We present a new procedure to fit non-axisymmetric flow patterns to 2-D
velocity maps of spiral galaxies. We concentrate on flows caused by bar-like or
oval distortions to the total potential that may arise either from a
non-axially symmetric halo or a bar in the luminous disk. We apply our method
to high-quality CO and Halpha data for the nearby, low-mass spiral NGC 2976
previously obtained by Simon et al., and find that a bar-like model fits the
data at least as well as their model with large radial flows. We find
supporting evidence for the existence of a bar in the baryonic disk. Our model
suggests that the azimuthally averaged central attraction in the inner part of
this galaxy is larger than estimated by these authors. It is likely that the
disk is also more massive, which will limit the increase to the allowed dark
halo density. Allowance for bar-like distortions in other galaxies may either
increase or decrease the estimated central attraction.Comment: 12 pages, 6 figures, accepted for publication in ApJ. v2: minor
changes to match proofs. For version with high-resolution figures, see
http://www.physics.rutgers.edu/~spekkens/papers/noncirc.pd