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I. INTRODUCTION 

The t a sk  I set myself f o r  t h i s  meeting was t o  review and compare the 

c a p a b i l i t i e s  of the kinds of X-ray spectroscopy payloads I knew about, 

t o  compare those with some of my own est imates  of the an t i c ipa t ed  

c a p a b i l i t i e s  of AXAF, and t o  do t h i s  i n  the context of the science we 

want t o  achieve. Let me preface a l l  t h i s  by echoing i n  general  terms 

what many of yesterdays speakers 

has demonstrated the tremendous s c i e n t i f i c  power of spectroscopy t o  

probe deeply the astrophysics  of a l l  types of c e l e s t i a l  X-ray source. 

However, i ts  l imi t a t ions  of s e n s i t i v i t y  and r e so lu t ion  have i n  most 

cases permitted u s  only t o  whet our appe t i t e s .  

spectroscopic instruments can and w i l l  provide the  banquet. 

s a i d  i n  d e t a i l ;  namely t h a t  E ins t e in  

The next generation of 

XI. PARAMETERS OF X-RAY SPECTROMETERS 

The comparison of a l t e r n a t i v e  types of X-ray spectrcmeter i s  

extremely d i f f i c u l t  because so many orthogonal parameters must be 

considered and weighed aga ins t  one another. 

l ist  of these includes the  energy range, the s e n s i t i v i t y  or  throughput 

(which i s  usual ly  a s t rong  funct ion of energy, E), the  degree of 

background r e j e c t i o n ,  the resolving power (E/*, a l s o  o f t en  a funct ion 

A probably incomplete 
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of E), the degree of spatial and spectral multiplex advantage (ability 

to observe multiple spatial/spectralelements simultaneously), the 

effectiveness on extended sources (often involving trade-offs of throughput 

and resolution with field-of-view), the technical difficulty of the 

instrument and, not least, the size and weight. 

a) General Considerations 

1 will only consider instruments capable of moderate to high spectral 

on discrete celestial sources (but see McCamnon's resolution (EIAE > 100) 

contribution) as the Einstein results demonstrate that this is what is 

needed for the plasm diagnostics of a source (e.g. Winicler et al. 1981). 

The state-of-the art then lin5ts us to dispersive instruments. 

clear requirement is that any instrument has some degree of signal 

concentration so that the detector area (AD is << the effective collecting 

area (AC). 

sources have fluxes d 10 czn-2s-1, instruments generally have peak 

efficiencies s 20% and a more 01 less irreducible particle induced 

background rate for low-background detectors (achieved in flight by the 

FPCS and IPC as well as the Wisconsin rocket payload, for example) is 

% 1 x 10 an s keV . One needs a concentration factor AC/% just to 

achieve a signal-to-noise ratio > 1. Of course, with sufficient concentration 

an instrument becomes signal limited. 

Another 

This is simply because the lines from all but the strongest 

-3 

-3 -2 -1 -1 

Dispersive spectrameters divide into two distinct classes: (i) Bragg 

spectrometers that use crystal diffractors (like the Einstein FPCS; see 

Giacconieal 1979, Canizares et al. 1979) and (ii) spectrometers that use 

gratings in either transmission (like the Einstein OCS, see Schnopper et 

al. 1977) or reflection. 

The Bragg instruments are capable of high spectral resolution, but 

.hey suffer the tremendous shortcoming of having no inherent spectral 
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multiplex advantage. 

plasma diagnostics require a t  least 4 - 6 l ine  strengths. For Bragg 

instruments X-rays from a given direct ion incident on a given an2 of 

Bragg crys ta l ,  are  ref lected only i n  a narrow passband near the Bragg 

energy - a l l  others are absorbed. 

of a Bragg spectrometer is hF = PbROJ n Rc/AO where ApW is the 

projected area of the d i f f rac tor  (or telescope i n  a focal plane instruntent), 

n is the t o t a l  efficiency of a l l  elements other than the d i f f r ac to r ,  

% is  the inherent "integrated re f lec t iv i ty"  of the c rys ta l ,  and A0 

i s  the to t a l  "acceptance angle" of the c rys ta l  (the range of incident 

angles on the c rys ta l  i f  it is bent o r  thu range through which it is 

The latter point is crucial ,  since meaningful 

The e f fec t ive  area at  a given energy 

rocked). 

approximately * 9, where W is the "rocking curve width" of the 

c rys ta l  and 

(AEFF) is ,btained i f  A0 I, W. In pract ice  t h i s  may not be possible or  

desirable fo r  various reasons; for  example one may want A0 t o  be large 

enough so the corresponding AE covers adjacent l ines  such as the He-like 

t r i p l e t s .  

Bu t  ultimately a l l  B r a g g  spectrometers are limited by the limited 

ava i lab i l i ty  of d i f f rac tor  materials and so they share the same relevant 

inherent parameters such as I$ or I$ and h/AF. fo r  point sources. 

reference the Einstein FPCS had %T % 2 - 3 cm near 1 keV and up t o  10 

times less  a t  sane energies. 

backgro*nd is obtained e i the r  with a telescope, or by sui tably curving 

the c rys ta l  so i t  ac ts  as a concentratorldiffractor. 

I assume a uniform area or  exposure across 80. % i ?  
I, 

is i ts  "peak ref lect ivi ty" ,  so a near-optimum efficiency 

MAX 

Selection of a par t icular  A0 may be one of the design trade-offs. 

For 
2 

The concentration required t o  reduce 

Crating instruments have the spectral  m l t i p l e x  advantage over a t  

leas t  a sizeable part  of the energy spectrum, 

inevitably performed with a telescope. 

I am familiar w i t h  c a l l  fo r  objective gratings in  transmission o r  

Here concentration is  

The only t ru ly  viable designs 
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r e f l ec t ion .  

(see W. Cash's paper a t  t h i s  meeting). 

g ra t ings  have been discussed a t  var ious times i n  the p a s t ,  t he re  appears 

t o  be no good so lu t ion  ye t  t o  the fundemental l i v i t a t i o n  of t he  mismatch 

between the flnumbers of the grazing incidence te lescopes and r e f l e c t i o n  

grat ings;  telescopes produce r ay  bundles with angular divergencrs of 

% 10' , which i s  many times l a rge r  than the acceptance angle of 

standard X-ray r e f l e c t i o n  g ra t ing  spectrometers. 

The l a t t e r  i s  a r e l a t i v e l y  new concept f o r  X-ray astronomy 

Although f o c a l  plane r e f l e c t i o n  

b) Bragg Spectrometer Desip 

( i )  AXAF Focal Plane Crystal  Spectrometer (AXAF FPCS) 

&re I assume a scaled up vers ion of the E ins t e in  FPCS. The 

telescope provic'es concentration by a f a c t o r  of % 1000 f o r  a point  source. 

The instrument operates i n  a scanning mode with se l ec t ab le  d i f f r a t o r s  t o  

cover the f u l l  energy range. 

of its astigmatic imaging p rope r t i e s ,  although an aperture  should be 

used t o  l i m i t  the f i e l d  of view, e.g., t o  3 x 30 arc min f o r  t he  E ins t e in  

FPCS. 

l i m i t  t h e  t i m e  r e so lu t ion  f o r  s t u d i e s  of adjacent l i n e s  because the  

event r a t e  is  so low. For AEFF % 10 - 50 and l i n e  f luxes % 10 cm s 

there  are 20 - 100s per  event,  and reasonable scan times have neg l ig ib l e  

It can handle extended sources by v i r t u e  

( I  do want t o  note i n  passing t h a t  scanning general ly  does not 

-3 -2 -1 

e f f e c t  on the achievable time resolut ion.)  

(ii) Conical Crystal Spectrometer (CCS) 

This design i s  associated largely with Bruce Woodgate and co l l abora to r s  

(Woodgate e t  a l .  1973). 

concentration f a c t o r  of % 100 t o  a line focus. 

rocked t o  cover a moderate energy range ( ?, 50%).  Larger ranges must be 

covered by independent instruments. Extended sources must be coll imated 

A c r y s t a l  panel is conical ly  curved t o  give a 

A given panel can be 
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t o  Q, 10' t o  give E/A8 Q, 100. 

( i i i )  Spherical  Crystal  Spectrometer (SCS) 

This design is  due t o  Schnopper and colleagues (Schnopper and 

Taylor 1980) and is described f u l l y  by G r i f f i t h s  a t  t h i s  meeting (see 

a l s o  Culhane's presentat ion) .  

CCS is  t h a t  the bent c r y s t a l  concentrator 

second bend which introduces a pseudo-multiplex advantage a t  the  

expense of peak o f f e c t i v e  area. (e.g. A8 is  >> W by design).  Thus the 

SCS need not be scanned (saving mechanical complexity), and the re  i s  a 

f u r t h e r  advantage i n  the imaging c a p a b i l i t y  (a nore s u b t l e  point  is t h a t  

the instrument can b e n e f i t  from the high r e f l e c t i v i t y  of mosaic c r y s t a l s  

without necessa r i ly  s u f f e r i n g  f u l l y  the  usual ly  accomp&iying degradation 

of energy resolut ion.)  

f ixed panel w i l l  cover a AE/E of 2r 10 - 20%. 

area t o  bear on a s i n g l e  l i n e  nor avcid devoting area t o  what may be 

un in te re s t ing  port iogs of "-e spectrum f o r  some sources. Again, mult iple  

energy ranges require  mult iple  instruments 

c a p a b i l i t i e s  a r e  very good: resolving powers af 2 100 can be achieved 

over a f u l l  io f i e l d .  

The main d i f f e rence  between t h i s  and the  

(again Ac/\ % 100) has a 

The p r i c e  one pays is  i n  f l e x i b i l i t y .  A given 

One cannot b r ing  a l l  the 

But the extended source 

( iv )  Imaging X-ray Spectraneter  

This is a "barn-door'' object ive c r y s t a l  spectrometer such as the one 

described by Angel and Weisskopf (1970). 

with Ken Pounds and co l l abora to r s  f o r  spacelab. A f l a t  c r y s t a l  panel is  

followed by a mOdeYite r e so lu t ion  te lescope,  which gives  a concentration 

f a c t o r  of Q, 10 

Thus t h i s  instrumeid has a s i g n i f i c a n t  s p a t i a l / s p e c t r a l  multiplex advantage. 

I proposed such an instrument 

5 f o r  a point source md f u l l  f i e l d  imaging over near ly  lo. 
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A t  a s ingle  s e t t i n g  one obtains a f u l l  image i n  a narrow band whose c e n t r a l  

energy var ies  @.long one dimension . 
up a s p a t i a l l y  resolved spectrum over thc whole image. 

panel can y i e l d  higher resolut ions than bent c r y s t a l  spectrometers over 

i t s  spectral range ( l i k e  the SCS it  can get high reso lu t ion  with mosaic 

c r y s t a l s ) ,  and unlike the other  instruments i ts  reso lu t ion  is not  degraded 

by source extent .  

The c r y s t a l  must be rocked t o  bui ld  

The f l a t  c r y s t a l  

c )  Grating Spectrometer Designs 

( i )  AXAF Transmission Gratings Spectrometer (AXAF TGS) 

Although r e s u l t s  from the  Einstein OGS have been slow i n  coming, the 

instrument did acquire some remarkable spectra ,  and s i g n i f i c a n t  improvements 

have been made i n  gra t ing  fabr ica t ion  s ince  the HEAO program a t  Utrecht, 

MF'I and MIT. 

f o r  rcher  missions (e.g. ROSAT r e f l i g h t ) .  I w i l l  concentrate on the  

parameters of a possible  AXAF OGS, but any similar system would share many 

of the same propert ies .  

a point source i s  lo6 - 10 because of the mall image s ize .  

EXOSAT has a gra t ing  system and gra t ings  are under consideration 

The concentration f a c t o r  of such a s y C . e m  f o r  

7 

A s  a s l i g h t  digression l e t  me describe some of the  improvements i n  
i s  

grat ing fabr ica t ion  being made a t  MXT. 

our E l e c t r i c a l  Engineering Department, with whom I and Mark Schnttenburg 

a re  col laborat ing t o  per fec t  g ra t ings  of high s p a t i a l  frequency. 

been par t icu lar ly  in te res ted  i n  making thick gra t ings  f o r  use around the 

6 keV iron l i n e s  using thc technique of s o f t  X-ray lithography perfected 

by Smith and h i s  coworkers  a t  MIT and Lincoln Lab. 

the  calculated,  one-sided f i r s t  order e f f ic iency  f o r  an 0 .9  um thick 

grating. 

u l t i m a t e  peak two-sided e f f i c i e n c i e s  of 50%. 

feas ib le  is shown i n  Figure 2 ,  which i s  an e lec t ron  micrograph of a 

This,work of Prof. Henry Smith of 

We have 

Figure one shows 

This a c t s  as a phased gra t ing  i n  the region of i n t e r e s t  giving 

That such gra t ings  a re  
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3000 lpmn gold g ra t ing  of thickuess 0.6 m. 

mounted on polyimide s u b s t r a t e s  (taken i n t o  account i n  Fig. 1) t h a t  make 

them extremely rugged. 

be free-etanding. 

present ly  pushing f o r  increasing the thickness t o  the  desired value. 

The gratingo a re  a l l  

Of course a t  lower energies  the grat ings should 

A 5000 l p m  g ra t ing  has been made a d  w e  are 

Transmission g ra t ings  i n  coma-corrected mountings (Beuerman e t  al .  1978) 

could give very high throughput and re solutioo (WAE /L 100 - 600) f o r  

point sources. 

most of the f l u x  is i n  a few emission l i nes .  This i s  indeed the case f o r  

many supernova remnants. 

su i t ed  t o  t h i s  because of t h e i r  small s i z e ,  and cooling cores i n  

galaxy c l u s t e r s  may be s i m i l a r l y  accessible .  

They would even be usrable  on extended sources i n  which 

The remants i n  the LMC are p a r t i c u l a r l y  well 

( i i )  Objective Reflect ion Grating Spectrometer (ORGS) 

This c lever  design is  discussed i n  d e t a i l  by Cash ( t h i s  meeting). 

5 The concentration f a c t o r  i s  % 10 

one needs r a t h e r  f i n e  coll imation (1' x 20 ' )  t o  avoid degradation of 

the r e so lu t ion  t o  below E/AE - 100, and t h i s  w i l l  both add ca > l e x i t y  and 

l i m i t  the  s i g n a l  on extended sources such as SNR's and c l u s t e r s .  

ORGS has g rea t  promise, but as the  youngest of the instruments mentioned 

here it na tu ra l ly  has the highest  degree of undemonstrated technology at  

t h i s  time. 

f o r  p o i x  sources. For extended sources 

The 

111. COMPARATIVE ANALYSIS 

A comparison of the perforsance of the various spectrometer designs 

i s  extremely d i f f i c u l t  and fraught with p i t f a l l s .  Each design contains  

enough f r e e  parameters t h a t  i t  is nearly always possible  t o  improve one 

c h a r a c t e r i s t i c  a t  the expense of another (e.g. ,  AEFF at  some energy a t  

the exptnse of energy range). 

compared i n  any d e t a i l .  Neverthelese, i t  is  i n s t r u c t i v e  t o  analyze the 

Thus only hard and f a s t  designs can be 



432 

relative merits of several "strawman'' instrunents. 

to the various proponents of each instnxwnt and with the warning that 

the parameters listed belaw can change by factors of up to 10 ae the 

designs are modified. 

I do so with apologies 

I have made various assumptions in canputing Tables 1 and 2. 

AXAF parcaseten are estimated fran various AXBF working group papers. 

For the crystal instruments (CCS, SCS, IXS) I assume crystal projected 

areas of 10 cm and diffractor properties appropriate to TAP (1 keV) or 

LiF (6.? keV). For the ORGS and IXS I take telescope effective areas of 
2 

SO0 cm at 1 keV I assme all detector efticiencies are 1.0. Collimator 
4- 

transmissian is taken as 0.7 for the CCS and 0.5 for the ORGS. The SCS 

is assumed to have % 150 spectral resolutim ele~~ents that span the 5 lines 

in question (e.g. it has pseudo spectral multiplex advantage). 

the weak source limit in which the background is all of noa-X-ray origin 

with flux l!~-~csl-~s-\eV-? 

measure this background simultaneously with the signal in unilliminated 

The 

3 2  

(and zero at 6.7 keV) 

I take 

I assume that the CCS like the FPCS can 

pertions of the position sensitive detector (as we have done with the 

Eirstein FPCS). The 20' source is assinned to have unifow surface 

brightness, so that apertures reduce the flux to the instrumnt. 

The listed 3a flux limits are for each of five lines (to allow 

5 sone plasma diagnostics) and a tctal exposure of 5 x 10 s. 

the multiplexed instruments will get information about the entire spectrum 

simultaneously. 

there are many more lines near the former energy. 

Of course, 

This is of greater value near 1 keV than near 7 keV, as 

Except where indicated 

the instruments are signal limited and so the number of detectcd photons 

is very smell. 

IV. CONCLUSIONS 

One imwdiate conclusion is that each of the strawman instrments 
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has a .sensit ivity t h a t  is  a t  lekst an order of magnitude b e t t e r  than 

t h a t  of tSe E ins t e in  FPCS. 

instruments is  sure  t o  provide the s p e c t r a l  banquet I r e fe r r ed  t o  i n  

0 1 .  For i l l u s t r a t i o n  I show i n  Table 3 some crude est imates  of the 

typical l i n e  s t r eng ths  f o r  a given class of ob jec t s  ( i .e . ,  not j u s t  

the b r i g h t e s t  one or two). With l imi t ing  f l u e s  of lo-' t o  10 cm 8 

one w i l l  have many hundreds of g a l a c t i c  and e x t r a g a l a c t i c  ob jec t s  t o  

This means t h a t  the next generat ion of 

-6 -2 -1 

study. 

A second conclusion is  t h a t  e&-): instrument ifivolves trade-offs and 

compranises t h a t  a u s t  be weighed with g rea t  care.  

ana lys i s  shows how strongly the r e l a t i v e  merits of a given design 

depend an the d e t a i l s  of the object ive (e.g. extended vs. point  sources).  

I have not even addressed important d e t a i l s  such as how the r e so lu t ion  

degrades w i t h  source ex ten t  o r  how s e n s i t i v e  the instrument may be t o  

spacecraf t  point ing unce r t a in t i e s .  

Even my crude 

A t h i r d  conclusion is t h a t  AXAF promises t o  have a powerful s p e c t r a l  

capab i l i t y  when i t  is eventual ly  launched. Probably the g r e a t e s t  

weakness of the two AXAF instruments considered here i s  the a t  least 

p a r t i a l  breakdown of the multiplexed TGS f o r  sources 

I t  would seem t h a t  t h i s  leaves a major hole f o r  some o the r  fu tu re  

mission, e spec ia l ly  around the Fe l i n e  where the e f f e c t i v e  area of the 

FPCS is severely l imited by the  telescope e f f i c i ency .  

I am g r a t e f u l  t o  the I n s t i t u t e  of Astronomy f o r  t h e i r  h o s g i t s l i t v ,  

20" i n  extent .  

t o  the Royal Society f o r  t h e i r  support through a V i s i t i n g  Research 

Fellowship, and t o  NASA f o r  par t ia l  support under contract  IUS-8-30752. 

I thank Andy Hawrylick, Mark Schattenburg, and Henry Smith f o r  Figures 
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TABLE I 

WEAK SoUElcE FLUX LIMIT FOR DETECTION OF 5 LINES 

AT I keV IN 5 x 10 8 .  
4 

2 INSTRUMENT (cm 

AXAF FPCS 3 W a )  

ccs 240 (a) 

scs 2 

Ixs 170 

AXAF n;s 200 

ORGS 75 

AETW 
2 

(cm 

I 

10 

0.02 

0.005 

I o4 

0.005 

FOV 

(arc min) 

3' x 30' 

10' x so 

30' x so 

l o  x lo  

1 '  x 20' 

Notes : 

4 

4 

a. 

b. Sensitivity is background limited at 10 s. 

(C) Extended source capability for sources 

No multiplex advantage; bIN assumes 10 s each on 5 lines. 

< 20" and strong emission line 

sources. Deconvolution possible on other sources. 
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TABLE 2 

WEAK SOURCE J%VX LIMIT FOR DETECTION OF 

5 LINES AT 7 keV IN 5 x 104s 

-2 -1  hIN (cm s 1 

POINT 20' 

Fo" 

(arc min) 

MAX 

2 (cm 1 

INSTRUMENT %FF 

- 2 
(cm 1 - 

AXAF FPCS (a) 20 1 3' x 30' 5 x 10-5 4 x 10*(b) 

CCS (a) 140 10 10' x so 2 10+(b) 4 

scs 4 .02 30' x 5' 5 5 

AXAF TGS 50 lo+ 1 '  x 20' 4 x IO* (C 1 

Notes: 

4 assumes 10 s each on 5 lines. IMIN (a) No spectral multiplex advantage; 

(b) Sensitivity is background limited. 

(c) Extended source capability for sources < 20" and strong emission line sources. 

Deconvolution possible on other sources. 
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TABLE 3 

ESTIMATED LINE FLUXES FOR CLASSES OF 

ASTROPHYSICAL OBJECTS 

SIZE 
LINE FLUX 

Io-' 
BINARIES 
(Fe LINES) 

 IO-^ LMC SNR 

SNR 

COOLING CLUSTER CLUSTER Fe LINES 
CORES 

S T E L M  CORONAE 

 IO-^ 
I o3 

IO4 

GAS IN GALAXIES 
(e.g. M86) 

* CLUSTERS @ Z - (3.5 



4 38 

FIGURE CAPTIONS 

Figure 1: Calculated one-sided first-order efficiency for the illustrattu gold 

transmission grating on a polyimide substrate. 

Figure 2: Electron micrograph of a 3000 lpmm gold grating on a polyimide substrate. 

The grating thickness is 0.6 urn plus 1.0 urn of polyimide. 

fabricated by a muitistep process involving both holographic exposure and soft 

X-ray lithography. 

This grating was 
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