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Flat bands with higher Chern number in pyrochlore slabs
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A large number of recent works point to the emergence of intriguing analogs of fractional quantum Hall states
in lattice models due to effective interactions in nearly flat bands with Chern number C = 1. Here, we provide
an intuitive and efficient construction of almost dispersionless bands with higher Chern numbers. Inspired by
the physics of quantum Hall multilayers and pyrochlore-based transition-metal oxides, we study a tight-binding
model describing spin-orbit coupled electrons in N parallel kagome layers connected by apical sites forming
N − 1 intermediate triangular layers (as in the pyrochlore lattice). For each N , we find finite regions in parameter
space giving a virtually flat band with C = N . We analytically express the states within these topological bands in
terms of single-layer states and thereby explicitly demonstrate that the C = N wave functions have an appealing
structure in which layer index and translations in reciprocal space are intricately coupled. This provides a
promising arena for new collective states of matter.
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Introduction. Topological insulators, predicted
theoretically1 a few years ago and subsequently experimentally
observed,2 have attracted enormous amounts of interest. As
these systems can usually be understood in a single-particle
picture, an intriguing question is whether interactions can lead
to qualitative new phenomena. Evidence that this is indeed
the case has been accumulating during the past year. In a key
step it was shown that, e.g., an appropriate combination of
ferromagnetism and spin-orbit coupling can lead to nearly
flat bands with unit Chern number, C = 1, in itinerant lattice
systems.3–5 Given the flat bands, these systems are likely
to host interesting strongly correlated states and, at least in
theory, this opens up a number of intriguing perspectives
including high-temperature fractional quantum Hall states.3

Indeed, numerical exact diagonalization studies convincingly
show the existence of such states.6–12 While the list of flat
band models with C = 1 is still growing13–17 and a better
understanding of the relation between these bands and Landau
levels9,12,18–21 is developing, bands with higher Chern number
could host qualitatively new phases of matter22 as they have
no direct analog in the continuum.23 In this context, two
very recent papers made interesting progress by introducing
models harboring relatively flat bands with C = 2.24,25

At the same time there is a tremendous experimental devel-
opment and theoretical interest in the physics of transition-
metal oxides, especially the iridates, where the effect of
spin-orbit coupling is profound.26,27 Among these materials
there are examples such as A2Ir2O7 (A is a rare-earth element)
where the relevant effective low-energy degrees of freedom
are conducting 5d electrons on the Ir4+ ions that live on the
geometrically frustrated pyrochlore lattice formed by corner-
sharing tetrahedra.28–31 Interestingly, an anomalous Hall effect
has been observed in the metallic pyrochlore.32

Here, we connect these research directions and consider
a tight-binding model describing spin-orbit-coupled electrons
on a quasi-two-dimensional slab of pyrochlore including N

parallel kagome layers and N − 1 intermediate triangular
layers (Fig. 1). Our main result is that this model accom-
modates virtually flat bands carrying Chern number C = N

that are well separated from all other bands, even for relatively

large N ∼ 10 (cf. Fig. 2), and as such, provides an intriguing
platform for yet unexplored phases of matter.

Setup. Our starting point is the following highly idealized
model describing Rashba spin-orbit-coupled electrons on py-
rochlore slabs including N kagome layers, Km,m = 1, . . . ,N :

H =
∑

i,j,σ

tij c
†
iσ cjσ +i

∑

i,j,α,β

λij (Eij × Rij)·σ αβc
†
iαcjβ, (1)

where c
†
iσ creates an electron with spin σ at site i and

σ = (σ1,σ2,σ3) is a vector containing the Pauli matrices
as its elements. In the following we consider hopping, tij ,
between (next) nearest neighbors within each kagome plane
with amplitude t1 (t2) as well as nearest-neighbor hopping, t⊥,
when involving the triangular layers [cf. Fig. 1(a)]. Moreover,
we consider only electrons whose spin is aligned in the ẑ

direction and consider the electric field Eij originating from
ions at the center of each hexagon in the kagome layer, Km, to
effect only the hopping along the (directed) bonds, Rij , within
Km, such that λ|i−j | ≡ λij |Eij × Rij | parametrizes the nearest
and next-nearest spin-orbit hopping strengths λ1 and λ2. For
a single layer, N = 1, our model (1) reduces to the kagome
model introduced in Ref. 3.

In reciprocal space (1) is represented by a (4N −
1) × (4N − 1) Hermitian matrix, Hk, which is diagonal-
ized, Hk|ψs(k)〉 = Es(k)|ψs(k)〉, by the states |ψs(k)〉 =∑

i a
s
i (k)|i〉, where |i〉 labels the states in the unit cell, s labels

the bands in order of increasing energies, Es+1(k) � Es(k),
and i,s = 1,2, . . . ,4N − 1. For an explicit construction of Hk
we refer to the Supplemental Material.36 To characterize the
bands with dispersion Es(k) we calculate the Chern number,
C = 1

2π

∫
BZ F s

12(k)d2k, which is a topologically protected
integer quantity defined for an isolated band described by
the wave functions |ψs(k)〉, via the Berry curvature, F s

ij (k) =
∂ki

As
j (k) − ∂kj

As
i (k), which in turn is defined in terms of the

Berry connection As
j (k) = −i〈ψs(k)|∂kj

|ψs(k)〉. The physical
significance of the Chern number is that it counts the number
of current-carrying edge states, and as such gives the quantized
Hall conductivity of a filled band, σH = C e2

h
(Ref. 33; and
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FIG. 1. (Color online) The kagome bilayer (a) and trilayer (b).
The layers are colored differently for clarity and the considered
hopping processes are indicated by arrows in (a). A 2D projection
of the trilayer is shown in (c) and illustrates the general structure
of the pyrochlore lattice: The projection has a threefold periodicity
(kagome layer m + 3n has the same projection as layer m).

typically σH = Cν e2

h
for an incompressible state at fractional

band filling, ν).
Band structure and wave functions. We begin our discussion

of the band structure of (1) by considering a few instructive
limiting cases. First, for t1 = ±t⊥,t2 = λ1 = λ2 = 0, there
are 2N − 1 perfectly flat bands which can be understood
from counting the number of linearly independent localized
modes—for N = 1 these can be taken as localized on each
hexagon with amplitudes of alternating sign. (In the three-
dimensional limit, N → ∞, this is consistent with the two
flat 3D bands known from bulk pyrochlore.34) These perfectly
flat bands are, however, not carrying a well-defined Chern
number as dispersive bands touch the flat ones at quadratic
touching points occurring at k = 0. Next, for t⊥ = 0 and finite
spin-orbit coupling, λ, we get N decoupled copies of the band
structure, including C = ±1 bands, discovered in Ref. 3 (in
addition there are N − 1 trivial bands due to the inert triangular
layers).

Turning to the full spin-orbit-coupled model with t⊥ 	= 0,
we quite generically find a band with Chern number C = N .
Figure 2 provides examples of the band structure, including
flat bands with C = N (in this example situated at s = N )
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FIG. 2. (Color online) Bulk dispersion, Es(k), s = 1,2, . . . ,4N − 1, including topological flat bands in the presence of spin-orbit
coupling. (a) shows a high-symmetry path through the Brillouin zone along which (b)–(i) show the dispersion of (1) for a system with
N = 1,2,3,4,8,12,50,100 stacked kagome layers, respectively. In each case there is a very flat band (bold orange line) with Chern number
C = N . The parameters are chosen as t1 = −1,t2 = λ1 = 0.3,λ2 = 0.2,t⊥ = 1.3. As described in the text, the value of t⊥ is not affecting the
flat band but can be tuned to move the other bands (thin blue).
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for various N given a suitable choice of hopping parameters.
The C = N bands have identical (weak) dispersion, Es=N (k),
regardless of the number of kagome layers, N , as will become
clear later when we consider the properties of the wave
functions.

To quantify how well the nontrivial bands are separated
from the other bands we define the flatness ratio, 
/W , in
terms of the bandwidth, W = max

k,k′∈BZ
[Es(k) − Es(k′)], and the

energy gap, 
 = min
k,k′∈BZ

[Es(k) − Es−1(k′),Es+1(k′) − Es(k)].

A negative flatness ratio does not imply the existence of
touching points, but it signals that there is no chemical potential
such that only the topological band is partly filled (at the
noninteracting level). While the topological band itself is
independent of the value of t⊥ as long as it is nonzero, the other
bands depend in general on the detailed value of t⊥, leading to
a nontrivial t⊥ dependence of 
/W as shown in Fig. 3(a). In
Fig. 3(b) we fix t⊥ = 1.3, t1 = −1, t2 = 0.3, N = 2 and plot

/W as a function of λ1 and λ2. This further illustrates the fact
that although reaching optimal values is a matter of fine-tuning,
there are sizable parameter regions for which 
/W � 1. The
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FIG. 3. (Color online) The flatness ratio 
/W (defined in the
text) as a function of t⊥ for various N (a). Notably, the flatness
reaches its maximum for relatively large t⊥. Here we use t1 = −1,t2 =
0.3,λ1 = 0.348,λ2 = 0.172. The kink reflects that the upper bands
become closer to the topological band than the lower bands. In
(b) we plot 
/W for N = 2 kagome layers as a function of λ1

and λ2 for t⊥ = 1.3,t1 = −1,t2 = 0.3. The flatness ratio is large for
a sizable region and, in fact, positive throughout the plotted range.

separation of energy scales demonstrated in Figs. 2, 3 implies
that there is a region of parameter space up to relatively
large N ∼ 10, such that 
 � U � W , for some interaction
strength, U . Note however that one can in principle always
make the bandwidth, W , arbitrarily small by including longer
range hopping;5 thus the limit on N is not a fundamental one,
but rather an estimate on what might be achieved for reasonable
fine-tuning. Moreover, adding a chemical potential on the
triangular layers, H → H + μ

∑
i /∈Km

ni , provides additional
freedom of shifting the other bands while leaving the flat
C = N band completely unaltered.35 As in the C = 1 bands
studied earlier, this clearly provides a promising platform for
strongly correlated states. In particular, the C = N > 1 bands
could lead to new phenomena with no analog in continuum
systems (Landau levels).

A prominent feature of the wave functions in the flat
topological bands is that they are entirely localized to the
kagome layers. In fact, we find that the wave functions in
the C = N bands can be completely understood in terms
of the states |φC=1(k)〉 in the nearly flat band with Chern
number C = 1 in the single-layer kagome model.3 More
specifically, the C = N states can be written as |ψs=N (k)〉 =∑N

m=1 αm(k)|φC=1
m (k)〉, where |φC=1

m (k)〉 is the C = 1 state
localized to Km. The coefficients αm(k) are uniquely deter-
mined by local constraints similar to those in localized modes
appearing in frustrated hopping models without spin-orbit
interactions (cf., e.g., Ref. 34): The relevant amplitudes in
the kagome layers obey a sum rule leading to a vanishing total
amplitude for hopping to the triangular layers. In terms of the
wave function amplitudes, this can be stated as as=N

i /∈Km
(k) =

∑
j∈{Km∪Km+1} eiθ

j

k as=N
j (k) = 0,∀k,m, where θ

j

k depends on
the unit cell and gauge conventions.36 In terms of αm(k),
this requirement leads to a nontrivial probability distribution,
Pm(k) = |αm(k)|2 ∝ e±2m/δ(k), of being in kagome layer Km,
as is illustrated in Fig. 4 and derived in the Supplemental
Material.36

That the wave functions are completely localized to the
kagome layers is indeed reminiscent of the structure of
multi-layer quantum Hall systems, or any system including N

decoupled C = 1 bands for that matter. However, the structure
of the Hilbert spaces is starkly different—while the interlayer
dynamics in more conventional multilayer systems can in
principle be independent, i.e., the layers are coupled only via
interactions, the particle motion within different kagome layers
in the C = N bands is necessarily strongly coupled even in the
absence of interactions between the layers. A manifestation of
this coupling between layers is that translations in reciprocal
space within the C = N bands effectively amount to shifting
the kagome layer. In Ref. 22, it was argued that bands with
this type of symmetry enriched translation structure can, in
principle, harbor entirely new phenomena such as wormholes
with non-Abelian statistics.

The nontrivial translation structure is especially transparent
in the N = 2 case highlighted in Fig. 4(a): At the K point
the full weight of the wave function is in the lower layer,
P1(k = K) = 1, while it is entirely localized to the upper layer
at −K , P2(k = −K) = 1, i.e., at the K ′ point. More generally,
the role of the kagome layersKm andKN+1−m are interchanged
by the transformation k → −k.
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FIG. 4. (Color online) The probability distribution, Pm(k), of being in different kagome layers, Km, in the C = N topological bands
(t⊥ = 1.3,t1 = −1,t2 = 0.3,λ1 = 0.3,λ2 = 0.2). In (a)–(c) we display the probability distributions for each layer within the C = 2,3,4 bands
respectively through a high-symmetry path through the Brillouin zone [cf. Fig. 2(a)]. That the wave functions are completely localized to the
kagome layers is manifested by

∑
m Pm(k) = 1,∀k. The wave function is entirely localized to the top or bottom kagome layer at the K points.

In (d) we display the total weight, 〈Pm〉, in each kagome layer for various N . Notably, most weight is carried by the outermost layers.

For C = N > 2 the total weight is not evenly distributed
over all kagome layers [Figs. 4(b)–4(d)]. For instance, as
a function of k, the probability of being in a certain layer
reaches unity only in the top (KN ) and bottom (K1) layers as a
direct consequence of Pm(k) = |αm(k)|2 ∝ e±2m/δ(k). For large
N this implies that a considerable fraction of the integrated
weight, 〈Pm〉 = A−1

BZ

∫
BZ Pm(k)d2k, is carried by the outermost

layers, i.e., by the surface as is illustrated in Fig. 4(d).
This surface localization is also in sharp contrast to more
conventional multilayer systems.

Discussion. In this work, we have demonstrated that nearly
flat bands with Chern number C = N exist in a short-range
tight-binding model on a quasi-two-dimensional slab of the
pyrochlore lattice. We have also provided a detailed characteri-
zation of the wave functions within these bands and highlighted
their structure, which is qualitatively distinct from systems
hosting multiple C = 1 bands such as multilayer quantum
Hall systems. At partial band filling it is very likely that this
model harbors intriguing correlated states. Indeed, based on an
elegant, albeit rather implicit, Wannier function approach,18

it was recently argued22 that lattice dislocations can lead
to qualitatively new phenomena that are only realizable in
C > 1 bands. Here, we have provided a promising platform for
realizing such phenomena and a test bed for future numerical
studies of flat bands with variable Chern number.

An intriguing open question is whether our model, mutatis
mutandis, can be realized experimentally. In this context
it is indeed promising that there is a rapid development
in engineering quasi-two-dimensional (multilayer) oxides,37

and in particular, that there exists a number of pyrochlore-
based transition-metal oxide materials, especially iridates,
where the conduction electrons experience strong spin-orbit
effects.28–31

It has recently been shown that our model indeed harbors a
large number of new fractional Chern insulator phases.38
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with P. Brouwer, A. Läuchli, and Z. Liu. E.J.B. also acknowl-
edges related collaborations with A. Läuchli, Z. Liu, and
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