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Abstract: A uniform derivation of the self-consistent field equations in a finite basis set is presented. Both
restricted and unrestricted Hartree–Fock (HF) theory as well as various density functional approximations
are considered. The unitary invariance of the HF and density functional models is discussed, paving
the way for the use of localized molecular orbitals. The self-consistent field equations are derived in a
non-orthogonal basis set, and their solution is discussed also in the presence of linear dependencies in the
basis. It is argued why iterative diagonalization of the Kohn–Sham–Fock matrix leads to the minimization
of the total energy. Alternative methods for the solution of the self-consistent field equations via direct
minimization as well as stability analysis are briefly discussed. Explicit expressions are given for the
contributions to the Kohn–Sham–Fock matrix up to meta-GGA functionals. Range-separated hybrids
and non-local correlation functionals are summarily reviewed.

Keywords: self-consistent field theory; hartree-fock; density functional theory

1. Introduction

Electronic structure calculations have become a cornerstone of modern-day research in chemistry
and materials physics, allowing in silico modeling of chemical reactions and the first principles design of
novel catalysts [1]. Electronic structure calculations on molecular systems most often employ the linear
combination of atomic orbitals (LCAO) approach, where the molecular orbitals (MOs) are expanded
in terms of atomic orbitals (AOs). Several possible alternatives for the form of the AOs are commonly
used—Gaussian-type orbitals (GTOs), Slater-type orbitals (STOs), as well as numerical atomic orbitals
(NAOs); see [2] for details. LCAO electronic structure calculations involve a variational minimization of
the total energy with respect to the AO expansion coefficients of the MOs. Importantly, the formalism used
in the LCAO approach is not restricted to AOs which are atom-centered basis functions; it can also be used,
e.g., in combination with fully numerical basis functions as in the finite element approach, as has been
recently demonstrated in [3,4]. Once the energy has been minimized and the corresponding wave function
has been obtained, it is possible to compute a number of properties either directly from the electronic
wave function (e.g., electron densities, orbital energies, molecular dipole moment), or from its response to
external perturbations (nuclear magnetic shieldings, vibrational frequencies, etc.).

The mathematical foundations for spin-restricted Hartree–Fock (HF) theory within the LCAO
approach were laid out independently by Roothaan and Hall [5,6]. In their seminal papers, Roothaan and
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Hall derived matrix equations that can be conveniently implemented on a computer as an iterative
procedure. As will be seen later in Section 6, the Roothaan–Hall equations turn out to yield a generalized
eigenvalue problem FC = SCE in the non-orthogonal AO basis set, which had been solved some years
before by Löwdin in the context of Heitler–London theory [7].

Subsequently to the work by Roothaan and Hall, Pople and Nesbet [8] and Berthier [9] independently
published the corresponding equations for an unrestricted (open-shell) HF description by an analogous
scheme, without providing an explicit derivation. The Pople–Nesbet–Berthier equations assume a form
similar to the Roothaan–Hall equations—constituting a coupled set of general eigenvalue equations—as
will also be seen later on in the manuscript (Section 6). Restricted open-shell HF was then described by
Roothaan [10]; restricted open-shell calculations will not be considered in the present work as they have
been extensively reviewed by Krebs in [11] to which we refer for further details.

Density functional theory [12,13] (DFT; see also [14,15]) became popular in chemistry through the
efforts of Pople and coworkers in making the method generally available to quantum chemists [16]
and showing that atomization energies from DFT may agree well with experiment [17,18]. Also DFT
turns out to yield self-consistent field (SCF) equations that assume the same form as in HF but with a
different expression for the Fock matrix F. Pople and coworkers reported the equations necessary for
solving SCF for DFT in the LCAO context up to generalized gradient approximation (GGA) functionals
in [16]; an analogous derivation was also presented by Kobayashi et al in [19]. The self-consistent
implementation of meta-GGA functionals was later described by Neumann, Nobes and Handy in [20].
Density functional calculations sometimes include also non-local correlation contributions; self-consistent
LCAO implementations thereof have been reported by Vydrov and coworkers [21–24].

Despite the progress in and widespread success of DFT, to our knowledge, a uniform derivation
of the SCF equations for HF and DFT including all the necessary expressions for the elements of the
Kohn–Sham–Fock matrix up to the level of meta-GGA functionals has, up to now, not been explicitly
published in the literature. This has likely contributed to the lack of complete support for meta-GGA
functionals in popular quantum chemistry programs; for instance, PSI4 [25] and PySCF [26] lack support
for meta-GGAs that depend on the Laplacian of the density such as the Becke–Roussel exchange
functional [27], for example. This paper, therefore, presents such a derivation, yielding expressions
of the DFT contributions to the Kohn–Sham–Fock matrix up to the level of meta-GGA functionals in a
consistent way, facilitating the implementation of DFT in new programs.

The present derivation also has an obvious educational value. Indeed, in what follows, HF and various
flavors of DFT belonging to different rungs of Jacob’s Ladder [28]—the local spin density approximation
(LDA), the GGA and meta-GGA approximations—will be explicitly described in a uniform notation,
making the similarities and dissimilarities between the approaches crystal clear. Facilitated by the uniform
derivation, we will discuss key issues and features in the HF and DFT methodologies that arise from the
mathematical formulation.

First, the basis set expansion of the molecular orbitals and the electron density is written out in
Section 2. Then, the energy expression for HF and DFT is presented in Section 3, with a brief explanation
of their physical content. The HF and DFT energy is shown to be invariant to rotations of the occupied and
of the virtual orbitals in Section 4, allowing the construction of localized orbitals. The possibilities and
drawbacks of spin-restricted calculations are discussed in Section 5. The finite-basis SCF equations are
derived as generalized eigenvalue equations in Section 6. It is shown that the general eigenvalue equations
can be reduced into normal eigenvalue equations by a transformation to an orthonormal basis in Section 7,
and that linear dependencies in the basis can be eliminated on the way. The reason why the solution
of the SCF equations amounts to a minimization of the total energy is rationalized in Section 8. Direct
minimization methods are briefly introduced and stability analysis discussed in Section 9. The SCF method
and direct minimization are contrasted in Section 10. Finally, the contributions to the Kohn–Sham–Fock
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matrix arising from various-rung DFT functionals are listed in Section 11. The article concludes with a
brief summary and discussion in Section 12. Atomic units are used throughout the text.

2. Basis Set Expansion

In the HF and DFT approaches, the electronic wave function is written as a Slater determinant,
in which the electrons occupy a set of MOs ϕ(~r). The MOs are expanded in terms of normalized expansion
functions χ(~r), which are typically AOs. Both ϕ and χ, as well as the LCAO coefficients Cµi, are typically
chosen to be real in the lack of magnetic interactions that would generally make the Hamiltonian operator
complex. Note, however, that the use of complex coefficients has been shown to be sometimes beneficial to
describe challenging systems even in the lack of magnetic fields in Hartree–Fock (as reviewed in [29]) or
DFT (as shown in [30]); complex instabilities may also arise in specialized methods beyond the SCF level,
see [31] for instance. The expansion functions are generally not orthonormal∫

d~r χµ(~r)χν(~r) = Sµν 6= δµν

where δµν is the Kronecker delta: δµν = 1 if µ = ν and δµν = 0 otherwise. Greek letters, µ, ν, λ, σ, η, ζ and
θ will be used to identify the expansion functions χ(~r), whereas Roman letters, i, j and k will be used to
identify the MOs ϕ. The α (spin-up) and β (spin-down) MOs are expanded separately as

ϕα
i (~r) =

M

∑
µ=1

Cα
µiχµ(~r) (1)

ϕ
β
i (~r) =

M

∑
µ=1

Cβ
µiχµ(~r) (2)

Both the α and β MOs are orthonormal to themselves∫
d~r ϕα

i (~r)ϕα
j (~r) = δij and

∫
d~r ϕ

β
i (~r)ϕ

β
j (~r) = δij

or equivalently within the basis set

(Cα)TSCα = 1 and (Cβ)TSCβ = 1

However, the α orbitals are generally not orthonormal to the β orbitals:∫
d~r ϕα

i (~r)ϕ
β
j (~r) 6= δij

or
(Cα)TSCβ 6= 1 (3)

The electron density plays a pivotal role in quantum chemistry. In line with chemistry literature, ρ(~r)
will be used to denote the electron density at the point~r in contrast to the physics notation n(~r) which is
customary in the DFT literature. The total electron density is formed from the α and β densities, ρα and ρβ,
as ρ(~r) = ρα(~r) + ρβ(~r). The spin-σ electron density can be evaluated as

ρσ(~r) =
Nσ

∑
i=1
|ϕσ

i (~r)|
2 =

Nσ

∑
i=1

∑
µν

Cσ
µiC

σ
νiχµ(~r)χν(~r) = ∑

µν

Pσ
µνχµ(~r)χν(~r) (4)
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in which Nσ is the number spin-σ electrons in the system, and the sums over basis functions ∑µ and ∑ν

indicate ∑M
µ=1 and ∑M

ν=1, respectively; this convention for easier readability of sums over basis functions is
used throughout the rest of this work.

The density matrix Pσ has been defined in Equation (4) as

Pσ
µν =

Nσ

∑
i=1

Cσ
µiC

σ
νi (5)

As is evident from the form of Equation (5), the density matrices are symmetric, Pσ
µν = Pσ

νµ. As was
already mentioned above, the total electron density is obtained from the sum of the α and β densities.
Correspondingly, a total density matrix is given by

P = Pα + Pβ (6)

from which the total density can be evaluated using a relation analogous to Equation (4).

3. Energy Expression

The starting point for the derivation is the non-relativistic energy expression [5,8,13,16],

E = ∑
µν

PµνHµν +
1
2 ∑

µνλσ

PµνPλσ(µν|λσ)− a
2 ∑

µνλσ

(Pα
µλPα

νσ + Pβ
µλPβ

νσ)(µν|λσ) + b
∫

f (~r)d~r (7)

where the electron repulsion integral (µν|λσ) is defined as

(µν|λσ) =
∫

d~r1

∫
d~r2 χµ(~r1)χν(~r1)

1
r12

χλ(~r2)χσ(~r2) (8)

and a and b are constants that define the fraction of HF exchange and the weight of the density functional
approximation, respectively. The choice a = 1 and b = 0 corresponds to HF, whereas a = 0 and b = 1 yields
a “pure” density functional without exact exchange such as the Perdew–Burke–Ernzerhof functional [32].
The choice a 6= 0 and b 6= 0 is the most general one, which corresponds to a hybrid functional [33]
that are popular in quantum chemistry; perhaps the most famous example being the historical B3LYP
functional [34].

The first term in Equation (7), which will be referred to as EH , describes the kinetic energy of the
electrons and the Coulombic attraction of the N nuclei in the system, with the matrix elements

Hµν =
∫

dr χµ(~r)

(
−1

2
∇2 + ∑

N

ZN
rN

)
χν(~r) (9)

The one-electron operator in Equation (9) is commonly known as the core Hamiltonian, and the
resulting EH is the dominating contribution to the total energy.

However, the core Hamiltonian lacks electronic interactions. These are described by the second and
third terms in Equation (7), which describe the classical Coulomb and the quantum mechanical “exchange”
energy, and are referred to as EJ and EK, respectively. The EJ contribution to the total energy can be
straightforwardly derived from the expression for the Coulomb repulsion between the electrons described
by the electron density ρ(~r)

EJ =
1
2

∫
d~r1

∫
d~r2 ρ(~r1)

1
r12

ρ(~r2)
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whereas the expression for the exchange energy contribution EK can be obtained, for instance, using
Slater’s rules for a HF wave function (a = 1).

The final term in Equation (7), referred to as EXC, describes the DFT exchange-correlation contributions
which, alike EJ and EK, arise from electronic interactions. The exchange-correlation term is commonly
written as

EXC =
∫

d~r f (~r) =
∫

d~r ρ(~r)εXC(~r)

where εXC is the exchange-correlation energy density per electron. Usually f (~r) is a function of the electron
density ρ(~r); it may also depend on the derivatives of ρ(~r) and the kinetic energy density τ(~r), depending
on which rung of Jacob’s Ladder [28] is used to the describe the exchange-correlation effects. The various
rungs are discussed in Section 11.

4. Unitary Invariance

The Pα and Pβ matrices turn out to be invariant to rotations of the occupied orbitals among themselves.
Rotating the occupied subset of the molecular orbitals ϕ by a orthogonal matrix U defines a new set of
occupied orbitals

ϕα′
i =

Nα

∑
k=1

ϕα
k Uki

the MO coefficients of which can be obtained as

Cα′
µi =

Nα

∑
k=1

Cα
µkUki

This can also be written in matrix notation as

Cα′ = CαU or Cα′UT = Cα (10)

The invariance to rotations in the occupied-occupied block is easy to prove, as

Pα′
µν =

Nα

∑
i=1

Cα′
µiC

α′
νi =

Nα

∑
ikl=1

UikCα
µkUilCα

νl =
Nα

∑
kl=1

δklCα
µkCα

νl =
Nα

∑
k=1

Cα
µkCα

νk = Pα
µν (11)

where we have used the orthogonality of U, UTU = 1 = UUT.
The invariance to rotations in the occupied-occupied block can be used to fashion localized

orbitals, for instance using an unitary optimization procedure [35]. Although localized orbitals are
not strictly speaking observables—due to which several localization criteria have been suggested in the
literature [36–40]—they have been shown to offer an effective way to study chemical reactions with ab
initio calculations [41–43].

In addition to the occupied orbitals, in general there are also a number of unoccupied orbitals, which
are commonly known as virtual orbitals. The number of virtual orbitals in any given calculation depends
on the size of the basis set: the bigger the basis is, the more virtual orbitals there are. Because the virtual
orbitals do not enter into the density matrix, the HF and DFT energy expression, Equation (7), is also
invariant to rotations in the virtual-virtual block, similarly allowing their localization. However, as will be
seen below in Section 9, the energy can be changed by mixing virtual orbitals into the occupied orbitals [44].
This approach provides another way to optimize the orbitals directly with, e.g., a gradient descent method,
such as the geometric direct minimization method described in [45].
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5. Spin-Restriction vs. Unrestriction

The molecular orbitals are obtained from the requirement that they minimize the total energy
according to Equation (7). However, one must first choose the used spin formalism. The general choice
is to use different spatial orbitals for the α and β electrons, in which case a spin-unrestricted approach is
obtained. The unrestricted approach is often used even in systems in which there are an equal number
of alpha and beta electrons, Nα = Nβ: although the spin-restricted and unrestricted descriptions often
reproduce matching results for such systems near the equilibrium, only the unrestricted formalism is able
to break bonds in general. The reason for this is that when molecules are stretched past the Coulson–Fischer
point [46], the optimal orbitals spontaneously break spin symmetry, which can only be described in the
unrestricted formalism. At variance, in the spin-restricted case the electrons occupy a common set of
N = Nα = Nβ = (Nα + Nβ)/2 spatial orbitals. The limitation of the spatial orbitals to be the same for both

spins, Cµi = Cα
µi = Cβ

µi, yields less variational freedom, and prevents the correct dissociation of e.g., the H2

molecule. As a flip side, the spin-restricted formalism affords computational savings over the unrestricted
approach. The spin-restricted density matrices, Equation (5), reduce to

Pα
µν = Pβ

µν =
1
2

Pµν =
N

∑
i

CµiCνi (12)

meaning, e.g., that the α and β exchange terms in Equation (7) coincide and can be simplified.
Spin-restriction is also possible in the case in which Nα 6= Nβ. In this case, a restricted open-shell

method is obtained. Restricted open-shell methods are more involved than the spin-restricted and
spin-unrestricted methods discussed in the present work. Restricted open-shell methods have been
extensively discussed in [11] to which we refer for further discussion.

6. Self-Consistent Field Equations

Having chosen to use either spin-restricted or spin-unrestricted orbitals, one can proceed to the
minimization of the energy expression in Equation (7). The energy expression depends only on the α and
β density matrices Pα and Pβ and their sum P. The density matrices, in turn, are determined by the lowest
Nα and Nβ molecular orbitals according to Equation (5). Because the energy expression in Equation (7)
thus only depends on the density matrices Pα and Pβ, it is expedient to use the chain rule to write, e.g.,

∂

∂Cα
θk

= ∑
ηζ

∂Pα
ηζ

∂Cα
θk

∂

∂Pα
ηζ

(13)

where the partial derivative of the density matrix element Pα
ηζ is

∂Pα
ηζ

∂Cα
θk

=
∂

∂Cα
θk

Nα

∑
i=1

Cα
ηiC

α
ζi

=
Nα

∑
i=1

δθηδkiCα
ζi +

Nα

∑
i=1

Cα
ηiδθζ δki (14)

= δθηCα
ζk + Cα

ηkδθζ

The β orbital derivative of the total density matrix has the same form as Equation (14), where all α are
replaced with β. Note that these findings hold even when the same orbitals are used for both α and β in a
spin-restricted formalism, since the α and β orbitals are formally independent.
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Due to the chain rule, Equation (13), all we need are the density matrix derivatives of the energy
expression. We only have to calculate the derivatives of the energy expression of Equation (7) for one spin,
as the energy expression is symmetric with respect to the α and β densities. It does not matter which spin
we choose to be “up”; the expressions for the other spin will follow by symmetry by interchanging α↔ β.
The first term of Equation (7) yields simply

∂EH

∂Pα
ηζ

=
∂

∂Pα
ηζ

∑
µν

PµνHµν = Hηζ (15)

Next, taking the partial derivative with respect to Pα
ηζ of the Coulomb and exchange terms in

Equation (7) results in

∂EJ

∂Pα
ηζ

= ∑
µν

(Pα
µν + Pβ

µν)(µν|ηζ) = ∑
µν

Pµν(µν|ηζ) = Jηζ (16)

where J is known as the Coulomb matrix, and

∂EK

∂Pα
ηζ

= −a ∑
µν

Pα
µν(µη|νζ) = −aKα

ηζ (17)

where Kα is the spin-α exchange matrix, respectively. The Coulomb and exchange matrices can be used to
rewrite the energy expression in Equation (7) as

E = ∑
µν

PµνHµν +
1
2 ∑

µν

Pµν Jµν −
a
2 ∑

µν

(Pα
µνKα

µν + Pβ
µνKβ

µν) + b
∫

f (~r)d~r (18)

Note that in contrast to the Coulomb and exact exchange terms, the exchange-correlation term does
not undergo simplifications, because the exchange-correlation term is not quadratic in the density matrix,
as will be seen later in Section 11. For the time being, we will denote the partial derivative of EXC with
respect to Pα

ηζ as

∂EXC

∂Pα
ηζ

= bKXC;α
ηζ (19)

as the full expressions for KXC;α will be presented in Section 11. Now, collecting the partial derivatives in
Equations (15)–(19) gives us the density matrix derivatives of the energy expression as

∂E
∂Pσ

ηζ

= Hηζ + Jηζ − aKσ
ηζ + bKXC;σ

ηζ = Fσ
ηζ (20)

where we have identified the Kohn–Sham–Fock matrices Fσ, where σ denotes α or β. Because the density
matrices defined by Equation (5) are symmetric, also the Fock matrices are symmetric, Fσ

ηζ = Fσ
ζη . Note that

since the Fock matrices only depend on the density matrices, also they are invariant to occupied-occupied
and virtual-virtual rotations, Fσ′ = Fσ.

Naïvely, one would obtain the orbital derivative of the full energy expression in Equation (7) with
Equations (13), (14) and (20) and then set it to zero to yield an equation for the unknown expansion
coefficients Cα. However, the molecular orbitals cannot be varied freely: one must make sure that the
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orbitals stay orthonormal during the variation, as otherwise the Pauli exclusion principle would be violated.
For instance, the orthonormality condition for the α electrons is∫

ϕα
i (~r)ϕα

j (~r)dr = δij (21)

The way to enforce these conditions is to use Lagrangian multipliers εij. That is, instead of the bare
energy expression E, we will optimize the Lagrangian

L = E−∑
ij

εα
ij

[∫
d~rϕα

i (~r)ϕα
j (~r)− δij

]
−∑

ij
ε

β
ij

[∫
d~rϕ

β
i (~r)ϕ

β
j (~r)− δij

]
(22)

where the sums over i and j run over all orbitals; that is, both the occupied and the virtual ones. We
can see from Equation (22) that the matrices of Lagrangian multipliers εα and εβ can be chosen to be
symmetric. For instance, if εα contained a symmetric part εα

s and an antisymmetric part εα
a , εα = εα

s + εα
a ,

the contribution from the antisymmetric part would vanish because it is multiplied with the orbital overlap
that is symmetric.

Next, we can calculate ∂L/∂Cα
θk, where ∂E/∂Cα

θk is given by Equations (13), (14), (20) and the derivative
of the constraint term is given by

∂

∂Cα
θk

∑
ij

εα
ij

[∫
d~rϕα

i (~r)ϕα
j (~r)− δij

]
= ∑

ij
εα

ij
∂

∂Cα
θk

∑
ηζ

[
Cα

ηiSηζCα
ζ j − δij

]
= ∑

ij
εα

ij ∑
ηζ

[
δηθδkiCα

ζ j + Cα
ηiδζθδkj

]
Sηζ (23)

= ∑
η

∑
i

εα
kiC

α
ηiSθη + ∑

η
∑

i
εα

ikCα
ηiSηθ

where on the third line dummy summation indices have been renamed from j to i and ζ to η. The derivative
can be evaluated as

∂L
∂Cα

θk
= ∑

ηζ

∂E
∂Pα

ηζ

∂Pα
ηζ

∂Cα
θk
−∑

ij
εα

ij
∂

∂Cα
θk

∫
d~rϕα

i (~r)ϕα
j (~r)

= ∑
ηζ

Fα
ηζ

[
δθηCα

ζk + Cα
ηkδθζ

]
−∑

ζ
∑

i
εα

kiC
α
ζiSθζ −∑

η
∑

i
εα

ikCα
ηiSηθ (24)

= 2 ∑
η

Fα
θηCα

ηk − 2 ∑
η

∑
i

εα
kiSθηCα

ηi

because F and ε are symmetric, and dummy summation indices can be renamed.
The optimal orbitals satisfy the stationary condition ∂L/∂Cα

θk = 0 from which

∑
η

Fα
θηCα

ηk = ∑
η

∑
i

SθηCα
ηiε

α
ik (25)

Equation (25) can thus be written in matrix form as

FαCα = SCαEα (26)

where Eα is the (symmetric) matrix of Lagrangian multipliers.
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Because Eα is symmetric, it can be diagonalized and it has real eigenvalues. Let us now assume that
Uα is an orthogonal matrix that diagonalizes Eα

Eα
ij → Eα′

ij = ∑
kl

Uα
kiE

α
klU

α
l j = δijε

α
i (27)

where εα are the eigenvalues. Re-expressing the orbital coefficients Cα in terms of a new set of orbitals
rotated by Uα with Equation (10), Cα = Cα′(Uα)T, rewrites Equation (26) in the form

FαCα′(Uα)T = SCα′(Uα)TEα

that can be multiplied from the right by Uα producing

FαCα′ = SCα′Eα′ (28)

where, according to Equation (27), Eα′ = (Uα)TEαUα is a diagonal matrix with elements εα
i .

Equation (28) is almost what we want—an equation in the rotated basis that looks like Equation (26)
with a diagonal Eα′—but one problem remains: the Kohn–Sham–Fock matrix is still the one corresponding
to the original orbitals Cα instead of the transformed orbitals Cα′ , while the orbital rotation by U that takes
us from Cα to Cα′ may lead to a different Kohn–Sham–Fock matrix Fα′ 6= Fα. However, if we choose the
form of U such that the occupied-virtual (ov) and virtual-occupied (vo) blocks vanish

U =

(
Uoo Uov

Uvo Uvv

)
=

(
Uoo 0

0 Uvv

)
(29)

then U only rotates occupied orbitals with occupied orbitals and virtual orbitals with virtual orbitals,
meaning that the orbital rotation does not change the density matrix given in Equation (11). Then, the Fock
matrix corresponding to the rotated orbitals coincides with that of the original orbitals, F′ = F, completing
the proof that Eα can be chosen to be diagonal. (Occupied-virtual rotations Uov or Uov, discussed in more
detail in Section 9, are in fact here forbidden: the SCF equations were derived with the assumption that the
energy is stationary, but this condition would instantly be violated by such rotations.)

We have thus obtained the Berthier–Pople–Nesbet [8,9,13,16] equations for the orbital coefficients{
FαCα = SCαEα

FβCβ = SCβEβ
(30)

where the primes have become unnecessary and have been omitted for simplicity. The elements of the
Kohn–Sham–Fock matrices Fα and Fβ are given by Equation (20), and the orbital energy matrices Eα

and Eβ are diagonal. In the spin-restricted case [5,16] the α and β molecular orbitals coincide, leading to
identical density matrices Pα and Pβ, and identical Fock matrices Fα and Fβ. In this case, the SCF equations
simplify to the Roothaan–Hall form

FC = SCE (31)

which was already mentioned in the Introduction.
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7. Solution of Self-Consistent Field Equations

The Roothaan–Hall and Berthier–Pople–Nesbet expressions take the form of a generalized eigenvalue
equation. The conventional way to solve these equations is to re-express the (unknown) orbital coefficients
in terms of a matrix X as

C = XC̃ (32)

Inserting Equation (32) into the Roothaan–Hall equation, Equation (31), yields

FXC̃ = SXC̃E

which can be multiplied from the left with XT to yield

XTFXC̃ = XTSXC̃E

This means that the orbital transform of Equation (32) yields a new generalized eigenvalue equation

F̃C̃ = S̃C̃E (33)

where F̃ = XTFX and S̃ = XTSX. Now, if we choose X in such a way that S̃ = 1, Equation (33) reduces to a
normal eigenvalue equation

F̃C̃ = C̃E (34)

which can be solved with standard techniques. Then, the wanted orbital coefficients C can be calculated
from C̃ using Equation (32).

If the basis set is well-conditioned, the matrix X can be chosen as

X = VΛ−1/2VT (35)

where V and Λ are the eigenvectors and eigenvalues of S

S = VΛVT (36)

This procedure is known as symmetric orthogonalization [7].
However, if a large LCAO basis is used, the atomic orbital basis functions centered on different atoms

may generate linear dependencies in the basis, making the basis set expansion ambiguous. These linear
dependencies can be removed with the “canonical” orthonormalization procedure [47], in which

X = V′Λ′−1/2 (37)

where only those eigenvectors Vi with large enough eigenvalues λi ≥ τ are included. The threshold τ is
typically of the order of τ = 10−7 . . . 10−5, and its value may have a noticeable effect on, e.g., the absolute
energies that result from a SCF calculation; relative energies, however, should be less sensitive to τ. If no
eigenvalues fall under the threshold τ, the symmetric and canonical orthogonalization approaches become
equivalent for the purposes of SCF calculations in the case of a well-conditioned basis set: both yield an
orthonormal basis of the same size, which will yield the same variational ground state energy.

Unnormalized basis sets can also be handled easily by the orthogonalization procedure. Although in
principle it is not necessary to normalize the individual basis functions before obtaining an orthonormal
basis by Equations (35) and (37), computer linear algebra packages may fail to find the eigenvalues and
eigenvectors in a reliable fashion if the basis functions have pronouncedly different norms. Moreover,
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missing normalization of the basis set affects the eigenvalues, which has repercussions for canonical
orthogonalization. These issues can be circumvented by normalizing the overlap matrix S→ S′ = nSn
where nij = S−1/2

ii δij before using Equations (35) and (37) [3,4]. The orthogonalizer for the unnormalized
basis set is obtained as X→ nX; it is easy to see that this satisfies the necessary condition XTSX = 1 even
though the symmetricity of X for the case of Equation (35) will be lost.

Even if S has been properly normalized, the use of the symmetric or canonical orthogonalization
procedures still requires that the diagonalization of S is numerically stable. However, whenever a large
number of linear dependencies exists in the basis set (e.g., a large number of diffuse functions are used or
two nuclei are close together), S may become so ill-conditioned it cannot be accurately diagonalized. In
such cases it is possible to reduce the size of the basis set without losing a significant amount of accuracy
by an automatic procedure, see [48,49] for details.

8. Why Does the Self-Consistent Field Method Minimize the Energy?

The SCF equations, Equation (30) or Equation (31), offer a way to solve for the molecular orbitals
described by C from a Kohn–Sham–Fock matrix F by finding its eigenvectors from Equation (34). However,
the Kohn–Sham–Fock matrix depends on the density matrices, which are built from the molecular orbitals
according to the Aufbau principle. In the SCF procedure, one tries to find a self-consistent solution: C
yields F, whose eigenvectors are C. The procedure starts from an initial guess for the orbitals Cσ or the
density matrices Pσ, which have been recently reviewed and benchmarked in [50] to which we refer for
further details.

Why does the self-consistent field procedure—diagonalizing Fσ to update the orbital coefficients
Cσ—correspond to minimization of the Hartree–Fock/Kohn–Sham energy? For simplicity, let us examine
the case of HF theory. The energy expression, Equation (18), can be written in this case (a = 1, b = 0) as

E = Tr PH +
1
2

Tr PJ− 1
2

Tr PαKα − 1
2

Tr PβKβ (38)

The Fock matrix elements, Equation (20), are given by

Fα = H + J−Kα (39)

Fβ = H + J−Kβ (40)

Equation (38) can be rewritten with Equations (39) and (40) as

E =
1
2

Tr Pα(H + Fα) +
1
2

Tr Pβ(H + Fβ) (41)

Expanding the density matrices using Equation (5) we see that Equation (41) can be written as

E =
1
2

Nα

∑
i=1

(hα
ii + f α

ii ) +
1
2

Nβ

∑
i=1

(hβ
ii + f β

ii ) (42)

where the core Hamiltonian and Fock matrices have been written in the molecular orbital basis, hσ =

(Cσ)THCσ and fσ = (Cσ)TFσCσ.
If one were to start the calculation from the core guess, then ∑i hα

ii and ∑i hβ
ii would be minimized.

However, as discussed in [50], this is a horrible choice as it completely disregards electronic repulsion
effects, meaning that the ∑i f α

ii and ∑i f β
ii terms are far from optimal. The Roothaan step—obtaining new

molecular orbitals by diagonalization of the Fock matrix—results in a minimization of the ∑i f α
ii and ∑i f β

ii
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terms, as after diagonalization only the lowest orbitals become populated and the sum thus runs only
over the lowest eigenvalues f σ

ii . After the update, ∑i hα
ii and ∑i hβ

ii no longer yield their lowest possible

values. However, the increase in the value of ∑i hα
ii + ∑i hβ

ii should be much smaller than the decrease in

the value of ∑i f α
ii + ∑i f β

ii , as the Fock matrices fα and fβ also contain the core Hamiltonian. It is thus
seen that Roothaan’s self-consistent field method, that is, the iterative diagonalization of the Fock matrix
minimizes the energy.

However, the minimization is only valid for a fixed potential fσ in which the electrons are moving.
When the orbitals are changed—as happens when f is made diagonal and its lowest eigenvectors
occupied—a new Fock matrix F must be built and a new f constructed: the potential also changes
with the electron density. If the orbitals were far from their optimal values, P and therefore F may change
quite radically by the orbital update. This means that even though f was made diagonal in the previous
iteration, it is no longer diagonally dominant after it has been updated. Indeed, the straightforward
iterative diagonalization procedure often fails to converge for all but the simplest systems, because the
density tends to undergo large oscillations in the naïve self-consistency cycle. To make the method
usable, the convergence of the fixed-point problem of finding a C that generates F that generates C
must be stabilized or accelerated in some way. This can be achieved, e.g., by damping [51,52], level
shifts [53–55], or extrapolation [56–59]. Fractional occupations can also be used in the initial iterations to
aid convergence [60].

The argument for why density functional calculations converge similarly to HF with the iterative
Roothaan procedure is somewhat less obvious, because unlike HF the exchange-correlation functional is
not generally quadratic in the density. However, the total energy expression is approximately quadratic
also in DFT when one is sufficiently close to an extremal point, as is easily seen by a Taylor expansion
of Equation (7). In practice the iterative procedure works well also for DFT, whose contributions to the
Kohn–Sham–Fock matrix we will discuss in Section 11.

9. Direct Minimization of the Energy

Instead of solving the orbitals from the SCF equations, which were obtained in Section 6 from the
stationary condition for the energy under the constraint of orthonormal orbitals, the orbitals can also be
optimized by a direct minimization of the energy. As was discussed in Section 4, the energy expression of
Equation (7) is invariant to occupied-occupied and virtual-virtual rotations. This means that if we have oσ

occupied orbitals and vσ virtual orbitals from some initial guess (see possible choices in [50]) for spin σ,
we can consider the energy as a function of a set of oσvσ rotation angles [44] by examining a rotation of the
orbitals via Equation (10) by an orthogonal matrix

Uσ(θσ) = exp

(
0 θσ

−(θσ)T 0

)
(43)

where θσ is an oσ × vσ matrix containing the rotation angles. The rotation matrix determined by
Equation (43) reduces to an identity matrix for vanishing rotation parameters, θσ = 0. Because the
rotation matrix of Equation (43) is orthogonal, it automatically preserves the orthonormality of the orbitals,
and special tricks i.e. Lagrangian multipliers are not needed to enforce this behavior.

The change in the density matrix is given by

∂Pσ
ηζ

∂θσ
ia

=
Nσ

∑
k=1

[
∂Cσ

ηk

∂θσ
ia

Cσ
ζk + Cσ

ηk

∂Cσ
ζk

∂θσ
ia

]
(44)
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How do the orbital coefficients change? Remembering that the first Nσ orbitals are occupied, and
the rest are virtual, we can write Cσ = ( Cσ

o Cσ
v ) . After an infinitesimal rotation θ ≈ 0, the occupied

orbitals change into Cσ′
o ≈ Cσ

o − Cσ
v (θ

σ)T, that is

Cσ′
ηk = Cσ

ηk − ∑
b virtual

Cσ
ηbθσ

kb (45)

from which ∂Cσ
ηk/∂θσ

ia = −Cσ
ηaδik. Now the gradient of the energy with respect to rotation of the current

set of orbitals can be obtained as

∂E
∂θσ

ia
= ∑

ηζ

∂E
∂Pσ

ηζ

∂Pσ
ηζ

∂θσ
ia

= ∑
ηζ

Fσ
ηζ

Nσ

∑
k=1

[
∂Cσ

ηk

∂θσ
ia

Cσ
ζk + Cσ

ηk

∂Cσ
ζk

∂θσ
ia

]
= −∑

ηζ

Fσ
ηζ

[
Cσ

ηaCσ
ζi + Cσ

ηiC
σ
ηa

]
= −2 f σ

ia (46)

where fσ = (Cσ)TFσCσ is the Fock matrix in the MO basis. Direct minimization of Equation (7) can then
be pursued using Equation (46) with, e.g., gradient descent methods. However, a proper preconditioning
of the search direction is essential in order for the algorithm to be usable; see, e.g., the geometric direct
minimization method described in [45]. Many other direct minimization methods for the HF or DFT
energy have also been proposed, and we refer the interested reader to the vast existing literature that
cannot be comprehensively cited here.

10. SCF vs. Direct Minimization

Having described two alternative ways for solving the orbitals, we can discuss their advantages
and disadvantages. The self-consistent field method is hard to beat for systems where convergence is
straightforward: a suitably stabilized and accelerated SCF procedure often converges within 10 to 20
iterations when a suitable initial guess (see [50]) has been provided. However, when the gap between
the highest occupied and lowest unoccupied orbital is small, which commonly occurs in, e.g., first-row
transition metal complexes, the SCF procedure may become extremely slow to converge, oscillate between
two or more solutions, converge to a higher-lying solution, or even to a saddle-point solution. Namely, it
is critically important to realize that even if the orbital gradient vanishes, or equivalently, that the SCF
equations are fulfilled, this does not mean that the energy expression Equation (7) truly has been minimized.
Because there are typically several occupied as well as virtual orbitals, the minimization problem involves
a large number of degrees of freedom. In multivariate calculus, a vanishing gradient only means that the
orbitals correspond to some kind of extremum of the energy: a local minimum, a saddle-point solution, or
even a local maximum, although the lattermost is highly improbable in SCF calculations.

In contrast to the sometimes erratic behavior of the SCF method, direct minimization based on orbital
rotations is guaranteed to converge onto an extremal point fia = 0 per the theory of numerical analysis;
this is of great worth when studying systems with complicated electronic structures for which conventional
SCF algorithms fail. However, more predictable convergence does not come for free: the downside of direct
minimization methods is that they carry a higher computational cost due to, e.g., the use of line searches in
the orbital optimization. Direct minimization methods can also be formulated at the second order, yielding
more robust convergence to a local minimum at the cost of more computational resources per iteration,
see, e.g., [61–63]. Because direct minimization methods are based on an explicit rotation of the orbitals,
they are able to always follow the same solution at variance to SCF methods where the orbital occupations
are typically reset at every iteration according to the Aufbau principle. Because of this, direct minimization
can lead to a solution where the Aufbau rule is violated, that is, the highest occupied orbital lies higher in
energy than the lowest unoccupied orbital. Direct minimization methods can also be straightforwardly
applied in more complicated electronic structure theories than self-consistent field theory. Such methods
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may especially include explicit dependence on the molecular orbitals, as discussed by one of the present
authors in [31,64,65] for the Perdew–Zunger self-interaction correction [66] which depends explicitly on
the Nσ occupied orbitals, and [67] for the perfect quadruples [68] and perfect hextuples [69] models that
also depend on the Nσ corresponding virtual orbitals.

In order to check the character of the extremum found by the SCF procedure or a direct minimization
method, it is necessary to continue the analysis to second-order changes in the energy with respect to
the orbital rotations by finding the lowest eigenvalue of the Hessian matrix: if it is negative, rotating the
orbitals in the direction of the corresponding eigenvector will result in a further decrease of the energy.
Whenever post-HF calculations are performed, or benchmark-quality values are sought at the SCF level,
stability analysis [70,71] should be used to guarantee that the wave function indeed corresponds to a
local minimum. Alternatively, trust-region methods [72–74] can be employed to ensure that the orbitals
converge onto a true local minimum.

As always in the minimization of multivariate functions, locating the global minimum is difficult,
and typically the best one can hope for is to find a local minimum. Some systems permit several local
electronic minima: for instance, charge transfer complexes may allow both a neutral (X · · · Y) as well as
an ionic (X+ · · · Y−) solution. Finding such physically motivated solutions is often straightforward by
suitable manipulations of the initial guess, for instance, by constructing guesses via the superposition
of atomic potentials [75,76] with the correct atomic charges. Sometimes it may also be interesting to
locate saddle-point solutions, which have physical interpretations as excited states. Specific excited states
can be explored within the SCF approach by replacing Aufbau population of the orbitals with overlap
criteria [77,78] or with direct minimization by replacing the energy with the square of the gradient [79];
for instance, such an approach has been recently shown to predict highly accurate core spectra [80]. The full
space of SCF solutions can be explored via, e.g., meta-dynamics [81].

11. Density Functional Contributions to Kohn–Sham–Fock Matrix

In Section 6 we derived expressions for the Kohn–Sham–Fock matrix elements for all but the density
functional contribution

EXC = b
∫

f (~r)d~r (47)

which we will consider next. Hundreds of density functionals f (~r) of various forms have been published
in the literature in the recent decades [82], and offering a comprehensive selection thereof poses a
considerable challenge to quantum chemistry software developers. This problem is further exacerbated
by the need to keep track with the several new functionals still being published every year. Moreover,
the density functionals f (~r) typically carry extremely complicated functional forms, making their correct
implementation painstaking work. The implementation is made even more difficult by the need to
compute the first derivatives of f (~r) for the SCF procedure, as well as several higher-order ones for, e.g.,
the calculation of various properties.

Fortunately, these challenges have been obviated by freely available, portable standard
implementations such as LIBXC [83] and XCFUN [84]. The LIBXC software package strives to implement
all DFT functionals published in the literature, and provides a uniform interface to ∼500 functionals of
various forms. At present, LIBXC is used by∼30 electronic structure programs based on various numerical
representations that range from basis set approaches (Gaussian-type orbitals, Slater-type orbitals, numerical
atomic orbitals, finite elements, plane waves) to finite difference procedures. New functionals only have to
be added once to LIBXC, meaning the library is easily kept up to date, after which they become available
to all programs that support the corresponding rung of functionals on Jacob’s ladder [28]. Next, we
will derive the equations necessary to implement the various rungs’ functionals in the variational basis
set approach.
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11.1. LDA Functionals

The simplest density functional approximations (DFAs), belonging to the first rung of Jacob’s
Ladder [28], are generally referred to as local (spin) density approximations (LDAs). These are functions
of only the electron density [13]

f (~r) = f (ρα(~r), ρβ(~r)) (48)

such as the LDA exchange functional [85,86]

f (~r) = −3
2

(
3

4π

) 1
3 (

ρ4/3
α (~r) + ρ4/3

β (~r)
)

Assuming f has the form of Equation (48), the resulting contribution to the Kohn–Sham–Fock matrix
Fα;XC

µν = ∂EXC/∂Pα
µν can be evaluated using Equation (5) for the densities at point~r

ρσ(~r) = ∑
µν

Pσ
µνχµ(~r)χν(~r) (49)

as [16]

Fα;LDA
µν =

∂EXC

∂Pα
µν

= b
∫

d~r
∂ f (~r)
∂ρα

∂ρα

∂Pα
µν

= b
∫

d~r
∂ f (~r)
∂ρα

χµ(~r)χν(~r) (50)

with Fβ;LDA having an analogous expression. Note that if the integral is evaluated using
numerical quadrature,

Fα;LDA
µν ≈ b ∑

i
wi

∂ f (~ri)

∂ρα
χµ(~ri)χν(~ri) (51)

Becke’s multigrid approach [87] and further developments thereof being the standard approach in
LCAO programs, the expression of Equation (51) can be most efficiently formulated with matrix products.
Storing the values of the basis functions at the quadrature points as a matrix

Xµi = χµ(~ri)

and defining a scaled version thereof as

Yα
µi = wi

∂ f (~ri)

∂ρα
χµ(~ri)

the Fock matrix contribution can be evaluated as simply as

Fα;LDA = bX(Yα)T

which is orders of magnitude faster than a simple for loop based algorithm.

11.2. GGA Functionals

The second rung of Jacob’s Ladder [28] is referred to as the Generalised Gradient Approximation [88]
(GGA). Density functional approximations on this rung also depend on the derivatives of the density

f (~r) = f (ρα, ρβ, γαα, γαβ, γββ)
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via the reduced gradients γαα = ∇ρα · ∇ρα, γαβ = ∇ρα · ∇ρβ, and γββ = ∇ρβ · ∇ρβ, with the gradient of
the density ∇ρσ being determined by

∇ρσ = ∑
µν

Pσ
µν∇[χµ(~r)χν(~r)] = ∑

µν

Pσ
µν[χν(~r)∇χµ(~r) + χµ(~r)∇χν(~r)]

The GGA contribution to the Fock matrix is given by [16]

Fα;GGA
µν =

∂EXC

∂Pα
µν

=
∫

d~r

[
∂ f (~r)
∂ρα

∂ρα

∂Pα
µν

+
∂ f (~r)
∂γαα

∂γαα

∂∇ρα
· ∂∇ρα

∂Pα
µν

+
∂ f (~r)
∂γαβ

∂γαβ

∂∇ρα
· ∂∇ρα

∂Pα
µν

]
= Fα;LDA

µν

+
∫

d~r

(
2

∂ f (~r)
∂γαα

∇ρα(~r) +
∂ f (~r)
∂γαβ

∇ρβ(~r)

)
· [χν(~r)∇χµ(~r) + χµ(~r)∇χν(~r)] (52)

The β expression can be obtained by switching α and β in Equation (52). In the restricted case,
EXC =

∫
d~r f (ρ, γ) with γ = ∇ρ · ∇ρ, which leads to the DFT contributions to FGGA given by the

simpler expression

FGGA
µν =

∫
d~r
[

∂ f (~r)
∂ρ

χµ(~r)χν(~r) + 2
∂ f (~r)

∂γ
∇ρ(~r) ·

[
χν(~r)∇χµ(~r) + χµ(~r)∇χν(~r)

]]
(53)

Practical implementations of Equations (52) and (53) can again be formulated using matrix products.

11.3. Meta-GGA Functionals

On the third rung on Jacob’s Ladder [28] are the meta-GGA (mGGA) approximations

f (~r) = f (ρα, ρβ, γαα, γαβ, γββ, τα, τβ,∇2ρα,∇2ρβ)

in which τσ and ∇2ρσ are obtained as

τσ =
1
2

Nσ

∑
i=1
|∇ϕi(~r)|2 =

1
2

Nσ

∑
i=1
∇ϕi(~r) · ∇ϕi(~r) =

1
2

Nσ

∑
i=1

∑
µν

Cσ
µiC

σ
νi∇χµ(~r) · ∇χν(~r)

=
1
2 ∑

µν

Pσ
µν∇χµ(~r) · ∇χν(~r) (54)

∇2ρσ = ∑
µν

Pσ
µν∇2[χµ(~r)χν(~r)]

= ∑
µν

Pσ
µν[χµ(~r)∇2χν(~r) + 2∇χµ(~r) · ∇χν(~r) + χν(~r)∇2χµ(~r)] (55)

= ∑
µν

Pσ
µν[χµ(~r)∇2χν(~r) + χν(~r)∇2χµ(~r)] + 4τσ
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The meta-GGA contributions to the Kohn–Sham–Fock matrix are straightforwardly obtained as [20]

Fα;mGGA
µν =

∂EXC

∂Pα
µν

= Fα;GGA
µν +

∫
d~r

[
∂ f (~r)
∂τα

∂τα

∂Pα
µν

+
∂ f (~r)

∂∇2ρα(~r)
∂∇2ρα(~r)

∂Pα
µν

]
(56)

= Fα;GGA
µν +

∫
d~r
[ (

1
2

∂ f (~r)
∂τα

+ 2
∂ f (~r)

∂∇2ρα(~r)

)
∇χµ(~r) · ∇χν(~r)

+
∂ f (~r)

∂∇2ρα(~r)
[χµ(~r)∇2χν(~r) + χν(~r)∇2χµ(~r)]

]
which can again be expressed in terms of matrix products to achieve faster quadrature. The expressions
remain formally the same in the restricted case, but the quantities correspond to the total electron density.

11.4. Range-Separated Hybrid Functionals

As was mentioned before, the use of non-zero values for the constants a and b in Equation (7) allows
the inclusion of exact exchange effects in a DFT calculation. Such functionals represent the fourth rung of
Jacob’s Ladder [28], and are generally referred to as hybrids. A further development on hybrid functionals
are range-separated hybrids [89,90], in which the interelectronic interaction is divided into a short-range
(sr) and a long-range (lr) part with a resolution of the identity

1
r12

=
φsr(r12)

r12
+

φlr(r12)

r12
(57)

where φsr(r12) + φlr(r12) = 1. The rationale for range separation is that since density functional
approximations for the exchange are based only on local information about the density, they fail to
reproduce accurate estimates for, e.g., charge transfer processes. Separating the interaction by range per
Equation (57) leads to a hybrid exchange functional that has four contributions

EX = asrEsr-HF + alrElr-HF + bsrEsr-DFT + blrElr-DFT = asrEsr-HF + alrElr-HF + EDFT (58)

where we have stressed that since the DFT contributions are evaluated based only on the density (and
possibly its derivatives), bsrEsr-DFT + blrElr-DFT is nothing but a definition of a new density functional.
In contrast, the HF contributions to the energy and the Kohn–Sham–Fock matrix have to be evaluated
separately with range-separated ERIs

(µν|λσ)sr/lr =
∫

d~r1

∫
d~r2 χµ(~r1)χν(~r1)

φsr/lr(r12)

r12
χλ(~r2)χσ(~r2) (59)

Several kinds of range-separation kernels φsr/lr(r) have been proposed; however, the error function
based kernel φsr(r; ω) = erfc (ωr), φlr(r; ω) = erf (ωr), where ω is the range-separation parameter,
is by far the most commonly used one because it is exceedingly simple to implement in codes
employing a plane-wave or Gaussian basis set [91,92]. The error function kernel is used, for instance,
in the Heyd–Scuseria–Ernzerhof (HSE) functionals for solid-state calculations [91,93], as well as in the
ωB97M-V [94] functional that is discussed below in Section 11.5. Some functionals based on Yukawa
kernels, φsr(r; ω) = e−λr, φlr(r; ω) = 1− e−λr, have also been published and are available in LIBXC,
for instance. It is important to check that the range-separation kernel used in the density functional
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implementation matches the one used in the computation of the range-separated ERIs in Equation (59), as
the results will be incorrect otherwise.

11.5. Non-Local Correlation

Dispersion effects, i.e., van der Waals interactions, can be modeled in an ab initio DFT setting with
non-local correlation functionals [95]

Enlc =
∫

d~r1d~r2ρ(~r1)Φ0(~r1,~r2)ρ(~r2) (60)

Because the non-local correlation energy term depends explicitly on the electron density, it also needs
to be included in the SCF procedure, in principle. In contrast, empirical dispersion corrections such as
Grimme’s various DFT-D approaches [96–98] do not depend on the electron density, and are added only
as an ad hoc correction onto the electronic energy.

Perhaps the most accurate rung-3 and rung-4 functionals currently available [99–101], the pure
B97M-V [102] mGGA as well as the range-separated ωB97M-V [94] hybrid mGGA, respectively, are built
on top of [103] the VV10 non-local correlation functional [23] which is controlled by two adjustable
parameters, b and C, which have been trained alongside the density functional in B97M-V and ωB97M-V.
The results of a recent benchmark study suggest that the VV10 contributions on densities and orbital
energies are negligible, and that sufficiently accurate energetics may be obtained by a one-shot evaluation
of Enlc in a post-SCF fashion [99]. Still, a rigorous minimization of the energy requires considering the
effects of the non-local correlation on the wave function. Although Equation (60) does not appear to fit on
the rungs of functionals discussed above, the VV10 kernel turns out to yield a GGA-type contribution to
the Kohn–Sham–Fock matrix as discussed in [23], to which we refer for further details.

12. Summary and Discussion

We have presented an overview of self-consistent field calculations within a variational basis set
formalism, and discussed the solution of the self-consistent field equations arising from Hartree–Fock
as well as various levels of density functional approximations using either the traditional fixed-point
equations or direct minimization, as well as various conceptual and numerical issues arising in their
implementation. No assumptions have been made on the underlying basis set in the present work:
the self-consistent field formalism is the same regardless of the form of the basis functions, which can be
chosen to be, e.g., Gaussian-type orbitals (GTOs), Slater-type orbitals (STOs), numerical atomic orbitals
(NAOs), or finite element shape functions. The basis set is only reflected in the molecular integrals, that is,
the matrix elements of the core Hamiltonian and the two-electron integrals. The various choices for the
basis set have different advantages and disadvantages, including the evaluation of the molecular integrals;
see [2] for discussion. Instead, the main restriction in the present work is the implicit assumption that
the basis set is compact enough so that the N × N density and Fock matrices are small enough to allow
O(N2) dense matrix storage and O(N3) diagonalization. Although the present overview has focused on
non-relativistic calculations on molecules, the discussion for relativistic calculations as well as crystalline
systems is analogous to a large degree. We hope that the present, consistent and thorough derivation and
analysis will be useful for reference as well as teaching purposes, and that the results presented herein will
lead to a wider availability of density functionals in electronic structure programs.
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