 26 

INTRODUCTION 27 

In the last decades, manned and automatic lunar missions have attracted an increasing interest by many 28 

countries. Building a lunar base for future interplanetary missions represents only one of several challenging 29 
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projects. The development of a reliable guidance and control algorithm for automatic lunar descent, ascent, and 30 

orbit injection represents a crucial issue for a safe connection between Earth and Moon. 31 

In the scientific literature, only a limited number of works dealt with the joint application of guidance and 32 

control (G&C) algorithms to aerospace vehicles. Geller 2006 employs proportional-derivative (PD) control for 33 

both guidance and control algorithms. Guidance and control based on Nonlinear Dynamic Inversion is studied by 34 

Marcos et al. 2008, and a comparison between Dynamic Inversion and State Dependent Riccati Equation 35 

approaches is presented in Lam et al. 2008. Integrated G&C methods are proposed in Tian et al. 2015a and in 36 

Tian et al. 2015b, while the use of G&C based on sliding-mode is investigated in Yeh 2015. 37 

This research is focused on the original combination of two techniques applied to two-dimensional lunar 38 

ascent paths, i.e. (i) the recently-introduced (Pontani et al. 2015a, Pontani et al. 2015b, Pontani et al. 2015c, and 39 

Pontani 2016) variable-time-domain neighboring optimal guidance (VTD-NOG), and (ii) a constrained 40 

proportional-derivative (CPD) attitude control algorithm. VTD-NOG belongs to the class of feedback implicit 41 

guidance approaches (cf. Lu 1991, Kugelmann and Pesch 1990a, and Kugelmann and Pesch 1990b), aimed at 42 

finding the corrective control actions capable of maintaining the spacecraft sufficiently close to the reference 43 

path. This is an optimal trajectory that fulfills the second-order analytical conditions for optimality, similarly to 44 

what occurs for alternative neighboring optimal guidance (NOG) schemes. Only a limited number of researches 45 

have been focused on NOG (Afshari et al. 2009, Seywald and Cliff 1994, Yan et al. 2002, Charalambous et al. 46 

1995, Hull 2003, and Hull and Novak 1993). Former NOG algorithms exhibit a common difficulty, which is 47 

represented by singularities of the gain matrices while approaching the final time. A fundamental original feature 48 

of VTD-NOG is the use of a normalized time scale for the definition of the nominal trajectory and the related 49 

vectors and matrices. As a result, the gain matrices do not diverge, for the entire time of flight. Adoption of a 50 

normalized time domain requires the development of new equations for the sweep method, which yields all the 51 

time-varying gain matrices, calculated offline and stored onboard. In this mathematical framework, the updating 52 

formula for the time of flight and the guidance termination criterion are derived in a logical, consistent fashion. 53 

VTD-NOG identifies the trajectory corrections by assuming a thrust direction always aligned with the 54 

longitudinal axis of the spacecraft. However, this assumption represents an approximation, and the attitude 55 



3                                              Pontani, 3 April 2018 
 

 

control system must be capable of maintaining the actual spacecraft orientation sufficiently close to this thrust 56 

alignment condition. To do this, the attitude control system uses thrust vector control (TVC). This technique is 57 

widely employed for rocket and spacecraft attitude control (Tewari 2011). PD control represents a consolidated 58 

approach to designing a closed-loop attitude control system (Greensite 1970). However, plain PD control can 59 

lead to excessive angular rates for the thrust deflection. In fact, high proportional and derivative gains are often 60 

needed to obtain a fast response of the attitude control loop. Thus, in this work, attitude control is performed 61 

using CPD, which introduces an appropriate saturation action, with the final aim of maintaining the angular rates 62 

within acceptable limits. 63 

This research has thus the ultimate purpose of demonstrating that the joint use of VTD-NOG and CPD 64 

indeed represents an effective methodology for spacecraft guidance and control, with special reference to lunar 65 

ascent path and accurate orbit injection, in the presence of nonnominal flight conditions. A preliminary version 66 

of this study can be found in Pontani and Celani 2017. 67 

 68 

NOMINAL TRAJECTORY 69 

This research treats the problem of driving a space vehicle from the Moon surface to a final elliptic orbit, 70 

with given perilune and apolune altitudes (denoted respectively with Ph  and Ah ; 15 kmPh   and 100 kmAh  ), 71 

in the presence of nonnominal flight conditions. Both trajectory and attitude dynamics of the space vehicle are 72 

modeled. This section is specifically focused on defining the nominal ascent path. In this context, the spacecraft 73 

is modeled as a point mass (denoted with S in Figure 1). Subsequently, attitude dynamics is considered, with the 74 

final aim of determining the appropriate thrust vector control action. 75 

The nominal vehicle ascent path is assumed to end at periselenium, and is investigated under the following 76 

three assumptions: (i) the Moon and its mass distribution are spherical, (ii) the Moon does not rotate, and (iii) the 77 

vehicle thrust is continuous and has constant magnitude. While (i) and (ii) are reasonable approximations, due to 78 

the short time of flight, assumption (iii) implies that the thrust acceleration  T m  is 79 

 0

0

T n c

m c n t



 (1) 80 
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where c is the (constant) effective ejection velocity of the propulsive system, 0n  is the initial thrust acceleration 81 

(at 0t , set to 0), and t is the actual time. The following nominal values are assumed: 0 00.25n g  and 82 

 2

03 km sec  9.8 m secc g  . 83 

 84 

Formulation of the problem 85 

The spacecraft dynamics is described in a convenient Moon-centered inertial frame, identified by the right-86 

handed sequence of unit vectors  1 2 3
ˆ ˆ ˆ, ,c c c , where  1 2

ˆ ˆ,c c  identifies the plane of the desired orbit and 3ĉ  is 87 

aligned with the related angular momentum. At the initial time the ascent vehicle is assumed to be placed at 0S , 88 

belonging to the plane of the desired orbit. In the problem formulation, both the Moon and its gravitational field 89 

are assumed spherical. As no additional external force affects the spacecraft motion and 0S  lies on the plane of 90 

the desired orbit (cf. Figure 1), the optimal ascent path can be sought in the  1 2
ˆ ˆ,c c -plane. Such a coplanar 91 

trajectory can be conjectured to outperform any alternative three-dimensional path. In fact, due to symmetry of 92 

the gravitational field, any out-of-plane thrust maneuver would imply a useless waste of propellant, with the only 93 

effect of adding a non-coplanar component to the instantaneous velocity.  In the  1 2
ˆ ˆ,c c -plane, the time-varying 94 

position of the space vehicle can be identified by the following two variables: radius r and right ascension  , 95 

illustrated in Figure 1. The spacecraft velocity can be projected along the two axes  ˆˆ,r t , where r̂  points toward 96 

the position vector r and t̂  is in the direction of the spacecraft motion (cf. Figure 1). The related components are 97 

denoted with  ,r tv v  and termed radial and transverse velocity component, respectively. 98 

The state vector consists of the two components of the position and velocity vectors, and is given by 99 

   1 2 3 4:
T T

r tx x x x r v v x . The spacecraft is controlled through the thrust direction T̂ , defined 100 

by the angle   (cf. Figure 1). Thus, the control vector u is : u . 101 

The dynamics equations, also termed state equations henceforth, describe the spacecraft motion, and involve 102 

both the state and the control vectors, 103 
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where  T m  is given by Eq. (1) and  3 2 4902.9 km sec   is the Moon gravitational parameter. This work 105 

uses the two variables  ,r tv v  in place of the more usual set formed by  ,v , i.e. velocity magnitude v and 106 

flight path angle  . This choice allows avoiding singularities in the equations of motion, because the velocity 107 

magnitude equals zero at liftoff from the Moon surface. Equations (2) can be written in the compact form 108 

  , ,tx f x u  (3) 109 

Due to the definition of the inertial frame in relation to the initial spacecraft position, the initial conditions 110 

(denoted with the subscript “0”) are 111 

 0 0 0 0        0        0        0M r tr R v v     (4) 112 

where   1738 kmMR   is the Moon radius. The final conditions (denoted with the subscript “f ”) at orbit 113 

injection are 114 

 
1

        0        
1

f M P rf tf

e
r R h v v

a e

 
   


 (5) 115 

where e and a are respectivley the eccentricity and the semimajor axis of the desired orbit. Equations (4)-(5) can 116 

be written in compact form as 117 

  0 , ,f ft  0ψ x x  (6) 118 

The problem of interest can be reformulated by using the dimensionless (normalized) time  , 119 

 0:           0 1f ft t          (7) 120 

Let the dot denote the derivative with respect to   henceforth. Equations (3) are rewritten as 121 

    , , : , , ,f ft t   x f x u f x u a  (8) 122 

where a collects all the unknown parameters of the problem ( fta  for the problem at hand). 123 

Due to assumption (iii), minimizing the time of flight  0ft t  is equivalent to minimizing the propellant 124 

consumption. Thus, as 0t  is set to 0, the objective function is 125 
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 fJ t  (9) 126 

 127 

First-order conditions for optimal thrust programming 128 

In order to obtain the necessary conditions for a minimizing (optimal) solution, a Hamiltonian H and a 129 

boundary condition function   are introduced as 130 

  
2

4 4 3 4
1 3 2 3 1 4 12

1 1 1 1

, , : sin cos
fT

f f f

t x x T x x T
H t x t u t u

x x x m x m


   

   
           

   
x u a λ f  (10) 131 
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x x a υ ψ

 (11) 132 

where  0 0k kx x   and  kf k fx x    1, ,4k  ;   1 2 3 4 :
T

   λ  and 133 

  1 2 3 4 5 6 7 :
T

      υ  denote respectively the adjoint variable conjugate to the equations of 134 

motion (2) and to the boundary conditions (4)-(5). 135 

The first-order necessary conditions for (local) optimality (cf. Hull 2003) include the costate (or adjoint) 136 

equations, in conjunction with the respective boundary conditions, 137 

 0

0

                    

TTT

f

f

H      
                

λ λ λ
x x x

 (12) 138 

leading to 2 0    . The scalar expressions of the adjoint equations are not reported for the sake of brevity. 139 

The Pontryagin minimum principle allows expressing the optimal control *
u  in terms of the costates, 140 

  *

3 1 4 1argmin argmin sin cosf

T
H t u u

m
 

 
   

 u u
u   141 

The right-hand side can be written as a dot product, 142 

   *

1 1 3 4argmin sin cos
T

f

T
t u u

m
 

 
  

 u
u   143 

The latter relation leads to obtaining the optimal control angle * , 144 
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* * * *3 4
1 1

2 2 2 2* * * *
3 4 3 4

sin sin      and     cos cosu u
 

 
   

     
 

 (13) 145 

It is worth remarking that the Pontryagin minimum implies satisfaction of both the first-order stationarity 146 

condition, i.e. * TH u 0 , and the second-order (necessary) condition on positive semidefiniteness of the Hessian 147 

*Huu
. The latter condition is specifically dealt with in the next subsection, focused on second-order conditions for 148 

optimality. Lastly, the parameter condition (cf. Hull 2003) must hold, and yields  149 

 

1 1

0 0

          1 0

T T

T

f

H
d d

t
 

     
            

 
f

λ
a a

0  (14) 150 

After introducing the additional variable μ , Eq. (14) is equivalent to 151 

 0     with        and   

T T

f

H    
          

μ μ μ
a a

= 0 0  (15) 152 

Through the necessary conditions for optimality, the optimal control problem is translated into a two-point 153 

boundary-value problem, with unknowns represented by ft  and the initial values of λ . 154 

However, the parameter condition (14) can be transformed into an inequality constraint, as a consequence of 155 

homogeneity of the costate equations, in conjunction with Eq. (13), in which the control angle is expressed as the 156 

ratio of adjoint variables. In fact, due to Eq. (13), homogeneity implies that if λ  is proportional to *
λ  157 

( *;  k k λ λ  denotes a positive constant), then the final conditions (5) are fulfilled at f , while minimizing the 158 

time of flight. Instead, the parameter condition is not met, because the integral in Eq. (14) turns out to be 159 

 

1 1

*

0 0

1
TT

f f

d k d k
t t

  
 

    
  

f f
λ λ  (16) 160 

Hence, if the proportionality condition is satisfied, then the optimal control *
u  can be obtained without 161 

considering the parameter condition (14), which becomes ignorable as an equality constraint is replaced by the 162 

following inequality constraint: 163 

 

1

0

0T

f

d
t







f
λ  (17) 164 
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Moreover, 2 0    , as previously remarked, and the equation for 2x  is ignorable, because no dynamics 165 

equation includes the right ascension 2x  in the right-hand-side, and no final condition is specified for 2x . This 166 

circumstance implies that the optimal ascent path optimization problem can be formulated as a two-point 167 

boundary-value problem, involving the initial values of the adjoint variables ( 1 , 3 , and 4 ) and the time of 168 

flight ft  as unknowns. 169 

 170 

Second-order conditions for optimal thrust programming 171 

The second-order optimality conditions refer to a neighboring optimal comparison path, which can lie in the 172 

proximity of the optimal trajectory, and satisfies to first order the state and the adjoint equations, together with 173 

the related boundary conditions. With reference to a candidate optimal solution, associated with the state *
x , 174 

costate *
λ   and control *

u ,  optimality is guaranteed if no neighboring optimal path exists. 175 

The first second-order condition is the Clebsch-Legendre sufficient condition for a minimum (cf. Hull 2003), 176 

i.e. * 0H uu
. In the necessary form the sign " "  replaces the inequality sign (i.e. the Hessian *Huu

 must be 177 

positive semidefinite). 178 

In general, a neighboring optimal trajectory satisfies both the state equations and the boundary conditions to 179 

first order. This means that the state and costate displacements ( , ) x λ  satisfy the linear equations deriving 180 

from Eqs. (8) and (12), 181 

           d H H H H d             x u a xx xu xλ xax f x f u f a λ x u λ a  (18) 182 

while the fact that the Hamiltonian is stationary with respect to u, i.e. * TH  0u
, yields 183 

 H H H d H      0ux uu ua uλx u a λ  (19) 184 

The boundary conditions for Eqs. (19) are derived from Eqs. (6) and (12), 185 

 
0 0f f d    0x x aψ x ψ x ψ a  (20) 186 

 
0 0 0 00 0           

f f f f

T T

f fd d d d         x x x a x x x x a xλ x a ψ υ λ x a ψ υ  (21) 187 



9                                              Pontani, 3 April 2018 
 

 

where Eqs. (21) are written under the assumption that 
0 0

0
f f

  x x x x , condition that is fulfilled for the 188 

problem at hand. Equation (15) replaces the remaining parameter condition (14), and leads to the following 189 

relations: 190 

 
0,    with   ,      

f

T T

f fH H H H d                 ax au aa aλ ax aa aμ x u a λ μ μ x a ψ υ0 0  (22) 191 

where Eq. (22) is written under the assumption that 
0

0 ax , condition that is fulfilled again for the problem of 192 

interest. Under the assumption that the Clebsch-Legendre condition holds, Eq. (19) can be solved for u , 193 

  1H H H d H     uu ux ua uλu x a λ  (23) 194 

After inserting Eq. (25) in Eqs. (18) and (22), one obtains 195 

 ,    ,    T T Td d d                  A B D C A E E D Fx x λ a λ x λ a μ x λ a  (24) 196 

where the matrices A, B, C, D, E, and F depend on the quantities appearing in Eqs. (18), (19), and (22); their 197 

expressions are not reported for the sake of brevity. The final conditions in Eqs. (20), (21), and (22) motivate the 198 

definition of the sweep variables, 199 

 ,    ,    T T Td d d d d d            S R m 0 R Q n m n αλ x υ a x υ a μ x υ a  (25) 200 

Matrices S, R, m, Q, n, and α  fulfill the sweep equations, derived in Hull 2003 and not reported in this work for 201 

the sake of conciseness. The second and the third equation contained in Eq. (25) can be solved simultaneously at 202 

0  (at which 0  0μ , cf. Eq. (22)), to yield 203 

  1

0 0 ,   where  :   and  :T

T

d

d
   

      
  

Q n
V U U R m V

n α
0

υ
x

a
 (26) 204 

If Eq. (26) is used at 0 , then  1

0 0 0 0 0 0

T  S U V Uλ x . Letting 1ˆ : T S S UV U , it is relatively 205 

straightforward to prove that the same sweep equation satisfied by S must hold also for Ŝ  (with Ŝ  in place of 206 

S), with boundary condition ˆ S  as   1f   . From the previous relation on 0 λ  and 0 x  one can 207 

conclude that 0  0λ  as 0  0x , unless Ŝ  tends to infinity at an internal time  0 f     , which is 208 
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referred to as conjugate point. In the end, if 0
ˆ   , f      S , then no conjugate point exists and, as a 209 

consequence, no neighboring optimal solution exists. 210 

 211 

Optimal ascent trajectory 212 

This subsection addresses the numerical determination of the minimum-time ascent path leading to injection 213 

into the desired lunar orbit.  214 

The determination of optimal (either minimum propellant consumption or minimum time) space trajectories 215 

has been pursued with several numerical methods, for decades. Classical optimization approaches are usually 216 

classified as (i) indirect methods and (ii) direct techniques. The former approaches are based on applying the 217 

necessary conditions for optimality (i.e. the Euler-Lagrange equations and the Pontryagin minimum principle), 218 

which arise from the calculus of variations (Miele and Wang 1997, Miele and Mancuso 2001). Direct algorithms 219 

convert the optimal control problem into a nonlinear programming problem (usually involving many 220 

parameters). This class of methods includes direct transcription (Enright and Conway 1992), direct collocation 221 

with nonlinear programming (Enright and Conway 1991), and differential inclusion (Seywald 1994).  Due to 222 

their theoretical foundations, direct and indirect algorithms possess specific features, which are investigated 223 

thouroughly in the scientific literature (Betts 1998, Conway 2012). The two main limitations of classical 224 

methods are (a) the need of a starting guess and (b) the locality of the results. 225 

These disadvantages have motivated the introduction of heuristic techniques, which use a population of 226 

individuals, associated with possible solutions to the problem of interest. The initial population is generated 227 

randomly, and therefore no guess is to be supplied. The optimal solution is sought through competition and 228 

cooperation among individuals. As a preliminary step, for the purpose of applying a heuristic technique, optimal 229 

control problems must be converted into parameter optimization problems. The lack of any analytical proof on 230 

convergence of a heuristic method (even to a locally minimizing solution) represents their main disadvatage. 231 

Furthermore, if a specific functional form is employed for the control variables, a heuristic method can find at 232 

most the best solution in the class of functions used in the numerical solution process. 233 
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In this research, the first-order conditions for optimality are used, in conjunction with a simple 234 

implementation of particle swarm algorithm (PSO), which is extremely intuitive and easy-to-implement. More 235 

specifically, the necessary conditions for optimality are used to express the control variables in terms of the 236 

adjoint variables, which obey the costate equations (accompanied by the related boundary conditions). As a 237 

result, a reduced parameter set suffices to transcribe the optimal control problem into a parameter optimization 238 

problem. Moreover, satisfaction of all the necessary conditions guarantees (at least the local) optimality of the 239 

solution. This methodology, termed indirect heuristic algorithm, is thus capable of avoiding the main 240 

disadvantages of using heuristic approaches, while retaining the main advantage, which is the absence of any 241 

starting guess. In the scientific literature (Pontani and Conway 2010, Pontani et al. 2012, Pontani and Conway 242 

2013, Pontani and Conway 2012, and Pontani and Conway 2014) several papers employ successfully PSO for 243 

solving trajectory optimization problems. 244 

In this work, the parameter set includes  10 30 40, , , ft   . The boundary conditions are represented by the 245 

three equalities reported in Eq. (5), accompanied by the inequality (17). Once the optimal parameter set has been 246 

found, the (two-dimensional) state and adjoint equations can be integrated, using Eq. (13) to express the control 247 

angle   as a function of the costate variables.  248 

For the problem of interest the swarming algorithm uses 100 particles and is run for 500 iterations. A set of 249 

canonical units is adopted: the Moon radius is the distance unit  1 DU 1738 km , whereas the time unit is such 250 

that 3 21 DU TU   (i.e. 1 TU 1034.8 sec ). The search space is defined by the inequalities 251 

 01 1   1,3,4k k     and 0.5 TU 3 TUft  . It is worth noticing that the adjoint variables can be sought in 252 

an arbitrary interval, because of ignorability of the parameter condition. The PSO algorithm is able to obtain the 253 

optimal (two-dimensional) ascent trajectory with great accuracy. In fact, the errors on the final conditions are 254 

 * 121.158 10  kmf M Pr R h     , * 153.152 10  km secrfv   , and 
* 151

3.356 10
1

tf

e
v

a e

 
  


 km sec , 255 

whereas the minimum time is 
* 9.576 minft  . Figure 2 and Figure 3 portray the state components corresponding 256 

to the optimal ascent path and the related optimal control angle time history. 257 
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The swarming algorithm employs the first-order necessary conditions to determine the optimal trajectory. 258 

However, the second-order sufficient conditions are also to be fulfilled so that the neighboring optimal guidance 259 

can be applied. Evaluation of the matrices H uu  and Ŝ  along the optimal path allows verifying that the second-260 

order sufficient conditions for a minimum are both satisfied, and this represents the theoretical premise for a 261 

successful application of VTD-NOG. 262 

 263 

VARIABLE-TIME-DOMAIN NEIGHBORING OPTIMAL GUIDANCE 264 

The Variable-Time-Domain Neighboring optimal guidance (VTD-NOG) uses the minimum-time path as the 265 

reference trajectory, with the final aim of obtaining the control correction at each sampling time 266 

  00, ,
,  with 0

S
k k n

t t


 . These are the times at which the state deviation of the actual path (associated with x ) 267 

from the nominal trajectory (corresponding to *
x ) is evaluated, to yield 268 

    *

k k k kd t t  x x x x  (27) 269 

The total number of sampling times, Sn , is unspecified, whereas the actual time interval between two succeeding 270 

sampling times is prescribed and denoted with St , 1S k kt t t     0, , 1Sk n  . It is apparent that an 271 

essential ingredient for implementing VTD-NOG is the formula for the determination of 
 k

ft , i.e. the overall time 272 

of flight computed at time kt .  273 

 274 

Time-to-go updating law and termination criterion 275 

The basic principle that underlies the VTD-NOG algorithm consists in determining the control correction 276 

  u  in the generic interval  1,k k    such that the second differential of J is minimized (cf. Hull 2003), while 277 

holding the first-order expansions of the state equations, the related final conditions, and the parameter 278 

condition. Minimizing the second differential of J is equivalent to solving the accessory optimization problem, 279 

defined in the interval  ,1k .  Solving the same problem in the overall interval  0,1  leads to deriving all the 280 

relations reported in the previous section (and in Hull 2003).  This means that the latter relations need to be 281 
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extended to the generic interval  ,1k . First, Eq. (18), the first and third relation of Eq. (22), Eq. (20), and the 282 

second relation of Eq. (21) as well as Eq. (19) remain unchanged. The latter yields the control correction, 283 

  1

1     uu ux ua u k kH H H d H      

     u x a λ  (28) 284 

Equations (24) and the last two relations of Eqs. (25) can be derived again, through the same steps described in 285 

Hull 2003, but they are not reported for the sake of brevity. However, Eq. (26), which derives from the last two 286 

relations of Eqs. (25), is now to be evaluated at k , 287 

 
1 1      with     :

qxpT

k k k k k

pxp

d

d
  

  
      

    

υ
x μ

a

0
V U V Θ Θ

I
 (29) 288 

because k  0μ  (unlike 0  0μ ). The latter relation supplies the corrections dυ  and da  at k  as functions of 289 

the gain matrices U and V, k x , and k μ  (coming from the numerical integration of the last of Eq. (24) in the 290 

previous interval  1,k k  ). Actually, Eq. (29) includes the updating law of the flight time ft , which is a 291 

component of a. Hence, if 
 k

fdt  denotes the correction on 
*

ft  evaluated at k , then 
   *k k

f f ft t dt  . Because the 292 

actual sampling interval St  is specified, the general formula for k  is 293 

 
 

  0 *

1

0

          0, , 1;  
k

S
k S f fj

j f

t
k n t t

t
 




     (30) 294 

The total number of intervals Sn  is found at the first occurrence of the following condition: 295 

 
 

1

0

 1          1
S

S

n

S
nj

j f

t

t







    (31) 296 

It is worth emphasizing that the updating formula for 
 k

ft  derives from the extension of the accessory 297 

optimization problem to the time interval  ,1k . Moreover, the introduction of the normalized time   has 298 

important implications. First, all the gain matrices are defined in the interval [0,1] and do not become singular. 299 

Second, the limiting values  k  are evaluated at each sampling time by means of Eq. (30). Lastly, the 300 

termination criterion corresponds to the upper bound of the interval [0,1], to which   is constrained.  301 

 302 
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Modified sweep method 303 

The identification of a neighboring optimal solution requires the backward integration of the sweep 304 

equations. An appropriate integration methodology employs the classical sweep equations for S in the interval 305 

 ,1sw  (where sw  is sufficiently close to 1f  ), and then switches to Ŝ . However, due to Eq. (29), new 306 

relations are to be derived for Ŝ  and the related matrices. 307 

First, after inserting Eq. (29) (evaluated at the generic  ) into the first of Eq. (25) one obtains 308 

 1ˆ           with          :     S W W UV Θλ x μ  (32) 309 

Due to the third of Eq. (25), the latter relation can be rewritten as 310 

  ˆ T T d d    S Wm Wn Wαλ x υ a  (33) 311 

This relation replaces the first of Eq. (25). 312 

Considerable analytical developments (described in Pontani et al. 2015a and Pontani et al. 2015b, and not 313 

reported in this work for the sake of conciseness) lead to the following modified sweep equations: 314 

 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ           T T T T T T              
 

S SA SBS SDα WFα Eα m WE WD S C A S Q R BWn  (34) 315 

  ˆ                     T T T T T T T T T        R R BS R A R BWm n R D + BWα α D Wα F m BWα m D  (35) 316 

 ˆ ˆT T T T T T T T T      m m A m BS m BWm E D S D Wm  (36) 317 

In the end, the gain matrices S, Ŝ , R, Q, n, m, and α , can be integrated in two steps: 318 

(a) the equations of the traditional sweep method (cf. Hull 2003), with the related boundary conditions are 319 

used in the interval  ,1sw  320 

(b) Equations (34)-(36) are used in the interval  0, sw . The matrices R, Q, n, m, and α  are continuous 321 

across the switching time sw , whereas Ŝ  is given by 1ˆ : T S S UV U ; in this work sw  is set to 0.99. 322 

 323 

 324 

 325 
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Preliminary offline computations and algorithm structure 326 

The implementation of VTD-NOG requires several preliminary computations that can be performed offline. 327 

Then, the related results are stored onboard. 328 

First of all, the optimal path must be found, together with the related state, costate, and control variables, 329 

which become the nominal ones. These are obtained in the time domain   and are initially represented as 330 

sequences of equally-spaced values, e.g.  * *

i iu u   00, , ;  0 and 1
DD ni n     . However, in the presence 331 

of perturbations, VTD-NOG determines the control corrections   u  in each interval  1,k k   , where the 332 

values  k  do not coincide with the equally-spaced values  i  associated with  *

iu . Hence, interpolation is to 333 

be used for the control variable *
u , so that the value of *

u  can be evaluated at any arbitrary time in the interval 334 

0 1  . Similarly, also the nominal state *
x  and costate *

λ  are to be interpolated. If a large number of points 335 

is selected ( 1000Dn   in this research), then piecewise linear interpolation is a suitable option and in fact is 336 

adopted in this work. The subsequent step consists in the analytical derivation of the matrices  337 

 
0 0 0 0

, , , , , , , , , , , , , , , , , , , , , , ,
f f f f f

H H H H H H H H H H H H      x u a xx xu xλ xa ux uu ua uλ ax au aa aλ x x a x x x a x x x a ax aaf f f ψ ψ ψ , 338 

which are evaluated along the optimal path. The matrices A, B, C, D, E, and F are introduced and evaluated, too. 339 

Then, the backward integration of the sweep equations is completed, and yields the matrices Ŝ , R, m, Q, n, and 340 

α . In this context, the analytic expressions of W, U, and V (written in terms of R, m, Q, n, and α ) are used. All 341 

the remaining matrices (not yet interpolated) are interpolated as well, and this concludes the preliminary 342 

computations. 343 

Using the nominal quantities (stored onboard), at each time k  the VTD-NOG algorithm determines the 344 

flight time 
 k

ft , the value 1k  , and the control correction   u . In particular, the following steps are needed in 345 

order to implement the guidance approach at hand: 346 

1. Set the actual sampling time interval St  347 

2. At each time  0 0, , 1;  0k Sk n     348 
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a. Evaluate k x  thorugh Eq. (27) 349 

b. Assume the value of  μ  calculated at the end of the preceding interval  1,k k   as k μ  350 

c. Calculate the correction 
 k

fdt  and the updated time of flight 
 k

ft  351 

d. Calculate the limiting value 1k   352 

e. Evaluate k λ  and integrate the linear differential system composed of Eqs. (24) 353 

f. Determine the control correction   u  in  1,k k    through Eq. (28) 354 

3. If Eq. (31) holds, then VTD-NOG ends, otherwise point 2 is repeated (with k increased by 1). 355 

Figure 4 depicts a block diagram that shows the sampled-data feedback structure of the VTD-NOG 356 

algorithm. The control and flight time corrections depend on the state deviation  x  (evaluated at specified 357 

times) by means of the time-varying gain matrices. The attitude control loop (encircled by the dotted line) is 358 

being described in detail in the following. 359 

 360 

CONSTRAINED PROPORTIONAL-DERIVATIVE ATTITUDE CONTROL 361 

Thrust vectoring is used to control the attitude of the lunar module, through proper deflection of the engine. 362 

In this study, two-dimensional (nominal and perturbed) trajectories are considered, therefore the attitude is 363 

identified through only the pitch angle   (cf. Figure 5). The attitude equation governs pitch dynamics and is 364 

given by 365 

 sincI Tl   (37) 366 

where I is the moment of inertia of the spacecraft about the by  axis, cl  is the distance between the center of mass 367 

of the ascent module and the swivel point of the TVC, and   is the thrust deflection angle (cf. Figure 5). 368 

The electro-hydraulic servoactuator that acts on the engine deflection angle is here modeled by the following 369 

first order system (Greensite 1970): 370 

 
1 1

c

a a 
       (38) 371 
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In Eq. (38) c  is the commanded deflection angle which represents the control input for the attitude control 372 

system, while the actual deflection   (appearing in Eq. (37)) is obtained by saturating   to the maximum 373 

deflection angle  , 374 

  
  if  

sat     if  

    if  



   


          

   

 (39) 375 

The commanded pitch angle, denoted with c , is derived from the angle   provided by the VTD-NOG 376 

algorithm (cf. Figure 4). In fact, in the guidance algorithm the angle   is the desired (corrected) angle between 377 

T̂  and t̂ , under the assumption that the thrust is aligned with the longitudinal axis of the spacecraft. Thus,   378 

represents the desired angle between ˆ
bx  and t̂ , and consequently the desired pitch angle is given by c     . 379 

However, it is worth noticing that for simulating the spacecraft trajectory, the actual thrust angle a       380 

(cf. Figure 5) must be used in Eq. (2) in place of  . 381 

A baseline attitude control action for such spacecraft is given by the following PD control: 382 

  c p c dk k       (40) 383 

The variable 
c  is not continuous at sampling times, therefore including 

c  in Eq. (40) would result in large 384 

overshoots for   and large values for   and   (cf. de Ruiter et al. 2013). It is worth noticing that most of the 385 

times c  can be considered constant since the guidance commands usually change slowly compared to attitude 386 

maneuvers. If c  is constant and the positive gains pk  and dk  satisfy d p ak k  , then the proposed PD control 387 

guarantees local convergence to the desired attitude (Greensite 1970). Moreover, in Celani 2018 it is shown that 388 

the control reported in Eq. (40) guarantees global convergence to the commanded attitude if the actuator 389 

dynamics is much faster than the attitude control loop. The considered PD control can lead to excessive angular 390 

rates for the thrust deflection. In fact, high values for the gains pk  and dk  might be required in order to obtain a 391 

fast response of the attitude control system in comparison with the guidance command. Then, high gains can in 392 

turn lead to high amplitudes for the rate of the TVC deflection angle. If the rates are too high then clearly they 393 
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become physically infeasible. The latter issue is here tackled by using Constrained Proportional and Derivative 394 

(CPD) control, which is described by the following equation: 395 

   sat
c

c p c dk k


       (41) 396 

where 0c   is an additional design parameter. It will be shown next that employing CPD control ensures that 397 

 
2

c

a
    (42) 398 

assuming that  0 0  . Thus, an appropriate choice of 
c  guarantees that   does not exceed physical limits. 399 

To show that Eq. (42) holds, first note that Eq. (38) and (41) imply 400 

 
1 1

c

a a 
      (43) 401 

 
1 1 1 1

        and        c c

a a a a   
            (44) 402 

Thus, considering that  0 0   and using the Comparison Lemma (cf. Khalil 2000), it is easy to obtain that 403 

 c    (45) 404 

Then, Eq. (42) follows directly from Eqs. (39), (43), and (45). 405 

It is worth noticing that linearization of CPD control in Eq. (41) about c  , 0  clearly reduces CPD 406 

to the standard PD control in Eq. (40). Thus, also CPD control achieves local convergence to the desired attitude. 407 

 408 

Determination of control gains 409 

The goal of the current subsection is presenting a method for determining at least first guess values for the 410 

gains pk  and dk . Neglect dynamics of the actuator in Eq. (38) and linearize the closed-loop system in Eqs. (37) 411 

and (41) about c  , 0 , obtaining 412 

   c p c dI Tl k k      (46) 413 

Thus, in the Laplace domain, 414 
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 

  2

ˆ

ˆ
p

d pc

Gks

s Gk s Gks




 
 (47) 415 

where cG Tl I . Note that the value of G varies during the flight since so do the values of cl  and I. Let G  and 416 

G  be the minimum and maximum values of G along the considered flight.  Then, the gains  pk  and dk  are 417 

chosen so that for all G G G   it occurs that the transfer function in Eq. (46) possesses poles with damping 418 

ratio    and natural angular frequency n n  . Magnitudes   and n  are chosen based on experience and 419 

proceeding by trial-and-error. Since 
2

p nk G   and 2d nk G  , then it is easy to verify that specifications 420 

   and n n   are fulfilled for all G G G   by setting   421 

 
2 2

               
nn

p d

G
k k

G G G


   (48) 422 

 423 

VTD-NOG & CPD APPLIED TO LUNAR ASCENT AND ORBIT INJECTION 424 

The guidance and control methodology based on the joint use of VTD-NOG and CPD is applied to lunar 425 

ascent and orbit injection. The optimal ascent path is derived in a previous section and takes almost 10 minutes. 426 

Further characteristics of the ascent vehicle are the initial mass  0  4700 kgm  , the maximal deflection 427 

angle   (set to 10 deg), and the time-varying distance cl , given by 0c c cl l l t  , where 428 

4

0 1 m and 8.3 10  m secc cl l    . Usually, a (nominal) linear time history is also assumed for I, with initial and 429 

final values set respectively to 
2 2

0 9200 kg m  and  4700 kg mfI I    for the problem at hand. These values are 430 

similar to those of the ascent module employed in the Apollo 11 mission. The value 0.1 seca   is picked for 431 

the time constant of the electrohydraulic actuator.  432 

Moreover, the following values are selected for VTD-NOG & CPD. The sampling interval St  is set to 10 433 

sec, and the CPD gains are determined as follows. First, note that the constant thrust equals 0 0T n m , the 434 

minimum value for cl  is given by 0c cl l , and the maximum value for I is equal to 
0I I . Moreover, the 435 



20                                              Pontani, 3 April 2018 
 

 

maximum value of cl  can be set approximately to *

0 1.5 mc c c fl l l t   , whereas 
24700 kg mfI I  . Then, 436 

21.2514 seccG Tl I    and 23.6744 seccG Tl I   . By inspection of the time behavior of c  in nominal 437 

conditions, it seems appropriate picking 1 rad secn   so to obtain an attitude control loop fast enough with 438 

respect to the speed of variation of nominal c . Moreover, proceeding by trial and error   is set to 0.5. Thus, 439 

by Eq. (48) one obtains 0.80 and 1.37p dk k  . In addition, the value 1.5 deg is selected for 
c  so that the 440 

inequality 30 deg sec   is guaranteed (cf. Eq. (42)). Note that Eq. (45) implies that   is constrained to 1.5 441 

deg. Thus, since   = 10 deg, the same happens to the amplitude of   (cf. Eq. (39)). 442 

The first reason for the existence of deviations from nominal flight conditions resides in the assumption that 443 

the thrust direction points toward the spacecraft longitudinal axis. This alignment condition was assumed for the 444 

derivation of the optimal ascent path. However, the actual spacecraft dynamics is driven by a thrust direction not 445 

exactly aligned with the longitudinal axis, due to the use of thrust vectoring for attitude control. This 446 

circumstance is apparent also by inspection of Figure 4, which illustrates clearly that the corrected control u does 447 

not coincide with the actual control au , which affects the real dynamics of the center of mass. As a first step, 448 

VTD-NOG & CPD has been tested in order to evaluate these deviations, exclusively related to the alignment 449 

assumption. The first row of Table 1 (denoted with NC) reports the related results (obtained in a single 450 

simulation), i.e. the final displacements from the nominal final altitude and velocity components, and testifies to 451 

the excellent accuracy of VTD-NOG & CPD in this context. 452 

However, perturbations can exist that affect the overall spacecraft dynamics. These can be related to the 453 

dynamical system itself or to environmental conditions. Monte Carlo (MC) campaigns are usually run, with the 454 

aim of attaining some statistical information on the accuracy of the guidance and control algorithm of interest, in 455 

the presence of the existing perturbations, which are simulated stochastically. In this research, propulsive 456 

perturbations are considered. In fact, the thrust magnitude (and the related acceleration) may exhibit modest (or 457 

moderate) fluctuations. This time-varying behavior is modeled through a trigonometric function with stochastic 458 

coefficients, 459 
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 
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0 0 5* *
1 1

1 sin cos
p
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k kf f

k t k t
n n a a

t t

 


 

    
      

   
     

   (49) 460 

where  
0

p
n  denotes the perturbed value of  0n , whereas the coefficients  

1, ,10k k
a


 have a random Gaussian 461 

distribution centered around the zero and a standard deviation equal to 0.02. It is worth remarking that 462 

oscillations of the thrust magnitude yield perturbed trajectories coplanar with the nominal path. Moreover, also 463 

the inertia moment may be subject to fluctuations, which make the actual time history nonlinear. These 464 

fluctuations are modeled again through trigonometric functions. Thus, the following time history is assumed for 465 

the inertia moment I: 466 

 
5 5

0

0 5* * *
1 1

sin cos 1
f

k k

k kf f f

I I k t k t
I t I b b

t t t

 


 

    
        

   
     

   (50) 467 

In Eq. (50) the third and fourth terms represent the displacement from the nominal linear time history. The 468 

coefficients  
1, ,10

k
k

b


 are random quantities with uniform distribution in proper intervals such that the function 469 

(50) is nonincreasing in time. It is straightforward to recognize that a sufficient condition for monotonicity is  470 

 
0 0

10 10

f f

k

I I I I
b

k k 

 
    (51) 471 

Hence, in the Monte Carlo simulations, the random coefficients  
1, ,10

k
k

b


 are constrained to the interval 472 

specified in Eq. (51). At the end of VTD-NOG & CPD, the mean value and the standard deviation are evaluated, 473 

for all of the outputs of interest. The symbols 
____

  and 
   will denote the mean error (with respect to the 474 

nominal value) and standard deviation of   henceforth. 475 

Three Monte Carlo campaigns (MC) are performed: (i) MC1 assumes only nonlinearities for the time 476 

histories of the inertia moment I, (ii) MC2 considers thrust perturbations only, whereas (iii) MC3 assumes both 477 

deviations from nominal flight conditions. Each campaign includes 100 numerical simulations. With reference to 478 

MC3, Figure 6 and Figure 7 illustrate respectively the perturbed time histories 
 
0

p
n  and the time derivative of I, 479 

whereas Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, and Figure 13 portray the time histories of the 480 
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relevant state variables, the commanded and actual pitch angle, as well as the engine deflection angle and its 481 

rate. All the state variables are subject to considerable deviations from the respective nominal time histories, as 482 

shown in Figure 8, Figure 9, and Figure 10. Nevertheless, inspection of Table 1, which reports the statistics on 483 

the errors at injection and the time of flight, reveals that VTD-NOG & CPD guarantees orbit injection with 484 

excellent accuracy, despite the relatively relaxed sampling time. Figure 11 and Figure 12 show that the 485 

deflection angle and the deflection rate do not exceed their respective maximal values. The commanded and the 486 

actual pitch angle, illustrated for a single perturbed path in Figure 13, are virtually indistinguishable after 15 487 

seconds from liftoff. Furthermore, the average time of flight is very close to the nominal value, and the 488 

corresponding standard deviation is modest. 489 

As a final remark, the runtime of VTD-NOG & CPD on an Intel i5-3570K @ 3.40 GHz takes 59 sec (while 490 

the nominal time of flight exceeds 9 minutes), and this guarantees that the guidance and control algorithm at 491 

hand can be implemented in real time. 492 

 493 

CONCLUSION 494 

This work proposes VTD-NOG & CPD, a new, general-purpose guidance and control algorithm for space 495 

vehicles, and describes its application to lunar ascent and orbit injection. VTD-NOG is a feedback guidance 496 

technique based on minimizing the second differential of the objective function. This minimization principle 497 

leads to deriving all the corrective maneuvers. A normalized time scale is adopted as the domain in which the 498 

nominal trajectory is defined. As a favorable consequence, the gain matrices remain finite for the entire time of 499 

flight, while the termination criterion and the updating law for the time of flight find consistent definitions. 500 

VTD-NOG identifies the trajectory corrections by assuming a thrust direction always aligned with the 501 

longitudinal axis of the spacecraft. CPD is employed for attitude control through TVC, and pursues this 502 

alignment condition. Unlike standard PD schemes, CPD introduces an appropriate saturation action, with the aim 503 

of maintaining the rate of the engine deflection angle within acceptable limits. Oscillations of the thrust 504 

magnitude and nonlinear variations of the inertia moment are assumed, and considerable deviations from the 505 

nominal flight conditions occur as a result, albeit the perturbed paths remain coplanar with the nominal 506 
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trajectory. VTD-NOG & CPD is thus applied to two-dimensional perturbed ascent paths, with the intent of 507 

ascertaining its effectiveness and accuracy. The Monte Carlo simulations performed in this study point out that 508 

orbit injection occurs with excellent accuracy, thus demonstrating that VTD-NOG & CPD indeed represents an 509 

effective methodology for the application at hand. Extension and testing of this guidance and control technique 510 

to perturbed three-dimensional trajectories, which may arise in the presence of supplementary deviations from 511 

nominal flight conditions, require more complete modeling of the attitude control system, as well as additional 512 

analytical developments, and represent the subject of further research.  513 
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 601 

TABLE 1. Outputs using VTD-NOG & CPD 602 
   603 

 
___

fr  
____

rfv  
____

tfv  ft   
fr
   

rfv
   

tfv
   

ft


 

NC 0.440 0.199 0.012 9.592 / / / / 

MC1 0.440 0.197 0.012 9.592 1.2e-4 3.0e-4 2.6e-5 5.3e-6 

MC2 0.864 0.041 0.108 9.590 2.604 0.605 2.662 0.145 

MC3 1.203 0.135 0.155 9.574 1.957 0.402 2.510 0.153 

Legend. NC = nominal conditions, MC1 = Monte Carlo campaign with nonlinear inertia moment, 

             MC2 = Monte Carlo campaign with perturbed propulsion,  

             MC3 = Monte Carlo campaign with both deviations from nominal flight conditions. 

             Time in min, radius in m, velocity in m/sec. ft = average time of flight 

 604 
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Caption List 1 

1. Reference frame for lunar ascent 2 

2. Optimal lunar ascent trajectory: state time history 3 

3. Optimal lunar ascent trajectory: control time history 4 

4. Block diagram of the VTD-NOG & CPD architecture 5 

5. Geometry of the spacecraft attitude and related angles 6 

6. Perturbed time histories of 0n  employed in the MC3 campaign 7 

7. Time derivative of the inertia moment I in the MC3 campaign 8 

8. Altitude time histories obtained in the MC3 campaign 9 

9. Radial velocity time histories obtained in the MC3 campaign 10 

10. Transverse velocity time histories obtained in the MC3 campaign 11 

11. Time histories of the engine deflection angle obtained in the MC3 campaign 12 

12. Time histories of the engine deflection rate obtained in the MC3 campaign 13 

13. Time histories of the commanded and actual pitch angle obtained in a single MC3 simulation 14 
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