44 research outputs found

    On the multiplicity of the hyperelliptic integrals

    Full text link
    Let I(t)=∮δ(t)ωI(t)= \oint_{\delta(t)} \omega be an Abelian integral, where H=y2−xn+1+P(x)H=y^2-x^{n+1}+P(x) is a hyperelliptic polynomial of Morse type, δ(t)\delta(t) a horizontal family of cycles in the curves {H=t}\{H=t\}, and ω\omega a polynomial 1-form in the variables xx and yy. We provide an upper bound on the multiplicity of I(t)I(t), away from the critical values of HH. Namely: $ord\ I(t) \leq n-1+\frac{n(n-1)}{2}if if \deg \omega <\deg H=n+1.Thereasoninggoesasfollows:weconsidertheanalyticcurveparameterizedbytheintegralsalong. The reasoning goes as follows: we consider the analytic curve parameterized by the integrals along \delta(t)ofthe of the n‘‘Petrov′′formsof ``Petrov'' forms of H(polynomial1−formsthatfreelygeneratethemoduleofrelativecohomologyof (polynomial 1-forms that freely generate the module of relative cohomology of H),andinterpretthemultiplicityof), and interpret the multiplicity of I(t)astheorderofcontactof as the order of contact of \gamma(t)andalinearhyperplaneof and a linear hyperplane of \textbf C^ n.UsingthePicard−Fuchssystemsatisfiedby. Using the Picard-Fuchs system satisfied by \gamma(t),weestablishanalgebraicidentityinvolvingthewronskiandeterminantoftheintegralsoftheoriginalform, we establish an algebraic identity involving the wronskian determinant of the integrals of the original form \omegaalongabasisofthehomologyofthegenericfiberof along a basis of the homology of the generic fiber of H.Thelatterwronskianisanalyzedthroughthisidentity,whichyieldstheestimateonthemultiplicityof. The latter wronskian is analyzed through this identity, which yields the estimate on the multiplicity of I(t).Still,insomecases,relatedtothegeometryatinfinityofthecurves. Still, in some cases, related to the geometry at infinity of the curves \{H=t\} \subseteq \textbf C^2,thewronskianoccurstobezeroidentically.Inthisalternativeweshowhowtoadapttheargumenttoasystemofsmallerrank,andgetanontrivialwronskian.Foraform, the wronskian occurs to be zero identically. In this alternative we show how to adapt the argument to a system of smaller rank, and get a nontrivial wronskian. For a form \omegaofarbitrarydegree,weareledtoestimatingtheorderofcontactbetween of arbitrary degree, we are led to estimating the order of contact between \gamma(t)andasuitablealgebraichypersurfacein and a suitable algebraic hypersurface in \textbf C^{n+1}.Weobservethat. We observe that ord I(t)growslikeanaffinefunctionwithrespectto grows like an affine function with respect to \deg \omega$.Comment: 18 page

    Cubic and quartic transformations of the sixth Painleve equation in terms of Riemann-Hilbert correspondence

    Full text link
    A starting point of this paper is a classification of quadratic polynomial transformations of the monodromy manifold for the 2x2 isomonodromic Fuchsian systems associated to the Painleve VI equation. Up to birational automorphisms of the monodromy manifold, we find three transformations. Two of them are identified as the action of known quadratic or quartic transformations of the Painleve VI equation. The third transformation of the monodromy manifold gives a new transformation of degree 3 of Picard's solutions of Painleve VI.Comment: Added: classification of quadratic transformations of the Monodromy manifold; new cubic (and quartic) transformations for Picard's case. 26 Pages, 3 figure

    Non-Schlesinger Deformations of Ordinary Differential Equations with Rational Coefficients

    Full text link
    We consider deformations of 2×22\times2 and 3×33\times3 matrix linear ODEs with rational coefficients with respect to singular points of Fuchsian type which don't satisfy the well-known system of Schlesinger equations (or its natural generalization). Some general statements concerning reducibility of such deformations for 2×22\times2 ODEs are proved. An explicit example of the general non-Schlesinger deformation of 2×22\times2-matrix ODE of the Fuchsian type with 4 singular points is constructed and application of such deformations to the construction of special solutions of the corresponding Schlesinger systems is discussed. Some examples of isomonodromy and non-isomonodromy deformations of 3×33\times3 matrix ODEs are considered. The latter arise as the compatibility conditions with linear ODEs with non-singlevalued coefficients.Comment: 15 pages, to appear in J. Phys.

    Deformations of Fuchsian Systems of Linear Differential Equations and the Schlesinger System

    Full text link
    We consider holomorphic deformations of Fuchsian systems parameterized by the pole loci. It is well known that, in the case when the residue matrices are non-resonant, such a deformation is isomonodromic if and only if the residue matrices satisfy the Schlesinger system with respect to the parameter. Without the non-resonance condition this result fails: there exist non-Schlesinger isomonodromic deformations. In the present article we introduce the class of the so-called isoprincipal deformations of Fuchsian systems. Every isoprincipal deformation is also an isomonodromic one. In general, the class of the isomonodromic deformations is much richer than the class of the isoprincipal deformations, but in the non-resonant case these classes coincide. We prove that a deformation is isoprincipal if and only if the residue matrices satisfy the Schlesinger system. This theorem holds in the general case, without any assumptions on the spectra of the residue matrices of the deformation. An explicit example illustrating isomonodromic deformations, which are neither isoprincipal nor meromorphic with respect to the parameter, is also given

    Riemann-Hilbert problem for Hurwitz Frobenius manifolds: regular singularities

    Full text link
    In this paper we study the Fuchsian Riemann-Hilbert (inverse monodromy) problem corresponding to Frobenius structures on Hurwitz spaces. We find a solution to this Riemann-Hilbert problem in terms of integrals of certain meromorphic differentials over a basis of an appropriate relative homology space, study the corresponding monodromy group and compute the monodromy matrices explicitly for various special cases.Comment: final versio

    Shear coordinate description of the quantised versal unfolding of D_4 singularity

    Full text link
    In this paper by using Teichmuller theory of a sphere with four holes/orbifold points, we obtain a system of flat coordinates on the general affine cubic surface having a D_4 singularity at the origin. We show that the Goldman bracket on the geodesic functions on the four-holed/orbifold sphere coincides with the Etingof-Ginzburg Poisson bracket on the affine D_4 cubic. We prove that this bracket is the image under the Riemann-Hilbert map of the Poisson Lie bracket on the direct sum of three copies of sl_2. We realise the action of the mapping class group by the action of the braid group on the geodesic functions . This action coincides with the procedure of analytic continuation of solutions of the sixth Painlev\'e equation. Finally, we produce the explicit quantisation of the Goldman bracket on the geodesic functions on the four-holed/orbifold sphere and of the braid group action.Comment: 14 pages, 2 picture

    On the Geometry of Isomonodromic Deformations

    Full text link
    This note examines the geometry behind the Hamiltonian structure of isomonodromy deformations of connections on vector bundles over Riemann surfaces. The main point is that one should think of an open set of the moduli of pairs (V,∇)(V,\nabla) of vector bundles and connections as being obtained by "twists" supported over points of a fixed vector bundle V0V_0 with a fixed connection ∇0\nabla_0; this gives two deformations, one, isomonodromic, of (V,∇)(V,\nabla), and another induced from the isomonodromic deformation of (V0,∇0)(V_0,\nabla_0). The difference between the two will be Hamiltonian.Comment: 20 page

    An Isomonodromy Cluster of Two Regular Singularities

    Full text link
    We consider a linear 2×22\times2 matrix ODE with two coalescing regular singularities. This coalescence is restricted with an isomonodromy condition with respect to the distance between the merging singularities in a way consistent with the ODE. In particular, a zero-distance limit for the ODE exists. The monodromy group of the limiting ODE is calculated in terms of the original one. This coalescing process generates a limit for the corresponding nonlinear systems of isomonodromy deformations. In our main example the latter limit reads as P6→P5P_6\to P_5, where PnP_n is the nn-th Painlev\'e equation. We also discuss some general problems which arise while studying the above-mentioned limits for the Painlev\'e equations.Comment: 44 pages, 8 figure
    corecore