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Abstract

As global climate change concerns, technological advancements, and economic shifts
increase the adoption of electric vehicles, it is vital to study how best to integrate
these into our existing energy systems. Electric vehicles (EVs) are on track to quickly
become a large factor in the energy grid. If left uncoordinated, the charging of
EVs will become a burden on the grid by increasing peak demand and overloading
transformers. However, with proper charging control strategies, the problems can be
mitigated without the need for expensive capital investments. Distributed control
methods are a powerful tool to coordinate the charging, but it will be important to
assess the trade-offs between performance, information privacy, and computational
speed between different control strategies.

This work presents a comprehensive comparison between four distributed control
algorithms simulating two case studies constrained by dynamic transformer tempera-
ture and current limits. The transformer temperature dynamics are inherently nonlin-
ear and this implementation is contrasted with a piece-wise linear convex relaxation.
The more commonly distributed control methods of Dual Decomposition and Alter-
nating Direction Method of Multipliers (ADMM) are compared against a relatively
new algorithm, Augmented Lagrangian based Alternating Direction Inexact Newton
(ALADIN), as well as against a low-information packetized energy management con-
trol scheme (PEM). These algorithms are implemented with a receding horizon in two
distinct case studies: a local neighborhood scenario with EVs at each network node
and a hub scenario where each node represents a collection of EVs. Finally, these
simulation results are compared and analyzed to assess the methods’ performance,
privacy, and processing metrics for each case study as no algorithm is found to be
optimal for all applications.
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Chapter 1

Introduction

1.1 Motivation

Electric vehicles (EVs) have become a popular alternative to fossil-fuel based trans-

portation and interest in electrifying the transportation sector will only continue to

grow in the future. As we continue to utilize more renewable forms of energy as

electricity sources, powering our transportation section on the electric grid instead

of fossil fuels will reduce emissions and climate change impacts. Increasing levels of

funding are being invested into R&D for efficient and low-cost lithium-ion batteries

for EVs, which will continue to drive down costs [1, 2]. In addition, electric vehicles

have been shown to be cheaper to maintain and operate as well as safer than the

traditional options [3–5].

These economic and societal benefits have already spurned a growth in the pro-

duction and sales of electric vehicles. For example, in California 1 in 10 new car pur-

chases are electric vehicles [6]. In addition, there has been growing interest in electric

non-residential vehicles such as metro area public transit, pickup trucks, semi-trailer
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trucks, and other delivery vehicles. Not only have major car manufactures committed

to electrifying a portion of their products in the coming years, but leading trucking

and delivery companies have already been piloting electric vehicle fleets.

However, there are certain challenges associated with increased adoption of electric

vehicles. Converting this traditionally fossil-fuel based energy demand to electricity

will add demand to the electric grid and change the shape of the demand curve.

Most residential users will charge their vehicles when they come home from work,

which coincides with the evening peak in energy usage. This will only exacerbate the

ramping caused by the increased penetration of solar PV, i.e., the so-called “Duck

Curve” [7–9].

On a more local level, uncoordinated charging from electric vehicles can lead to

demand that exceeds the rating of the nearby distribution substation power trans-

former. This MVA-scale oil-filled transformer has its cores immersed in mineral oil for

improved heat transfer. Additional EVs will increase the demand on a transformer,

which in turn increases the hot-spot temperature of the transformer, which is the

hottest spot inside the transformer. The hot-spot temperature is a major factor in

transformer wear-and-tear and aging as the hot oil will break down the winding insu-

lation faster [10]. In order to accurately model the transformer hot-spot temperature

dynamics, a high order, non-linear thermodynamic model, such as the IEEE Standard

C57.91-1995 (e.g., Clause 7 and Annex G) is usually used.

Thus, it is desirable to schedule EVs with respect to the hot-spot temperature

constraint and EV-specific objectives, which form an optimization problem. Due to

the potential for a high number of EVs and a large time horizon, this optimization

problem is computationally challenging. Techniques such as decomposition are used

2



to separate the large scheduling problem with coupling constraints into smaller ones.

Two more common algorithms used are dual decomposition with dual ascent and

Alternating Direction Method of Multipliers (ADMM). Two uncommon distributed

methods that will be discussed in this work are Augmented Lagrangian based Alter-

nating Direction Inexact Newton (ALADIN), as well as a packetized energy manage-

ment control scheme (PEM).

In order to assess which of these algorithms fit our applications needs the best,

we will be evaluating them on three metrics. First, we will measure how well they

perform when compared with the original central problem. Next, we will quantify how

well the algorithms reduce the communication overhead and protect the information

of the electric vehicle owners. Finally, we will use metrics to track the computational

speed of the algorithms.

1.2 Literature Review

Recent years have seen a growth in papers that study the control of EV charging.

General comparisons of non-centralized control techniques exist such as [11, 12].

There are papers that utilize dual decomposition to solve the EV charging control

problem [13–15] as well as multiple papers which used an ADMM approach for

some variation of the EV charging problem [16–21]. Other papers have novel or

creative approaches such as [22] which explored EV charging for valley-filling under

transformer constraints using shrunken-primal-dual subgradient (SPDS) algorithm,

[23–25] which employ random charging requests, and [26–28] which uses game theory.

With the increase in interest in controlling electric vehicle charging comes a grow-
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ing concern for protecting electric vehicle owner’s information. Papers have begun to

look at ways to coordinate the charging of electric vehicles while minimizing or elim-

inating the need to communicate information to a central coordinator. Many such

as [29–31] use peer-to-peer or blockchain technologies to enable transactive energy

trading.

Few papers that study the EV charging problem compare multiple algorithms.

The work done in [21] computes the optimal scheduling of electric vehicles under grid

capacity constraints and compares the trade-off between the convergence speed and

the amount of communication required. However, this study only considers different

combinations of two algorithms as well as considers linear capacity constraints and

not the nonlinear transformer dynamics.

While many papers are devoted to coordinated charging of individual, residential

EVs, fewer papers consider hubs of commercial EVs, such as school buses or delivery

trucks. One such paper [32], aggregates PEVs and optimizes the lowest electricity

charging cost solution under some linearized power flow constraints. Another [33],

studies time of use pricing for a parking garage of electric vehicles. Others coordinate

aggregate EVs for use as a virtual battery [34,35] or for frequency control [36]. This

work will look specifically at how the electric vehicle hubs can meet their needs while

respecting a transformer’s temperature limit.
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1.3 Research Objectives and Contribu-

tions

With this work, we build on the work from [37] but start with a nonlinear model for

the transformer dynamics. While most previous works on electric vehicle charging

(EVC) control selects one method that fits a specific needs, this work aims to compare

multiple distributed methods and study the trade-offs between information sharing,

performance, and computational processing. Including a novel distributed optimiza-

tion method [38] and an iterative-free distributed method [39] adds control schemes

which have not been analyzed for the EVC under dynamic multi-period coupling con-

straints. In addition, we add the second case study of the hub charging problem to

give an example of a different application of the EVC problem. By introducing the

hub charging problem, we are able to compare the algorithms across multiple case

studies and contrast an application where privacy is the main priority to a commercial

setting.

1.4 Thesis Outline

First, in Chapter 2 we review relevant information about transformers, electric ve-

hicles and optimizing their charging. In Chapter 3, we formulate the neighborhood

EV charging problem and compare four distributed algorithms. Chapter 4 follows

this with the second case study where we apply the same four distributed algorithms

to the hub charging problem. The distributed algorithm’s results from the two case
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studies are compared in depth in Chapter 5. We then conclude the work and discuss

recommendations for further research in Chapter 6.

1.5 Notation

Brackets are used for time steps (e.g. x[k] is the x value at the kth time step). Bold

variables are vectors over all K time steps (e.g. x := col{x[0], x[1], . . . , x[K]}) and

non-bold variables are scalars. Superscript in parenthesis is used for iteration count

(e.g. λ(p) is the λ value at the pth iteration).

Variable Description Domain Units
EVC System Knowns

N Number of EVs Z+
Ta[k] Ambient temperature at time k R+

◦C
id[k] Background demand at time k R+ kA
Tmax Transformer temperature limit R+

◦C
γ Ohmic losses-to-temp R+

◦CΩ/kW
τ Temp time constant R+
ρ Ambient-to-temp losses R+
K Optimization horizon length Z++ # of time steps
∆t Time step length R++ Seconds

EV Specific Parameters
imax
n nth EV current limit R+ kA

αn nth EV charging efficiency [0,1]
βn nth EV battery size R+ J
ηn nth EV normalized battery size R+

1/kA
s̄n Minimum SoC for nth EV [0,1]
k̄n Time step to reach minimum SoC [0,K]
Qn Penalty on partial SoC for nth EV R+
Rn Penalty on local power flow nth EV R+

Table 1.1: Notation Used
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Chapter 2

Review of Preliminaries

In this chapter we will review theory behind transformer’s and their temperature

dynamics. Then, we will explain the dynamics of electric vehicle charging and how

to optimally schedule them. Finally, we will review how this optimization problem

can be decoupled into small problems.

2.1 Transformers and Their Limits

Power transformers are an important piece of the electric grid and allow efficient and

low-loss transmission of power. At high voltages, low current levels can be maintained

which results in low power losses (represented by I2R). Transformers enable the

conversion of electricity to high voltage before transmission and the conversion to

lower voltage closer to where the power is being consumed. While the grid is adding

distributed generation that allows for power to be generated closer to where it is

consumed, transformers will still play a large role in the future electric grid. One

scenario will be transporting energy from pockets of large utility-scale renewable

7



installations to pockets of large load.

Transformers are given a power rating, usually in kVA, which determines the

maximum current at a given voltage. In addition, practical transformers have nonzero

resistance and will tend to heat up as more current passes through. The limit to

the transformer’s temperature is often referenced in terms of a maximum hot spot

temperature. When a transformer’s temperature limit is exceeded, there is an increase

in the degradation of the transformer and the lifespan decreases. The increase in

temperature is a function of the thermal resistance of the transformer and the power

loss. The thermal resistance, which is the resistance from the external ambient to the

central hot spot, unfortunately, is difficult to measure with high accuracy.

The standard for transformer thermal modeling given a load history is in IEEE

Guide to Loading Mineral-Oil Immersed Transformers Annex G [40] which is a com-

plex, high-order, nonlinear model. However, simpler models do exist for approximat-

ing these dynamics. For this work, we use a first order quadratic model and further

approximate with a piece-wise linear formulation.

2.2 Electric Vehicle Charging

As electric vehicle adoption has increased and automotive manufacturers have com-

mitted more and more to an electric future, the availability and options for how to

charge electric vehicles have grown. Owners of electric vehicles can choose to charge

at their home, at a public charging station, or at their work if charging stations are

available. There are three main types of charging connections which results in three

levels of charging. Level 1 charging is connecting the electric vehicle to a standard
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120V outlet. With a charging power around 1kW this is the slowest charging mode

and can take more than 12 hours to fully charge depending on the battery size. Level

2 charging supplies 240V and requires additional hardware but can charge at higher

power (3-20kW but typically closer to 7kW). Level 2 charging is most often used in

homes of private electric vehicle owners as well as at work and public charging sta-

tions. Finally, Level 3 charging, also known as fast charging or DC fast charging,

offers the fastest method to charge. These use DC power and can charge at 50-120

kW with currently available technology. DC fast chargers are becoming more avail-

able at public stations as part of charging networks but require too high voltage to

be installed at the average home.

While electric vehicles allow consumers to break off from their consumption and

purchase of gasoline, they still have to consider the purchase of electricity for their ve-

hicle. For private owners, charging at home will usually just add on to their electricity

bill, however, some utilities are beginning to allow for a separate rate for EV charg-

ing. Some companies are now offering free electric vehicle charging as an employee

benefit which is the ideal option financial if available. Those who want to make use of

charging stations will have to decide between networked stations and non-networked

stations. Charging networks are managed by charging network operators that usually

require users to have a membership before using their stations. There are three main

fast charging standards that are used in charging networks and electric vehicles are

only compatible with one of them, adding even more complexity for users.
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Figure 2.1: PG&E Time of Use Rate1

2.3 Optimal Scheduling of Electric Ve-

hicles

With the introduction of a large population of electric vehicles charging in the same

general area, we can start to consider coordinating the charging of electric vehicles.

This becomes a resource allocation problem and involves finding the optimal schedule

for charging. There are many different goals of such a problem depending on the

real world application and from whose perspective you view the problem from. For

instance, an electric vehicle owner might want to schedule their charging when electric

prices are lowest if they are on a time of use rate tariff (see Fig. 2.1) or exposed to

real-time prices. The grid operator might want to maximize the distance from any

grid or device limits in order to maintain the reliability of the grid. A company that

owns an electric fleet might care most about the quality of service to make sure that

all vehicles have the minimum charge to complete their routes.

One method for solving the electric vehicle charging problem described above is to

do the coordinating step in the cloud. This would involve having all relevant entities
1Image from: PG&E Website
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Figure 2.2: Cloud-based EV Charging System2

transmit their real-time data to the cloud, have a coordinator solve a problem, and

then send the optimal solution back to the devices. A graphical representation of

this can be seen in Fig. 2.2. There are a few downsides to this approach such as

it has a very large communication overhead and has no protection of information.

An alternative approach to solve the electric vehicle scheduling problem is through

decomposition.

Decomposition is the general process of taking a problem, breaking it up into small

problems, and then solving the small problems in order to get the solution for the

original problem. One motivation for this approach is that the local problems can be

solved in parallel which can result in faster solve times when compared to the original

problem. Another reason to use decomposition is that the resulting algorithms can

be implemented in a decentralized way which can be beneficial for various reasons

including reduced communication and privacy concerns. We will utilize decomposition

to solve the EV charging problem using different algorithms.
2Image from: JuiceNet Website
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Chapter 3

Electric Vehicle Charging

Problem

This chapter contains the main electric vehicle charging problem we are trying to

solve. We will introduce the models and formulate the nonlinear centralized prob-

lem. Then, we will perform a relaxation and a decomposition and run simulations

comparing four different distributed algorithms. After a discussion of the results, we

provide supplementary analysis on some important aspects of the problem.

3.1 System Models & Optimization

Consider a finite collection of N EVs charging at Level 2 charging stations that are

served by the the same distribution-level substation transformer. Between any charger

and the substation transformer is a pole-top transformer, as shown in Fig. 3.1. A

current-based, transformer temperature model is used in the primal EVC formulation

to keep the transformer hot-spot temperature below limits while satisfying the local

12



Distribution-level
Substation

Transformer

...

1π

π 2

Distribution 
feeders

s2

s1

N −1π

π N
sN

sN − 1

... T

HV-grid
connection

i1

i

i2

iN−1

iN

T

Distribution
feeders

Distribution-level
substation
transformer

HV-grid
connection

...
...

sN

sN−1

s1

s2

Figure 3.1: System Model

EV user constraints. The goal is to dynamically control the charging of all EVs

under the transformer temperature limit. The many constraints and multi-period

objectives give rise to a receding-horizon, model-predictive control (MPC) problem

that is described at each time instance by an optimization problem of the following

general form:

min
u
f0(x,u)

s.t. fi(x,u) ≤ 0 (3.1)

hi(x,u) = 0

x ∈ [xmin,xmax]; u ∈ [umin,umax],

where dynamic state x ∈ R(N+1)K represents the states of charge (SoCs) for all N EVs

and the transformer temperature over theK timesteps in the prediction horizon1. The

control input u ∈ RNK includes the EV charging rates. Constraints fi and h account

for inequality and equality constraints, respectively, while the box constraints capture

state and control input limitations. The next sections make f0, fi, hi explicit and
1In this work, the control and prediction horizons are assumed identical as the focus herein is on

comparison privacy, performance, and processing across different algorithms.
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couple charging rates, SoC, and transformer temperatures, as well as, the objective

function that translates EV owner preferences into control objectives.

3.1.1 Transformer Temperature Dynamics

We will start with the simplified first order, quadratic model that was developed in

[41] which can be seen in equation (3.2).

Ṫ (t) = aL(t)2 − b[T (t)− T̃a(t)] + c̃ (3.2)

where T (t) is the hot spot temperature, L(t) is the power load, and T̃a(t) is the

ambient temperature at time t.The constant coefficients a, b, and c̃ represent the

effects of conduction, convection, and radiation, respectively. These parameters may

be estimated from experimental data (as done in [41] with genetic programming)

or from manufacturer spec sheets. In this manuscripts, the parameters are scaled

versions of those in [41] with the additional qualification that the resulting model

has a step-response that matches the timescale of the temperature responses given in

spec sheets for similar MVA-scale transformers.

The differential equation in (3.2) has the solution

T (t) = e−b(t−t0)T (t0) +
∫ t

t0
e−b(t−φ)v(φ)dφ (3.3)

where v(φ) = aL(φ)2 + bT̃a(φ) + c̃. We would like to discretize this equation to be

used in our simulations by plugging in t = (k+ 1)∆t and t0 = k∆t where k ∈ {0, K}

are discrete time steps and ∆t is the length of the time step.
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T [(k + 1)∆t] = e−b((k+1)∆t−k∆t)T [k∆t] +
∫ (k+1)∆t

k∆t
e−b((k+1)∆t−φ)v(φ)dφ (3.4)

T [k + 1] = e−b∆tT [k] + e−b(k+1)∆t
∫ (k+1)∆t

k∆t
ebφv(φ)dφ (3.5)

We need to discretize v(φ), which we will do with a zero order hold by setting v(φ)

to v[k].

T [k + 1] = e−b∆tT [k] + e−b(k+1)∆t
∫ (k+1)∆t

k∆t
ebφv[k]dφ

T [k + 1] = e−b∆tT [k] + e−b(k+1)∆t
[
ebφ

b

](k+1)∆t

k∆t
v[k]

T [k + 1] = e−b∆tT [k] + 1
b
e−b(k+1)∆t[eb(k+1)∆t − ebk∆t]v[k]

T [k + 1] = e−b∆tT [k] + 1
b

[1− e−b∆t]v[k]

Proof that this is an accurate discretization can be seen in 3.2. Adding back in

v[k] and simplifying constants gives us

T [k + 1] = τT [k] + γ̃(L[k])2 + ρ(T̃a[k] + c) (3.6)

for k = 0, . . . , K−1 and initial measure temperature at T [0] = Tmeas where τ = e−b∆t,

ρ = 1− τ , c = c̃
b
and γ̃ = ρ

b
.

We would like to use a current based model instead of a power based model. We

assume a constant voltage, VAC, and rewrite in terms of total current

T [k + 1] = τT [k] + γ(itotal[k])2 + ρ(Ta[k]) ∀k = 0, . . . , K − 1 (3.7)
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Figure 3.2: Comparison between Continuous and Discrete Transformer Hot Spot Tempera-
ture Dynamics

where γ = γ̃V 2
AC and Ta[k] = T̃a[k] + c.

In addition, we are assuming that there are some limits to the hot spot tempera-

ture, Tmax, which would would like to operate below. Note that due to the (itotal[k])2

term this is a nonlinear equality constraint and is nonconvex.

3.1.2 EV Dynamics and Constraints

Using a similar approach we can discretize the continuous-time charging dynamics of

the nth vehicle with current in(t) at time t represented by

ṡn(t) = η̃nVACin(t) (3.8)

where η̃n is the ratio of the vehicle’s charging efficiency (αn) to battery size (βn) and

VAC is the constant RMS voltage at the EV. The discrete time equation is

sn[k + 1] = sn[k] + ηnin[k] (3.9)
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for k = 0, . . . , K − 1 and measured state of charge sn[0] = smeas,n where the domain

of sn is [0, 1] and ηn := ∆tVAC
αn/βn . Each vehicle has a maximum charging power

imax
n .

3.1.3 EV Owner Preferences

The owners of the device determine a minimum state of charge (s̄n) that must be met

by a specific time step (k̄n). The associated constraint for the nth vehicle is

sn[k + 1] ≥ s∗n[k + 1] :=


s̄n k + 1 ≥ k̄n

0 else

(3.10)

In addition, the user can set their preference for the trade-off between charging

their device quickly and minimizing local battery wear and control effort. The user

of the nth vehicle sets the ratio Qn
Rn

to be large if they want to prioritize reaching full

charge quickly (i.e., state penalty) or to be small if they prefer minimizing a proxy

for battery wear and tear (i.e., control effort).

This ratio is used in the expression (Jn) which quantifies the value to the owner

of the charging and state of charge schedule for the nth vehicle.

Jn(in, sn) =
K∑
k=1

(sn[k]− 1)2Qn +
K−1∑
k=0

(in[k])2Rn (3.11)

Summing over all N vehicles gives us a total performance metric which we will

minimize in the optimization problem.
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min
N∑
n=1

Jn(in, sn) (3.12)

This objective function is similar to a conventional linear quadratic regulator

(LQR) that penalizes deviations in SoC from full and balances this SoC satisfaction

against charging rates.

3.2 Nonlinear Central Problem Formu-

lation

We now would like to formulate an optimization problem using the performance

metric as the objective function. The open-loop optimal central problem is simply

the combination of the above constraints and objective function for all devices and
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time steps. This is a nonconvex problem due to the nonlinearity in (3.13d).

min
N∑
n=1

Jn(in, sn) (3.13a)

s.t. (3.13b)

id[k] +
N∑
n=1

in[k] = itotal[k] (3.13c)

T [k + 1] = τT [k] + γ(itotal[k])2 + ρTa[k] (3.13d)

T [k + 1] ≤ Tmax (3.13e)

sn[k + 1] = sn[k] + ηnin[k] (3.13f)

sn[k + 1] ∈ [s∗n[k + 1], 1] (3.13g)

in[k] ∈ [0, imax
n ] T [0] = Tmeas (3.13h)

sn[0] = smeas,n (3.13i)

for all k = 0, . . . , K − 1 and n = 1, . . . , N .

Note that the only coupling between the transformer and EV dynamics is the

equality constraint in (3.13c). Previous work in [37] had a temperature coupling

constraint whereas this is a current or power coupling.

3.3 Convexification of NL Problem

The only non-linearity in the problem is the current squared in the transformer tem-

perature dynamics (3.13d). We considered two different relaxations: a convex relax-

ation and a piecewise linear formulation.
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Figure 3.3: PWL Approximation (blue) and Convex Relaxation (green) of i2

One approach is relaxing the quadratic equality (3.13d) to an inequality as seen

in green in Fig. 3.3

T [k + 1] = τT [k] + γe[k] + ρTa[k] (3.14)

e[k] ≥ i2total[k] (3.15)

The primal problem can now be cast as a second order cone program (SOCP).

Theorem 3.3.1. At optimality, if k > 0 is the largest k < K for which T ∗[k + 1] =

Tmax, then e∗[l] = i∗total[l]2 ∀l ≤ k and the convex relaxation is tight for all prior

time-steps l ≤ k + 1.

Proof. The proof is based on KKT conditions, which are necessary and sufficient

conditions for optimality since the primal problem satisfies Slater’s constraint quali-

fication and is convex. See Appendix A for detailed proof.

Remark. Note that for all remaining time-steps, l > k , the relaxation need not be

tight as the coupling constraint is not binding (i.e., T [l] < Tmax,∀l > k). However,
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the effects of these “fictitious” losses, i.e., γ(e[k]− i2total[k]) > 0, are of no consequence

to the charging control as they do not constrain the transformer.

The benefit of the convex relaxation approach is that this relaxation is exact to the

nonlinear model. However, quadratic or conic constraints increases the complexity of

complementary conditions and can lead to numerical difficulties. A different approach

is the piece-wise linear (PWL) method as seen in blue in Fig. 3.3 which creates an

quadratic problem and improves numerics of the problem. The quadratic problem

is a subset of second-order cone problems meaning it is inherently less complex. As

we develop a convex solver to handle the more generic problems, numerics become

a challenge at scale. Another benefit of using the PWL approximation is that it

will overestimate the transformer current, as a function of the number of segments,

which beget an accurate, but conservative prediction of the transformer temperature.

Therefore, for the remainder of this work, we will focus on the PWL implementation.

3.3.1 Piecewise Linear Approximation

Define e[k] a piece-wise linear (PWL) approximation of itotal[k]2 with M segment of

equal width ∆i := Imax

M
where Imax is a realistic maximum transformer current

itotal[k]2 ≈ e[k] := PWL{itotal[k]2} =
M∑
m=1

αmi
PW
m [k] (3.16)

where the slope of segment m is defined by

αm = (m∆i)2 − ((m− 1)∆i)2

(m∆i)− ((m− 1)∆i) = (2m− 1)∆i (3.17)
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Which gives us

e[k] = ∆i
M∑
m=1

(2m− 1)iPWm [k] (3.18)

Using this in the transformer constraint,

T [k + 1] = τT [k] + γ

(
∆i

M∑
m=1

(2m− 1)iPWm [k]
)

+ ρTa[k] ∀k = 0, . . . , K − 1 (3.19)

The SOCP based proof in Theorem 3.3.1 is analogous to the proof of adjacency

of the segments for PWL, therefore these constraints are not included in the PWL

optimization.

Remark. Upper bound on PWL error: since we are using equal width segments, the

maximum error between the PWL approximation and the actual i2 is just the maxi-

mum distance between the linear segment (PWL(i)) and the quadratic curve (q(i)) at

the midpoint (i.e. ∆i
2 := Imax

2M ).

εmax
i = PWL

(
∆i
2

)
− q

(
∆i
2

)
= (Imax)2

2M2 −
(
Imax

2M

)2
(3.20)

⇒ εmaxi = (Imax)2

4M2 . (3.21)

Multiplying by γ provides the upper bound on the corresponding temperature error:

εmax
T = γ(Imax)2

4M2 . (3.22)

Even for a large Imax = 0.72kA current with γ = 15.74◦C−Ω/MW , and M = 6 seg-

ments, the maximum error between a PWL’s linear prediction of the transformer

temperature (TPWL) and the quadratic temperature (Tq) for a single time step is
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εmaxT := TPWL[k + 1] − Tq[k + 1] = 0.057◦C when the convex relaxation is tight.

While this temperature error accumulates over time steps in the open loop problem,

it also dissipates over time due to the τ < 1 term. Therefore, the piece-wise lin-

ear approximation provides a feasible, robust estimate of the nonlinear temperature

dynamics.

3.3.2 Primal Centralized PWL Problem

Using the PWL relaxation gives a new central problem with a new transformer dy-

namic (3.19) which replaces (3.13d). In addition, we will need to rewrite the current

coupling constraint between the PWL current segments and the EV currents

id[k] +
N∑
n=1

in[k] =
M∑
m=1

iPWm [k] ∀k = 0, . . . , K − 1 (3.23)

Also, there are the limits on the piecewise segments

iPWm [k] ∈ [0,∆i] ∀k = 0, . . . , K − 1 (3.24)

3.4 Problem Decoupling

The centralized problem can be decomposed with the exception of the coupling con-

straint (3.23). We will use the dual decomposition method to create a distributed

implementation. First, we consider the partial Lagrangian with respect to (3.23)
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L(in, sn, iPWm , λ) =
N∑
n=1

Jn(in, sn) + λT
(

id +
N∑
n=1

in −
M∑
m=1

iPWm

)
(3.25)

=
N∑
n=1

(
Jn(in, sn) + λT in

)
+ λT (id −

M∑
m=1

iPWm )) (3.26)

where λ ∈ RK is the Langrangian multipliers associated with (3.23). As seen in

(3.26), the Lagrangian can be separated into local EV variables {in, sn} ∈ R2NK and

transformer variables {iPW} ∈ RMK . If we now minimize (3.26) for a fixed λ then

we minimize a separable objective subject to separable constraints. This means that

the optimization problem decouples and can be done in parallel. Thus, the focus is

now on how to update λ to which we develop and present three optimization-based,

iterative methods and one iterate-free method.

3.5 Distributed Algorithms

Coordinator Problem

EV 1 Local Problem

EV 2 Local Problem
...

EV N Local Problem

Transformer Problem

Figure 3.4: Graphic of Distributed Schemes. At its simplest (dual decomposition), there is
only one piece of information being exchanged between problems and the coordinated problem
is a projected gradient approach. ADMM slightly increases the information transferred, while
ALADIN greatly increases the information transfers and the complexity of the coordinator
problem by solving a QP.

Four different distributed schemes will be tested each with different requirements
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on communication. Dual decomposition, ADMM, and ALADIN are all distributed

optimization algorithms while PEM is an iterative-free control scheme and each has

different requirements for the transformer, EV and coordinator problems seen in

Fig. 3.4. Note that these distributed schemes are synchronous in that they require the

communications from all local problems before continuing with the coordinator step.

Literature exists that covers asynchronous distributed methods and gives guarantees

under certain delays such as this article for asynchronous ADMM [42].

3.5.1 Dual Decomposition

Algorithm 1 Dual Decomposition
Initialization: Initial guess of dual multiplier λ(1)

Repeat: for p < Max Iterations:
1. Local EV Problem: Solve for each n ∈ N

i(p)n = arg min
in

Jn(in, sn) + (λ(p))T in (3.27)

s.t. (3.13f), (3.13g), (3.13h)

2. Transformer Problem:

(iPWm )(p) = arg min
iP W
m

−(λ(p))T
M∑
m=1

iPWm (3.28)

s.t. (3.19), (3.24), (3.13e)

3. Coordinator Problem: Update dual variable

∇λL =
N∑
n=1

i(p)n + id −
M∑
m=1

(iPWm )(p) (3.29)

λ(p+1) = λ(p) + α(p)∇λL (3.30)

Dual decomposition separates eq (3.26) and creates local linear problems and

updates λ by dual ascent. Standard dual decomposition with dual ascent update

25



for separable problems is used as seen in [43] and applied in a similar problem in

[37]. The iterative algorithm is described in Algorithm 1 with α(p) = α0

ceil( p
αrate

) where

α0 = 104 and αrate = 2.

3.5.2 Alternating Direction Method of Multi-

pliers

Algorithm 2 ADMM
Initialization: Initial guess of dual multiplier λ(1) and auxiliary variables {v(1)

i,n,v
(1)
m,PW }

Repeat: for p < Max Iterations:
1. Local EV Problem: Solve for each n ∈ N

i(p)n = arg min
in

Jn(in, sn) + (λ(p))T (in − v(p)
i,n) + ρ(p)

2 (in − v(p)
i,n)2 (3.31)

s.t. (3.13f), (3.13g), (3.13h)

2. Transformer Problem:

(iPWm )(p) = arg min
iP W
m

−(λ(p))T
M∑
m=1

(−iPWm − (vPWm )(p)) + ρ(p)

2

M∑
m=1

(−iPWm − (vPWm )(p))2

(3.32)
s.t. (3.19), (3.24), (3.13e)

3. Coordinator Problem: Update primal and dual variables

∇λL =
N∑
n=1

i(p)n + id −
M∑
m=1

(iPWm )(p) (3.33)

λ(p+1) = λ(p) + ρ(p)

K
∇λL (3.34)

ADMM builds on top of dual decomposition by augmenting the local objective

functions using auxiliary variables. A separable ADMM approach is introduced in

[44] and can be seen in Algorithm 2. ρ(p) starts at ρ(1) = 2 ∗ 105 and increments by

26



ρrate = 1.02 each iteration.

Note: Due to the sign of the objective function in the transformer problem, at the

optimal solution (iPWm ) = −(vPWm )

3.5.3 Augmented Lagrangian based Alternating

Direction Inexact Newton

Augmented Lagrangian based Alternating Direction Inexact Newton method (AL-

ADIN) is a relatively new distributed optimization algorithm [38]. The method de-

composes the central optimization problem by having each agent solve its own local

quadratic program (QP) based on an initial guess of auxiliary variables and the La-

grange multiplier of the coupling constraint. A slight abuse of notation will be used

in the algorithm explanation. Consider general optimization variable x. Then, Hx

represents the Hessian of the original objective function with respect to optimization

variable x where

x ∈ X :=
{
{in}Nn=1, {sn}Nn=1, {iPWm }Mm=1,T

}
⊂ RK

with |X | = 2N + M + 1. The primal solution from each local EV and transformer

problem is shared with the coordinator. In addition, the gradient of the objective

function (gx = dJn
dx

) and the Jacobian of the box constraints, x ∈ [xmin, xmax] is given

by Cx = [−1, 1]> for each local variable {in, sn} and {iPWm ,T}. The coordinator then

combines the local information into a large QP to updates the auxiliary variables

and dual multiplier. The ALADIN algorithm used for the EV charging problem for

a single MPC time step t is seen in 3.
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Algorithm 3 ALADIN (for time instance t)
Initialization: Initial (p ≡ 0) guess of dual multiplier λ(0) and all four auxiliary variables
{v(0)

i,n,v
(0)
s,n,v(0)

i,PW ,v
(0)
T }

Repeat for p:
1. Solve local EV problems: for each n ∈ N

i(p)n = arg min
in

Jn(in, sn) + (λ(p))T in + ρALADσi,n
2 (in − v(p)

i,n)2 + ρALADσs,n
2 (sn − v(p)

s,n)2

s.t. (3.13f), (3.13g), (3.13h)

2. Solve local transformer problem:

(iPWm )(p) = arg min
ipw

−(λ(p))T
M∑
m=1

iPWm + ρALADσZ
2 (iPWm − v(p)

i,PW )2 + ρALADσT

2 (T− v(p)
T )2

s.t. (3.19), (3.24), (3.13e)

3. Solve coordinator problem:

min
|X |∑
i=1

N∑
n=1

(
1
2∆xiHxi

∆xi + g(p)
xi

∆xi

)
(3.35a)

s.t. id[k] +
N∑
n=1

(i(p)n [k] + ∆in[k]) =
M∑
m=1

(
(iPWm )(p)[k] + ∆iPWm [k]

)
| λQP [k] (3.35b)

∆T [k + 1] = τ∆T [k] + γ

(
∆i

M∑
m=1

(2m− 1)∆iPWm [k]
)

(3.35c)

∆sn[k + 1] = ∆sn[k] + ηn∆in[k] (3.35d)
C(p)
xi

∆xi ≤ 0 ∀i = 1, . . . , |X | (3.35e)
for all k = 0, . . . ,K − 1

4. if ∣∣∣∣∣
∣∣∣∣∣id[k] +

N∑
n=1

in[k](p) −
M∑
m=1

(iPWm )(p)[k]

∣∣∣∣∣
∣∣∣∣∣
1

≤ ε1 and (3.36)∣∣∣∣∣∣λ(p) − λ(p−1)
∣∣∣∣∣∣

2
≤ ε2 (3.37)

then exit with x∗ = x(p) and i∗n[0] is implemented in EVs.

5. Update dual variable and auxiliary variables

λ(p+1) = λQP (3.38)
v(p+1)
xi

= xi
(p) + ∆xi ∀i = 1, . . . , |X | (3.39)

p→ p+ 1
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A slight alteration to the ALADIN formulation was used which changes the Jaco-

bian approximation constraints (3.35e) to be inequalities from their original equality

constraints. This relaxation allows the local variables to move asymmetrically away

from its bound instead of fixing all variables that are at their upper or lower limit.

ALADIN provides a systematic approach to decomposing our large central QP

into many smaller local QPs and a coordinator QP. However, the information required

from the sub-problems is significant and the coordinator problem is computationally

intensive. To contrast the information and processing intense method that is AL-

ADIN, we next present a novel, EV-speciifc, and predictive version of the recently

developed packetized energy management (PEM).

3.5.4 PEM with Dynamic Constraints

PEM represents a computationally and informationally light demand-side coordi-

nating scheme for scheduling (in real-time) many distributed resources, such as EV

charging. The scheme uses a probabilistic, packetized approach similar to modern

communication networks [39] to dynamically prioritize demand-side resources. The

full PEM algorithm used for the EV charging problem for a single MPC time step

t is seen in 4. Each local “packetized” device can infer or measure its energy need,

which is mapped to a prescribed probability of requesting a fixed-duration (δ) packet

of energy (e.g., a δ time step, constant-amperere charging epoch). The request is

submitted to the coordinator, which takes into account real-time and/or predicted

transformer conditions to either accept or reject the packet in order to maintain the

transformer temperature within its limits. To ensure quality-of-service for the device

owner, opt-out logic enables devices with extreme energy needs to temporarily exit
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the scheme and recover SoC in a timely manner.

Local EV Problem

The PEM scheme does not require solving a local optimization problem. Instead, a

“packetized” EV charger is assumed capable of accurately inferring the EV’s state-

of-charge (SoC) and time until departure. Based on these two updates, the EV

(asynchronously, on its own clock) calculates its energy need with the ratio

ration := s̄n − smeas,n

ηnin(k̄n − k)
∈ R.

If the ratio > 1, then the time remaining is not sufficient to provide the desired

energy, even if charging for the entire remaining duration. Thus, if ratio reaches

or initially exceeds unity, then the device will automatically opt out (Reqn < 0)

and continuously charge until the time of departure. Thus, opting out represents a

background disturbance to the fleet of packetized EV chargers, which reduces the

number of packets that can be accepted by the coordinator. When the ratio remains

in [0, 1], the ratio value is mapped to a probability of requesting a packet ((Reqn ∈

{0, 1}), e..g, please see Algorithm 4. The probability of requesting a packet depends

on the ratio and a pre-specified mean time-to-request (or mttr) for a specific ratio

value set-point (r̂set,n). As ration[k] → 0/1, the probability of requesting approaches

0/1. Of course, while a device is “consuming” an energy packet, it is ineligible to

request another packet, so Reqn[k] is set to the negative of the remaining packet

duration.

If the ratio is such that EV requests a packet (Reqn ≡ 1) and is notified that

its packet is accepted, the EV charges at a pre-specified current for δ time steps.
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If the ratio is negative (Reqn ≡ 2) then the EV’s SoC exceeds its desired energy

target, which means that the EV’s “energy need” has been satisfied and any future

requests from this EV automatically becomes a low-priority request. For the results

shown in Case Study 1, δ = 2, mttr = ∆tδ = 2 timesteps (i.e., 2× 180 = 360s), and

r̂set,n = 0.10. The decision of these parameters is discussed in Section 3.7.5

Coordinator Problem

The coordinator logic is developed to keep the temperature within limits while ac-

cepting as many packet requests as possible. Since temperature is a dynamic state

and prior work with PEM and EVs focused on static power or current limits, one

major contribution of this paper is the extension of PEM for scheduling under dy-

namic state constraints. This section describes a novel, predictive, and synchronous

coordinator formulation for PEM that utilizes a simple mixed-integer QP (MIQP) to

determine which requests are accepted and denied.

To do so, first define the set of all devices that do not request a packet (Reqn[t] ≡ 0)

at time t as E0. Define δ sets for Yk for the devices that are “locked in” at times

t+ 1, . . . , t+ δ either from still consuming an energy packet or from opting out. This

set captures the predicted populations of devices that must charge over the next δ

timesteps. The devices that request a packet at time t make up the set E1. Lastly,

define E2 as the set of EVs that have already reached their SoC target, but are not at

100% SoC.

A mixed integer quadratically constrained problem is solved to determine which

EVs have their packets accepted and rejected. Since the problem is small due to the

short prediction horizon, the QCQP relaxation in (3.15) is used instead of a PWL
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Algorithm 4 PEM algorithm (for time instance t)
Local EV Problem: solve for each n ∈ N

if Consuming Packet then
Reqn[t] = − duration remaining for packet

else if smeas,n[t] = 1 then . EV at 100%
Reqn[t] = 0

else if smeas,n[t] ≥ s̄n then . EV past desired SoC
Reqn[t] = 2

else
ration[t] = s̄n − smeas,n[t]

ηn ∗ iest
n (k̄n − t)

if ration[t] ≥ 1 then
Reqn[t] = −δ . EV opts out

else
µ[t] = 1

mttr
ration[t]

1−ration[t]
1−rset,n

rset,n

Pn[t] = min{max{1− e−µ[t]∆t, 0}, 1}

Reqn[t] =
{

1, rand() < Pn[t]
0, else

End
Transformer Problem:

Send Tmeas to Coordinator
End
Coordinator Problem:
Update sets E0, E1, E2,Yk
Solve MIQP:

u∗ch = arg max
Test,un

δ−1∑
k=0

∑
n∈E1

un[k] + ωE
∑
n∈E2

un[k]

− ωSTslack (3.40)

s.t

Test[0] = Tmeas[t] (3.41)

Test[k + 1] ≥ τTest[k] + ρTa[t+ k] + γ

(
N∑
n=1

un[k]iest
n + iD[t+ k]

)2

∀k = 0, . . . , δ − 1

(3.42)
Test[k] ≤ Tmax + Tslack ∀k = 1, . . . , δ (3.43)
un[k] = 1 ∀n ∈ Yk ∀k = 0, . . . , δ − 1 (3.44)
δ−1∑
k=0

∑
n∈E0

un[k] = 0 (3.45)

un[k] ∈ {0, 1} ∀n = 1, . . . , N ∀k = 0, . . . , δ − 1 (3.46)

Select EVs to receive charge:
Recn[t] = u∗ch,n[0] . From optimal solution pool

End
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formulation. No numerical issues were encountered. The requests from E2 are de-

prioritized by use of a scaling factor (ωE := min{1/(NK), 1/(4N)} << 1) in the

objective function. To ensure a solution always exists, a slack variable is added to

the temperature limit and penalized in the objective function (ωS >> 1).

Finally, in the MIQP, any devices that do not send a request or opt-out are

assumed to stay in their previous logic state, which could be Reqn[k] ∈ {< 0, 0, 2}.

This ensures an information-light implementation whereby only logic state changes

are communicated. Furthermore, the MIQP depends on an estimate of the current

demanded from device n. This estimate could be exact if the information is included

in the request or may be approximated via machine learning on the population. In

this work, we assumed the former. After solving the MIQP, the optimal solutions

are pooled and a random solution is chosen as u∗ch, which represents the vector of

the coordinator’s recommendations for each device (Recn). To keep communication

overhead low for this predictive implementation of PEM, only devices whose logic

state undergoes a transition should be updated.

3.6 Simulations and Results

Now that we have defined the distributed methods to be used to coordinate the opti-

mal EV charging schedule, the following section explains the scenario used, how the

algorithms are implemented in an MPC controller, and the results of the simulations.

The schematic of the system we are modeling and solving is shown in Fig. 3.1.
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3.6.1 Scenario Setup

This subsection will go over the assumptions used and why they create a realistic

scenario to simulate. A summary of the parameters can be seen in Table 3.1, 3.2, and

3.3.

Simulation Time Horizon

As most residential EV owners will utilize home charging for the majority of their

EV energy, we expect the peaks to occur in the evening [7–9]. Our simulation will

run from when most vehicles arrive at home through when most will have left for

work the next day, 8 PM to 10 AM. We want to use a time step that is much smaller

than the time constants of the transformer. In general, the time constant of large

transformers is on the scale of 30 minutes , so a time step of 180 seconds will be

adequate. Using Ts = 180s gives us a total number of time steps of 14hr
180s = 280.

We will use an 8-hour prediction window for each open loop optimization step in the

model predictive controller so K = 8hr
180s = 160

Transformer and Electrical Grid Setup

We would like to model a system with one medium to large distribution-level sub-

station transformer and pole-top transformers as seen in Fig. 3.1. We chose to use a

10MVA three-phase transformer with low side voltage of 8.32 kV and pole-top trans-

formers that reduce this voltage to 240 V for distribution to residential buildings. It is

worth noting that we assume the pole top transformers will not overload although this

is another potential issue that will be needed to address with the increased adoption
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of electric vehicles (See [41]).

Transformer Limit and Initial Temperature

For short term overloading, we would like to keep the hot-spot temperature of the

transformer under 120◦C in order to reduce the aging affects [45,46]. We will initialize

the simulation with the hot spot temperature 65◦C below the maximum temperature.

Transformer Parameters

As mentioned in the Review of Preliminaries, Section 2.1, we would like to model

and limit the hot-spot temperature in the distribution level substation transformer.

The IEEE standard, Annex G, is complicated and will be difficult to simulate in a

reasonable amount of time. Instead, we will use the first order, quadratic differential

equation (3.2). We started with equations used in [41] scaled them to a 10MVA

transformer and modified them until we saw a 65◦C temperature rise above ambient at

1 p.u. loading as well as matching temperature responses to [47,48]. Our continuous

parameters for the power dynamics in (3.2) are a = 7.92 ∗ 10−8, b = 0.0298, and

c̃ = 0.89. The equivalent discrete time current equation parameters are γ = 0.131,

τ = 0.914, and ρ = 0.086.

Ambient Temperature

The scenario we will use in the simulation is one for a hot summer night. The

temperature starts at 30C (86F) and hits a low of 27C (81F) before rising again in

the morning (see Fig. 3.5 (b)).
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Figure 3.5: Background Demand for a Single House (a) and Ambient Temperature (b)

Background Demand

The three-phase transformer that was chosen gives us 3.33 MVA per phase of the total

rated capacity. If we assume that each residential home peaks at 3.5 kVA [49, 50]

this transformer would be rated for about 1,000 houses. For this simulation, we will

assume that the houses are using more power than usual due to the excessive heat and

they peak at 5kVA with an average around 2kVA. The inflexible background demand

for a single residential building can be see in Fig. 3.5 (a).

Electric Vehicle Penetration

We have chosen to simulate a scenario with 10% EV penetration where penetration is

defined as the percentage of electric meters (houses) servicing a single EV. A few other

papers [49,51] have seen this is the threshold where transformer overloads might start

occurring. For our 1,000 home scenario, we now have 100 EVs total in the simulation.
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Electric Vehicle Efficiency

The charging efficiency is assumed to be constant for each vehicle and drawn from

a uniform distribution between 80% and 90% [52]. While this does simplify nonlin-

earities when it comes to the impacts of temperature [52], current [52], and state of

charge [53] on the charging efficiency, these affects are relatively small and for the

purpose of the study will not change the analysis of the coordination methods.

Electric Vehicle Battery Size

The vast majority of plug-in electric vehicles on the road and sold today are a combi-

nation of the Nissan Leaf, Chevrolet Bolt, and the Tesla fleet [54]. The Tesla vehicle

batteries come in various configurations between 50-110kWh whereas the Leaf has

a 40 kWh battery and the Bolt has a 60kWh [49]. Therefore, the electric vehicle

population was chosen to be a distribution of 40, 60, 75, and 100 kWh vehicles with

more weight on the medium range. The selected population of vehicles can be seen

in Fig. 3.6.

Electric Vehicle Charging Current

The vehicles are assumed to all use a Level 2 or equivalent charger at 240V. The

average power that these chargers draw is around 7 kW [49]. However, for more

powerful chargers such as the Tesla Wall Connector, the charging current can get as

high as 80A which draws 19.2 kW [55]. For the simulation, the current maximum

for each electric vehicle is correlated to the vehicle’s battery size with an added Beta

Distribution (see Fig. 3.6). This is a realistic assumption as owners of vehicle’s with

a large battery would be more likely to buy a more powerful charger or have a Tesla
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Figure 3.6: Battery Size and Maximum Charging Power

with a Tesla Wall Connector.

Electric Vehicle Schedules

All vehicles are assumed to be available to charge when the simulation begins at

8 PM. The starting state of charge for each vehicle (Smeas,n) is drawn from a Beta

distribution that puts the mean at 40% and the maximum at 70% which can be seen

in Fig. 3.7 (a).

Smeas,n ∼ 0.7 ∗ Beta(4,3) (3.47)

The vehicles are assumed to have a departure time between 6:30 AM and 10:00

AM with a minimum state of charge between 75% and 100%. These are drawn from

Beta distributions and the values can be seen in Fig. 3.7 (b).

Note: For this simulation, the vehicle do not actual leave at the departure time

so they may continue to charge.
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Figure 3.7: Initial SoC (a) and EV Departure Requirements (b)

Objective Weights

The objective weights Qn and Rn are scaled so the objective terms are approximately

the same and then given a uniform distribution.

Summary of Scenario Parameters

Tables 3.1, 3.2, and 3.3 show a summary of the scenario parameters that have been

defined above. These parameters describe the system knowns (Table 3.1), transformer

parameters (Table 3.2), and EV vehicle parameters (Table 3.3) that are used in the

optimization equations.

Table 3.1: Summary of Simulation System Parameters

N T̃a id K ∆t M
100 [27,30]◦C [3,20]kVA 160 180s 6
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Table 3.2: Summary of Transformer Specific Parameters

Tmax Imax Tmeas γ τ ρ c
120◦C 25kA 55◦C 0.0131 0.9145 0.0855 29.87

Table 3.3: Summary of EV Specific Parameters

smeas,n imax
n αn βn s̄n k̄n Qn Rn

[0,0.7] [12,80]A [80,90]% [40,100]kWh [0.75,1] [210,280] [103,2 ∗ 104] 106

3.6.2 Simulation Implementation

The open loop PWL problem is ran in a receding-horizon model predictive control

method for the simulations as seen in Fig. 3.8. The iterative approaches are limited

by the time step length of 3 minutes to converge to an optimal solution.

Model Predictive Controller
Open Loop Optimization

PWL Transformer Model

EV Charging Model

NL Transformer Model
EV Plant

Ta

iD
{in[1]}Nn=1

Tmeas, {smeas,n}Nn=1

Figure 3.8: Simulation Block Diagram
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Figure 3.9: Case Study 1 MPC Simulation Results

3.6.3 Simulation Results

The closed-loop solution of the MPC simulation for each algorithm as well as the cen-

tralized simulation can be seen in Fig. 3.9. The first two graphs show the transformer

temperature (a) and total load at the transformer (b). The third (c) should the dual

multiplier λ which is associated with the coupling constraint (3.23). In addition to the

central solution and the solutions from the four distributed algorithms, the result of

the uncoordinated EV charging is plotted. If no EV charging control is implemented,

the transformer temperature exceeds the limit.

The optimal solutions of ADMM and ALADIN are nearly identical to the central

optimal solution. An example comparison of the convergence between the algorithms

for the first time step of the MPC simulation is shown in Fig. 3.10. The first graph
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Figure 3.10: Case Study 1 Convergence Cold Start

(a) shows the 1 norm of the coupling constraint at the pth iteration

||id +
N∑
n=1

i(p)n −
M∑
m=1

(iPWm )(p)||1 (3.48)

and the second graph (b) is the 2 norm of the difference in λ between two iterations

||λ(p) − λ(p−1)||2 (3.49)

The vast performance superiority of ALADIN can be seen while ADMM outperforms

Dual Decomposition in both metrics.
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3.7 Further Analysis

3.7.1 Comparing Nonlinear and PWL Implemen-

tations

Figure 3.11: NL and PWL central simulation results

In order to justify and verify the use of the PWL relaxation, we compared the

solution of the central NL and PWL simulations. In Fig. 3.11, the simulation solutions

can be seen to be very similar. However, the difference in computation time is quite

different with full MPC simulation of the NL implementation taking 62.8 minutes

while the PWL implementation only takes 2.4 minutes. Further verification comes

from looking at the solution space of the PWL approximation of the total current as

seen in Fig. 3.12. The red dots on the plot are the PWL representation of the square of

the total current seen by the transformer before the last timestep of the temperature
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Figure 3.12: PWL Solution Space

limit. On the right side, focusing on these shows that they lie on the PWL segments.

The green dots represent the square of the total current after the transformer is

overloaded where the fictitious losses are of no importance per Theorem 3.3.1.

3.7.2 Dual Decomposition: Fast Ascent

We develop a modification of the classic dual decomposition to eliminate the trans-

former problem and speed up the convergence. Examining the transformer problem

in Algorithm 1, we can see that it is essentially a feasibly problem. The goal of the

transformer is to decide if there exists a sequence of transformer loadings that en-

sures the temperature stays below the limit. We replace this optimization problem
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by estimating the temperature using the local EV schedules and comparing to the

temperature limit which is seen in Algorithm 5. The Fast Ascent algorithm increases

computational speed and algorithm convergence but has no convergence guarantees.

Algorithm 5 Fast Ascent
Initialization: Initial guess of dual multiplier λ(1)

Repeat: for p < Max Iterations:
1. Local EV Problem: Solve for each n ∈ N

i(p)n = arg min
in

Jn(in, sn) + (λ(p))T in (3.50)

s.t. (3.13f), (3.13g), (3.13h)

2. Coordinator Problem:

T (p)[k + 1] = τT (p)[k] + γ(
N∑
n=1

i(p)n [k] + iD[k])2 + ρTa[k] ∀k = 0,K − 1 (3.51)

∇λL = T(p) − Tmax1K (3.52)
λ(p+1) = λ(p) + α(p)∇λL (3.53)

3.7.3 ALADIN: Comparing Inequality and Equal-

ity Formulations

As mentioned in Section 3.5.3, the ALADIN algorithm was modified slightly to use

inequalities in the coordinator problem. Although this slows the time per iteration

down slightly, it enables the coordinator more flexibility to move the variables each

iteration which decreases the number of iterations needed to converge. This conver-

gence improvement can be seen in Fig. 3.13.

Complementary to the improved convergence, the inequality implementation of

ALADIN has a decrease in computation speed. The equality implementation of AL-

45



Figure 3.13: Inequality and Equality ALADIN Convergence Comparison

ADIN takes 1.6 hours to run the full MPC simulation while the inequality implemen-

tation takes about half as long.

3.7.4 ALADIN: Protecting Information

ALADIN converges very quickly to a solution numerically close to the central solution.

However, the tradeoff for this convergence is the magnitude of information and the

lack of privacy that comes with it. An option to increase the protection of information

is to add some random noise to some of the communicated information.

One of the sets of information that is used in the coordinator problem is the

Hessian of the local variables {sn, in}. In practice, this represents the owners Q
R
ratio

that they set to determine the tradeoff between reaching full charge and minimizing

battery wear. By introducing a small amount of random noise to these Hessians

the controller would not know the exact parameters chosen. This would increase the

privacy of the ALADIN algorithm but decrease the performance slightly. However, the
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Q
R
ratio is definitely not the most confidential information being sent as the gradients

contain the current charging schedules. Adding noise to the gradients would increase

the privacy more significantly but the performance would also drop quite a bit.

3.7.5 PEM: Optimizing Performance

There are three main parameters in the Packetized Energy Management scheme seen

in Section 3.5.4, the packet length (δ), the mean time to request (mmtr), and the

ratio set point (r̂set,n). By varying these parameters we can attempt to optimize the

packetized scheme close to the central optimization solution.

Figure 3.14: Probability of Request as a function of the ratio equation seen in 4 for different
values of r̂set,n

The PEM scheme performs well when the packet length and mean time to request

are similar. This makes intuitive sense as a long packet length and short MTTR would

result in over requesting and short packet lengths with a long MTTR would result in

under requesting. By looking at equation (13),we can see that changing mmtr and

r̂set,n will have similar affects. Therefore for the purpose of this analysis the mean

47



time to request is help constant at mttr = ∆t ∗ δ and r̂set,n is varied. Fig. 3.14 shows

the affect of varying the set point for SoC: as r̂set,n is increased the probability of

requesting decreases.

Figure 3.15: Full Analysis of r̂set,n affect on PEM performance

A more comprehensive view in the impact of the set SoC can be seen in Fig. 3.15

where 10 simulations for each selection of r̂set,n were averaged. The simulations with

a low value of r̂set,n request more often at the beginning which results in higher

currents and the transformer temperature being at its limit for longer. Conversely,

a scheme with a high value of r̂set,n requests less often on average and has to charge

extra at the end. This might seem preferable at first but with a r̂set,n parameter

too high, there is the risk that the PEM algorithm will no longer be able to meet

the transformer temperature limits. This can be attributed to "bad planning" as the

vehicles do not request enough earlier and end up being forced to opt on. A value
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in the middle balances requesting frequently enough to give some flexibility where

needed and minimizing the communication burden and expenses with more requests.

We found r̂set,n = 0.1 to fit this need and match closely with the central optimization

solution. It is worth noting that PEM has no mechanism to limit the current and

battery wear of the vehicles so is not truly trying to solve the same problem as the

optimization.

3.7.6 Utility Focused Optimization

As mentioned in Section 2.3, there are many possible objectives when scheduling the

charging of electric vehicles. Thus far the objective of the optimization problem has

been focused on the electric vehicle owner and meeting their needs. An additional

objective term as a function of the temperature can be added to potentially meet the

desire of a distributed grid operator.

K∑
k=1

ψk(Tmax − T [k]) (3.54)

with ψk < 0.

Utilities would be able to tune the ψk parameter based on how valuable maximizing

the distance that the transformer temperature is from its limit. As ψk increases the

objective problem shifts from a consumer-centric to a valley-filling approach. The

results of such a change can be observed in Fig. 3.16. An addition benefit of this

augmentation is that the KKT conditions of the convex relaxation are always tight

to the nonlinear constraint.
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Figure 3.16: Affect of ψ on Optimal Solution

3.7.7 Algorithm Resilience: Forecast Error

The problem formulation relies on numerous predicted values including the back-

ground demand and ambient temperature. Ambient temperature is a relatively ac-

curately predicted value over the 8-hour MPC prediction horizon and any deviations

will be small. While predictions for background demand on a grid operator level are

relatively accurate and reliable, the predictions for a distribution network is much

more likely to be erroneous due to a smaller portfolio effect. In order to be confi-

dent that these algorithms could be resilient in the real world, we need to add some

prediction error to our simulations.

Fig. 3.17 shows the comparison with a central simulation with no forecast error
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Figure 3.17: Effect of Demand Forecast Error

and one with forecast error between 10 PM and 2 AM. The actual background de-

mand turned out to be much higher than predicted which resulted in the transformer

temperature being at the limit for longer and the dual variable being nonzero for

longer.

3.7.8 Economic Incentives

Due to the structure of the electricity grid and open access to power, the only way

a scheme like this would be implemented in residential areas would be through an

opt-in program. In order to get people to sign up, there would need to be some sort

of incentive as they are giving up the option to charge whenever they would like. The

incentive could come as a societal one for preventing grid overloads or a monetary

one.

51



Figure 3.18: Dual Variable Comparison

One option for how a monetary incentive could work would be utilities offering

customers a payment based on their calculated cost avoided. By utilizing one of these

control algorithms they would reduce the frequency and magnitude of transformer

overloads. This would result in a longer lifespan for the transformers and a reduction

of costs for the utility. The utility could pass on some of these avoided costs to

consumers who enrolled in the program.

Another structure to a monetary incentive could be using the dual variables from

the EV charging problem to price the electricity. In the optimization problem there

are dual variables associated with the coupling equality constraint (3.23) and the

upper temperature limit (3.13e) which could be used as a pseudo real-time price

of electricity. The dual variable of the optimal power flow problem is often used

in wholesale electricity markets as the locational margin price [56]. A comparison

between the two dual variables in the simulation is shown in Fig. 3.18. The dual

variable associated with the temperature limit is only positive when the constraint

is tight (i.e T [k] = Tmax). However, the coupling constraint, in this case, is positive

for time steps before the overload and peaks at the first tight temperature time step.
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This is a favorable price signal to use as it would incentivize EV owners to reduce

charging in the time steps as the temperature approaches its limits. A potential

program could offer consumers a lower normal electricity rate but subject them to

these pseudo real-time rates when the transformers were nearing their limit.
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Chapter 4

Hub Charging Problem

In this chapter, we will introduce and motivate a new charging problem that is cen-

tered on the idea of charging an electric vehicle hub rather than charging individual

vehicles. We will formulate the problem and run simulations for the four distributed

algorithms used in Chapter 3.

4.1 Motivation

The residential EV optimal charging problem presented in Section 3 is just one sce-

nario where coordinating the demand related to EV charging will be useful. As

commercial transportation becomes electrified, these vehicle fleets will also benefit

from scheduled charging control. In addition, a large proportion of these fleets have

predictable routes to and from a central warehouse or shipping facility. These cen-

tral facilities or “hubs” represents centers for electric vehicle charging while vehicles

return from completed routes or park overnight.

The commercial/industrial EV hub charging problem is inherently different from
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the residential charging problem. For example, the privacy of an individual vehicle in

a commercial fleet is not a concern as one company owns and controls all the vehicles

in the fleet. The vehicles most likely have larger batteries and since there are multiple

electric vehicles in the hub, each hub node represents a much larger total demand on

the system than the individual residential EV node in case study 1.

In the formulation below, we represent each hub as a single node in the system

and assume that internal to each hub is an algorithm, such as PEM, that distributes

charging capacity to individual vehicles. The hub node aggregates available EV states

of charge and energy limits to ensure that the hub can meet the underlying EV

charging needs. Next, we develop the dynamic model of a hub and the distributed

charging control policy to charging EVs in each hub.

4.2 Formulation

Dist XFRM

Hub 1

Hub 2

Hub 3

Hub 4

. . . Hub H
i1

i2

i3

i4 ih

Figure 4.1: Case Study 2 System Schematic

Define H hubs where each has Nh vehicles. Each vehicle is predicted to arrive

at time step Kh,n with arrival energy sh,nEmax
h,n and it is predicted to leave at time

step K̄h,n with desired minimum departure energy s̄h,nEmax
h,n . The value Emax

h,n repre-

sents the absolute battery capacity of vehicle n of hub h while the relative SoC at

arrival/departure is given by sh,n/s̄h,n. For each hub and each time-step, we can then
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define three dynamic sets for parked, departing, and arriving vehicles:

Parkedh[k] ={n ∈ Nh|Kh,n < k < K̄h,n} (4.1)

Departh[k] ={n ∈ Nh|k = K̄h,n} (4.2)

Arriveh[k] ={n ∈ Nh|k = Kh,n}. (4.3)

From the arrival and departure sets above, we can calculate the departure and arrival

energy trajectories:

Eh,depart[k] =
∑

n∈Departh[k]
s̄h,nE

max
h,n (4.4)

Eh,arrive[k] =
∑

n∈Arriveh[k]
sh,nE

max
h,n . (4.5)

These trajectories define the amount of energy added and subtracted from the pre-

dicted vehicle arrivals and departures, respectively. From the parked vehicles in hub

h at time k, we can also define the time-varying upper limits on energy and effective

current:

Emax
h [k] =

∑
n∈Parkedh[k]

Emax
h,n (4.6)

imax
h [k] =

∑
n∈Parkedh[k]

imax
h,n . (4.7)

Note that although physically the maximum current of the charging facility would

not change, the effective maximum current at k is a function of the number of vehicles

that are parked.

Finally, since vehicle n can depart from a hub h with more than its desired de-
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parture SoC s̄h,nE
max
h,n , we need to account for the difference between the expected

departing SoC and actually departing with up to 100% of SoC:

Emax
h,∆ [k] =

∑
n∈Departh[k]

(1− s̄h,n)Emax
h,n (4.8)

From these sets and trajectories, we can now form the hub energy dynamics.

4.2.1 Hub Energy Dynamics

The aggregated SoC for each hub at time k + 1 is a function of the current delivered

over time-step k, the expected energy lost from departing vehicles, and the expected

energy gained from arriving vehicles. The departed energy from each time step is

the expected target SoC for the departing vehicles plus any extra energy provided,

Eh,depart +Eh,∆, which models any extra energy provided to the hub to bring (some)

vehicles above their s̄h,n requirement and closer to the 100% SoC.

Eh[k + 1] =Eh[k] + ηhih[k] + Eh,arrive[k]−

(Eh,depart[k] + Eh,∆[k]) (4.9)

0 ≤Eh[k] ≤ Emax
h [k] (4.10)

0 ≤Eh,∆[k] ≤ Emax
h,∆ [k] (4.11)

0 ≤ih[k] ≤ imax
h [k] (4.12)

Remark. Note that the hub charging efficiency ηh is assumed to be time-invariant

(i.e., all vehicles charge with the same efficiency). However, hub charging efficiency

could be a time-varying parameter and based on a weighted combination of the effi-
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ciencies of all vehicles in Parkedh[k].

Next, we present the subtle differences between the hub system and residential

charging problems as it relates to the hub objective function.

4.2.2 Objective Function

The local hub objective function is similar to the one in the local (residential) EV

scenario. However, now we want to minimize the deviation of the predicted hub

energy level to its maximum possible energy state, which is the sum of the energy

capacities for all vehicles forecasted to be parked at their respective hubs. In addition,

if it is possible, it is desirable to maximize the Eh,∆ terms as they allow the hub

to maximizing the underlying EV SoC. The weighting factor Oh determines how

desirable oversupplying energy is relative to the weights of the other two terms (Qh

and Rh), which could be time-dependent.

Jh(ih,Eh,Eh,∆) =
K∑
k=1

(Eh[k]− Emax
h [k])2Qh+ (4.13)

(ih[k])2Rh −OhEh,∆[k]

The objective function for all hubs is then

min
H∑
h=1

Jh(ih,Eh,Eh,∆). (4.14)
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4.2.3 Central PWL Model

Combining these equations with the same PWL transformer dynamics gives us a

centralized control problem for scheduling the current to each hub.

min
H∑
h=1

Jh(ih,Eh,Eh,∆) (4.15a)

s.t.

Eh[k + 1] = Eh[k] + ηhih[k] + Eh,arrive[k]− (Eh,depart[k] + Eh,∆[k]) (4.15b)

T [k + 1] = τT [k] + ρTa[k] + γ

(
∆i

M∑
m=1

(2m− 1)iPWm [k]
)

(4.15c)

id[k] +
H∑
h=1

ih[k] =
M∑
m=1

iPWm [k] | λ[k] (4.15d)

0 ≤ Eh[k] ≤ Emax
h [k] (4.15e)

0 ≤ Eh,∆[k] ≤ Emax
h,∆ [k] (4.15f)

0 ≤ iPWm [k] ≤ ∆i ∀m = 1, . . . ,M (4.15g)

0 ≤ ih[k] ≤ imax
h [k] (4.15h)

T [k + 1] ≤ Tmax (4.15i)

for all k = 0, . . . , K − 1 and h = 1, . . . , H.
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4.2.4 Distributed Hub Model

A similar dual decomposition method can be used by forming the partial Lagrangian

L(ih,Eh, iPWm , λ) =
H∑
h=1

Jh(ih,Eh) + λT
(

id +
H∑
h=1

ih −
M∑
m=1

iPWm

)
(4.16)

=
H∑
h=1

(
Jh(ih,Eh) + λT ih

)
+ λT (id −

M∑
m=1

iPWm )) (4.17)

4.3 Simulations and Results

4.3.1 Hub Scenario

The hub charging scenario that was simulated is similar to the scenario setup in

Section 3.6.1 with a few key difference. We start by assuming that the hubs are in

a more industrial or commercial neighborhood and are supported by a three-phase

100MVA distribution-level substation transformer. The low end of this transformer

is 13.2kV and local pad mounted transformer take this to 480V. For simplicity, there

is assumed to be a constant 40MW inflexible background demand seen in 24 hour

industrial parks.

We assume that there are four charging hubs that will serve as our system nodes

and that there are 100 electric vehicles at each node. Since this problem concerns

larger vehicles such as delivery trucks or buses, the electric vehicle parameters are

different as well. The 100 vehicles are drawn from a distribution of 100, 200, and

600 kWh that have the ability to charge between 10 and 35 kW. This assumption

is reasonable as commerical vehicle will have bigger battery sizes and commercial
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buildings supported by 480V can handle larger charging powers.

There is assumed to be no vehicles parked at 8 PM when the simulation start and

they all arrive with uniform distribution before 10 PM. When they park they have

between 0-20 % SoC left since their routes will be more predictable and optimized

than the average private electric vehicle owner. The vehicles need to leave between

6 AM and 10 AM and require between 80-100% SoC when they depart. Unlike Case

Study 1, the model incorporates the vehicles arriving and leaving which is captured

in the changes in Emax
h and imax

h .

4.3.2 Hub Charging Simulation

Figure 4.2: Hub Charging Problem Distributed Solutions

The central and uncoordinated results can be seen compared with the optimization
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algorithms solutions in Fig. 4.2. Once again, ALADIN and ADMM perform very well

and match the central solution to a reasonable accuracy. Here Dual Decompostion

performs poorly and can be seen oscillating.

Packetized energy management is less suited for coordinating the charging of the

hubs. Since the packetized scheme allows for only boolean states of charging and

the hub represents 100 EVs the difference between accepting a packet and rejecting

a packet has a significant impact on the transformer temperature. Seen in Fig. 4.3

is the attempt of PEM to coordinate the hub charging. In the beginning, it does a

decent job of alternating packets. However, although it continues to receive packet

requests as seen in Fig. 4.3 (d) it reaches a state where it cannot accept another packet

without overloading the transformer. It continues in this holding pattern until the

hubs opt-on and forces a transformer overload which can be seen in the high spikes

in current and temperature in Fig. 4.3 (b) and (c).

Figure 4.3: Hub Charging Problem PEM

Due to its extremely quick convergence, ALADIN may be an ideal approach for

solving control problems where privacy is less important as in this case study.
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Chapter 5

Comparison of Distributed

Methods

In this chapter, we compare the results of the two Case Studies across the four dis-

tributed algorithms. First, we look specifically at each assessment metric: privacy,

performance, and processing speed. Then, we give a more qualitative summary and

discussion on the tradeoffs between distributed methods.

5.1 Privacy and Communication

Table 5.1 shows the information communicated between the EVs, Coordinator, and

Transformer. The most valuable information from a consumer standpoint is the

current and SoC schedules. While both Dual Ascent and ADMM transfer the current

schedule to the coordinator, the coordinator only uses the sum of the current schedules

so this sensitive information could be passed through a third party and aggregated

first. However, in ALADIN the current schedule is used in the coordinator problem
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as well as in the gradient.

Table 5.1: Information Sharing of Distributed Methods

ALADIN ADMM Dual Decomp PEM
EV to

Coordinator
i(p)n , g(p)

i,n , g(p)
s,n,

C(p)
i,n
, C(p)

i,n, C(p)
s,n, C(p)

s,n

i(p)n i(p)n Reqn[k]

Transformer to
Coordinator

∑M
m=1(iPWm )(p), g(p)

i,PW ,
g(p)
t , C(p)

z , C(p)
z , C(p)

t
, C(p)

t

∑M
m=1(iPWm )(p) ∑M

m=1(iPWm )(p) T [k]

Coordinator to
EV λ(p), V(p)

i,n , V(p)
s,n λ(p), V(p)

i,n λ(p) Recn[k]

Coordinator to
Transformer λ(p), V(p)

t , V(p)
i,PW λ(p), V(p)

i,PW λ(p) -

An approximate quantization of the amount of information shared for each time

step assuming that the method takes the average number of iterations, N = 100,

and the horizon length equals 160 is: 2 kilobits per timestep for PEM, 2 gigabits per

timestep for Dual Ascent, 330 megabits per timestep for ADMM, and 65 megabits per

timestep for ALADIN. Table 5.2 shows the information communicated per device per

timestep as well as what percentage this takes of an average US internet connection

of 18.7 Megabits per second [57].

Table 5.2: Case Study 1 Communication Overhead of Distributed Methods for Single device

ALADIN ADMM Dual Decomp PEM
Information per Timestep (bits) 6e5 3e6 2e7 3e1

Percentage of Avg US bandwidth (%) 0.02 0.09 0.6 ≈ 0

5.2 Performance

A summary of the performance of the four distributed methods in terms of the 2-

norm of the current schedules and dual variable between the central and distributed

64



solution is shown in Table 5.3. Here the 2-norm was used to show the total difference

between the distributed method solution and the centralized solution per the following

equations:

||i∗n − in||2 (5.1)

||λ∗ − λ||2 (5.2)

Table 5.3: 2-Norm Distributed Methods Performance

2-Norm Current Schedule 2-Norm Lambda
Method Case Study 1 Case Study 2 Case Study 1 Case Study 2
ALADIN 8e−2 8e−3 1e−3 2e−5
ADMM 1e0 1e1 5e−1 1e−2
Dual Decomposition 7e1 2e2 2e1 9e−1
PEM 3e3 4e5 - -

The units on in are Amperes in this calculation so these can be interpreted as

total current difference across all vehicles and time steps. For a different view into

the performance gap between the distributed methods and the centralized, we can

look at the RMSE for the current schedule and dual variable:

√∑N
n=1

∑K
k=1(i∗n[k]− in[k])
NK

(5.3)√∑K
k=1(λ∗ − λ)

K
(5.4)

The RMSE for the current schedule can be thought of as the average current

difference for any time step in Amperes. The values for the current schedule and dual

variable λ can be seen in Table 5.4.

In both case studies, ALADIN and ADMM performed well in that their solution
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Table 5.4: RMSE Distributed Methods Performance

RMSE Current Schedule RMSE Lambda
Method Case Study 1 Case Study 2 Case Study 1 Case Study 2
ALADIN 5e−4 2e−4 6e−5 1e−6
ADMM 8e−3 3e−1 3e−2 5e−4
Dual Decomposition 4e−1 2e2 1e0 6e−2
PEM 2e1 1e4 - -

was very accurate when compared to the central solution. Dual decomposition follows

these two but with significantly worse performance. The PEM scheme will never reach

the optimal solution and therefore the differences in the current schedules are more

pronounced.

5.3 Computation Speed

A summary of the computational speed for the methods can be seen in Table 5.5.

The first metric tracks how long it takes the algorithm to solve for each time step

on average. This number is not necessarily proportional to the average number of

iterations shown in the other columns as some algorithms take longer for each iter-

ation. The central and PEM implementations are much faster than any others as

they are iterative-free approaches. ALADIN is the next quickest followed by ADMM

and Dual Decompostion. In the implementation the algorithms have a constraint on

the number of iterations due to the length of the time step. Increasing the number

of electric vehicles in the simulation would likely have a similar number of iterations

per time step however the performance especially for dual decomposition and ADMM

would decrease. It is worth nothing that the stopping criteria and maximum number

of iterations was different for Case Study 1 and Case Study 2.
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Table 5.5: Summary of Distributed Methods Speed

Sec./Time Step Average Iter. to Converge
Method Case Study 1 Case Study 2 Case Study 1 Case Study 2
Central 0.7 0.1 1 1
ALADIN 15.5 1.25 7.6 2.2
ADMM 71.7 17.25 73.3 116
Dual Decomposition 150 150 500 3408
PEM 0.15 0.05 1 1

5.4 Summary of Results

A qualitative summary of the differences in the distributed methods is shown in

Fig. 5.1. The central formulation gives the optimal solution quickly but gives no

privacy and has a high communication overhead. Dual decomposition and ADMM

increase the privacy of the implementation but see a significant decrease in the per-

formance and computational speed. ALADIN shows the best performance out of the

distributed methods but sacrifices privacy. PEM is the most unique method with

maximum privacy and speed but without any optimal performance guarantees.

5.5 Selecting the Best Distributed

Method

For the scenario in Case Study 1, privacy is very important as residential EV owners

will not want to share their information. Using ALADIN, the coordinator knows the

gradients which are a scaled version of the current schedule so it has highly sensitive

data. Due to the high amount of information being shared with the ALADIN algo-

rithm, this may not be the best approach even though it shows the best performance.
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Performance

Privacy

Processing

ALADIN
ADMM
Central
PEM
Dual Decomp

Figure 5.1: Qualitative Comparison of EVC Control Methods

Depending on how important reaching the optimal solution is, ADMM or PEM could

be used for the problem in Case Study 1. For Case Study 2, however, ALADIN is a

great fit as the commercial application will likely mean that privacy is less of a prior-

ity. It is important to consider the order of priorities before deciding on an algorithm

to use for a certain problem.
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Chapter 6

Conclusion and Future Research

6.1 Conclusion

Utilities and other entities in the energy industry will soon have to consider the im-

pacts of increased adoption of electric vehicles. In this thesis, we looked specifically at

how to prevent transformer overloaded by coordinating the charging of electric vehi-

cles. By doing so using a wisely selected distributed control methods we can expand

the life of the transformer and prevent costly capital investments while protecting

privacy when needed.

We evaluated the ability of four distributed algorithms to prevent overloads and

meet the objectives in two case studies. We found that there was a tradeoff between

an algorithm’s performance, protection of information, and computational speed. For

an application where privacy is of paramount importance, such as a residential EV

charging problem, we found that a suboptimal but privacy-preserving algorithm such

as packetized energy management might be ideal. On the other hand, in a commercial

setting, such as the hub charging problem, where performance might take priority a
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quick converging algorithm such as ALADIN would be a good choice. By selecting

the appropriate distributed algorithm for the problem, we can satisfy the constraints

and properly coordinate the charging of electric vehicles.

The main contributions of this thesis and related work are:

• Implementing novel distributed optimization approach, ALADIN, for solving

EV charging problem

• Adapting iterative-free coordination scheme, PEM, for solving EV charging

problem with dynamic constraints

• Developing electric vehicle hub charging problem

• Comprehensive comparison of tradeoff of distributed methods for solving electric

vehicle and hub type problems

6.2 Future Research

There are numerous aspects of the hub problem that could be improved to make

the scenario more realistic. Right now the window of time where vehicles arrive and

depart are mutually exclusive. Depending on the company that is managing the

vehicle routes, these windows could be overlapping or even have vehicles arriving

and departing all 24 hours of the day. Furthermore, there could be a scenario where

the company has no well-founded predictions on when the vehicles are arriving or

leaving. One realistic application could be an electric bike share or electric car share

program. If the vehicle population was small the lack of forecasting would introduce

major complications, however, if the population was large enough statistical methods
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could be used to predict the probability of vehicles arriving or leaving based on past

behavior.

There are also some assumptions that could be expanded to test other scenarios.

For example, we assume the background demand is always positive but if there was

a high solar penetration this number could go negative. We also assume that the

EV current is positive and that the vehicles can not discharge to the grid. It would

be worth investigating how adding solar and vehicle to grid scenarios would impact

the EV charging simulations. Both the neighborhood electric vehicle problem and

the hub problem could be improved by introducing a network and power flow model.

This would model the real world applications much more accurately. Finally, more

analysis and research could be done about the future of electric vehicles sizes and

charging power as well as transformers with the intention of being able to model

future grid behaviors.
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A SOC Proof of Tightness

We are now interested in how the convex relaxation of transformer model behaves

at optimality. Specifically, it is important for the transformer model to accurately

represent the physics of the transformer. Since the MPC problem embodies a (con-

vex) QP problem with convex constraints, Slater’s constraint qualification is satisfied

trivially and the KKT conditions, therefore, provide necessary conditions for (global)

optimality. Therefore, we need to understand under which conditions, the convex

relaxation is tight, which implies a need to examine KKT optimality conditions.

Rewriting the central NL problem with a convex relaxation and in terms of initial

temperature and SoC gives the constraints

0 =T [k + 1]− τ kTmeas − γ
k∑
l=1

τ k−l(e[l])

− ρ
k∑
l=1

τ k−lTa[l] (6.1a)

0 ≥ itotal[k]2 − e[k] (6.1b)

0 = itotal[k]− id[k]−
N∑
n=1

in[k] (6.1c)

0 ≥ T [k + 1]− Tmax (6.1d)

Gradient conditions for variable T [k + 1] and e[l] for some l ≤ k are

∇T [k+1]L : 0 = λk+1
T + µk+1

T (6.2)

∇e[l]L : 0 = −µle −
l∑
t=l

βtλtT (6.3)
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for a βt > 0 and

• λl+1
T ∈ R+ multiplier associated with (6.1a)

• µle ∈ R+ multiplier associated with (6.1b)

• µk+1
T ∈ R+ multiplier associated with (6.1d)

Consider the case when an overload occurs at k+ 1, i.e. T [k+ 1] > T , then µk+1
T > 0.

It is immediately straightforward to see that λk+1
T < 0. Since µtT ≥ 0 for all t, λtT ≤ 0

for all t. Therefore the sum of all βtλtT in (6.3) must be strickly negative which leads

us to µle > 0. Since l was arbitrarily selected it must hold for all l ≤ k. Hence, the

relaxation is tight for all time steps before the overload.

Remark. Extending proof to other relevant formulations:

The tightness proof of the convex relaxation is analogous to the proof of adjacency of

the segments in a piecewise linear (PWL) formulation. Ensuring the optimal solution

abides by the adjacency conditions ensures that a PWL formulation can appropri-

ately respond to an overload. In addition, augmenting the objective function with the

temperature-underloading term presented in (3.54) will still preserve tightness since

any optimal solution is incentivized to directly minimize T [k] for k.
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