115 research outputs found

    Bayesian meta-analysis for evaluating treatment effectiveness in biomarker subgroups using trials of mixed patient populations

    Full text link
    During drug development, evidence can emerge to suggest a treatment is more effective in a specific patient subgroup. Whilst early trials may be conducted in biomarker-mixed populations, later trials are more likely to enrol biomarker-positive patients alone, thus leading to trials of the same treatment investigated in different populations. When conducting a meta-analysis, a conservative approach would be to combine only trials conducted in the biomarker-positive subgroup. However, this discards potentially useful information on treatment effects in the biomarker-positive subgroup concealed within observed treatment effects in biomarker-mixed populations. We extend standard random-effects meta-analysis to combine treatment effects obtained from trials with different populations to estimate pooled treatment effects in a biomarker subgroup of interest. The model assumes a systematic difference in treatment effects between biomarker-positive and biomarker-negative subgroups, which is estimated from trials which report either or both treatment effects. The estimated systematic difference and proportion of biomarker-negative patients in biomarker-mixed studies are used to interpolate treatment effects in the biomarker-positive subgroup from observed treatment effects in the biomarker-mixed population. The developed methods are applied to an illustrative example in metastatic colorectal cancer and evaluated in a simulation study. In the example, the developed method resulted in improved precision of the pooled treatment effect estimate compared to standard random-effects meta-analysis of trials investigating only biomarker-positive patients. The simulation study confirmed that when the systematic difference in treatment effects between biomarker subgroups is not very large, the developed method can improve precision of estimation of pooled treatment effects while maintaining low bias

    Bayesian meta-analytical methods to incorporate multiple surrogate endpoints in drug development process.

    Get PDF
    A number of meta-analytical methods have been proposed that aim to evaluate surrogate endpoints. Bivariate meta-analytical methods can be used to predict the treatment effect for the final outcome from the treatment effect estimate measured on the surrogate endpoint while taking into account the uncertainty around the effect estimate for the surrogate endpoint. In this paper, extensions to multivariate models are developed aiming to include multiple surrogate endpoints with the potential benefit of reducing the uncertainty when making predictions. In this Bayesian multivariate meta-analytic framework, the between-study variability is modelled in a formulation of a product of normal univariate distributions. This formulation is particularly convenient for including multiple surrogate endpoints and flexible for modelling the outcomes which can be surrogate endpoints to the final outcome and potentially to one another. Two models are proposed, first, using an unstructured between-study covariance matrix by assuming the treatment effects on all outcomes are correlated and second, using a structured between-study covariance matrix by assuming treatment effects on some of the outcomes are conditionally independent. While the two models are developed for the summary data on a study level, the individual-level association is taken into account by the use of the Prentice's criteria (obtained from individual patient data) to inform the within study correlations in the models. The modelling techniques are investigated using an example in relapsing remitting multiple sclerosis where the disability worsening is the final outcome, while relapse rate and MRI lesions are potential surrogates to the disability progression

    A novel approach to bivariate meta-analysis of binary outcomes and its application in the context of surrogate endpoints

    Get PDF
    Bivariate meta-analysis provides a useful framework for combining information across related studies and has been widely utilised to combine evidence from clinical studies in order to evaluate treatment efficacy. Bivariate meta-analysis has also been used to investigate surrogacy patterns between treatment effects on the surrogate and the final outcome. Surrogate endpoints play an important role in drug development when they can be used to measure treatment effect early compared to the final clinical outcome and to predict clinical benefit or harm. The standard bivariate meta-analytic approach models the observed treatment effects on the surrogate and final outcomes jointly, at both the within-study and between-studies levels, using a bivariate normal distribution. For binomial data a normal approximation can be used on log odds ratio scale, however, this method may lead to biased results when the proportions of events are close to one or zero, affecting the validation of surrogate endpoints. In this paper, two Bayesian meta-analytic approaches are introduced which allow for modelling the within-study variability using binomial data directly. The first uses independent binomial likelihoods to model the within-study variability avoiding to approximate the observed treatment effects, however, ignores the within-study association. The second, models the summarised events in each arm jointly using a bivariate copula with binomial marginals. This allows the model to take into account the within-study association through the copula dependence parameter. We applied the methods to an illustrative example in chronic myeloid leukemia to investigate the surrogate relationship between complete cytogenetic response (CCyR) and event-free-survival (EFS).Comment: 20 pages, 6 figure

    Creation of solitons and vortices by Bragg reflection of Bose-Einstein condensates in an optical lattice

    Get PDF
    We study the dynamics of Bose-Einstein condensates in an optical lattice and harmonic trap. The condensates are set in motion by displacing the trap and initially follow simple semiclassical paths, shaped by the lowest energy band. Above a critical displacement, the condensate undergoes Bragg reflection. For high atom densities, the first Bragg reflection generates a train of solitons and vortices, which destabilize the condensate and trigger explosive expansion. At lower densities, soliton and vortex formation requires multiple Bragg reflections, and damps the center-of-mass motion.Comment: 5 pages including 5 figures (for higher resolution figures please email the authors

    Bivariate network meta-analysis for surrogate endpoint evaluation

    Full text link
    Surrogate endpoints are very important in regulatory decision-making in healthcare, in particular if they can be measured early compared to the long-term final clinical outcome and act as good predictors of clinical benefit. Bivariate meta-analysis methods can be used to evaluate surrogate endpoints and to predict the treatment effect on the final outcome from the treatment effect measured on a surrogate endpoint. However, candidate surrogate endpoints are often imperfect, and the level of association between the treatment effects on the surrogate and final outcomes may vary between treatments. This imposes a limitation on the pairwise methods which do not differentiate between the treatments. We develop bivariate network meta-analysis (bvNMA) methods which combine data on treatment effects on the surrogate and final outcomes, from trials investigating heterogeneous treatment contrasts. The bvNMA methods estimate the effects on both outcomes for all treatment contrasts individually in a single analysis. At the same time, they allow us to model the surrogacy patterns across multiple trials (different populations) within a treatment contrast and across treatment contrasts, thus enabling predictions of the treatment effect on the final outcome for a new study in a new population or investigating a new treatment. Modelling assumptions about the between-studies heterogeneity and the network consistency, and their impact on predictions, are investigated using simulated data and an illustrative example in advanced colorectal cancer. When the strength of the surrogate relationships varies across treatment contrasts, bvNMA has the advantage of identifying treatments for which surrogacy holds, thus leading to better predictions

    Combining individual patient data from randomized and non-randomized studies to predict real-world effectiveness of interventions.

    Get PDF
    Meta-analysis of randomized controlled trials is generally considered the most reliable source of estimates of relative treatment effects. However, in the last few years, there has been interest in using non-randomized studies to complement evidence from randomized controlled trials. Several meta-analytical models have been proposed to this end. Such models mainly focussed on estimating the average relative effects of interventions. In real-life clinical practice, when deciding on how to treat a patient, it might be of great interest to have personalized predictions of absolute outcomes under several available treatment options. This paper describes a general framework for developing models that combine individual patient data from randomized controlled trials and non-randomized study when aiming to predict outcomes for a set of competing medical interventions applied in real-world clinical settings. We also discuss methods for measuring the models' performance to identify the optimal model to use in each setting. We focus on the case of continuous outcomes and illustrate our methods using a data set from rheumatoid arthritis, comprising patient-level data from three randomized controlled trials and two registries from Switzerland and Britain
    • …
    corecore