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The two-Higgs-doublet model (2HDM) provides an excellent benchmark to study physics beyond the
Standard Model (SM). In this work, we discuss how the behavior of the model at high-energy scales causes
it to have a scalar with properties very similar to those of the SM—which means the 2HDM can be seen to
naturally favor a decoupling or alignment limit. For a type II 2HDM, we show that requiring the model to
be theoretically valid up to a scale of 1 TeV, by studying the renormalization group equations (RGE) of the
parameters of the model, causes a significant reduction in the allowed magnitude of the quartic couplings.
This, combined with B-physics bounds, forces the model to be naturally decoupled. As a consequence, any
nondecoupling limits in type II, like the wrong-sign scenario, are excluded. On the contrary, even with the
very constraining limits for the Higgs couplings from the LHC, the type I model can deviate substantially
from alignment. An RGE analysis similar to that made for type II shows, however, that requiring a single
scalar to be heavier than about 500 GeV would be sufficient for the model to be decoupled. Finally,
we show that the 2HDM is stable up to the Planck scale independently of which of the CP-even scalars is
the discovered 125 GeV Higgs boson.
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I. INTRODUCTION

The discovery of the Higgs boson at the Large Hadron
Collider (LHC) by the ATLAS [1] and CMS [2] collab-
orations has immediately triggered the discussion about
which extensions of the Standard Model (SM) could
accommodate all data and still predict new physics,
observable during the Run 2 operation. One of the models
that has been used as benchmark for the searches for new
physics by both ATLAS and CMS is the two-Higgs-doublet
model (2HDM) in its CP-conserving, softly broken Z2

symmetric version. First proposed by T.D. Lee [3], 2HDMs
have been used as benchmark models not only for the LHC
searches but also theoretically. The different versions of the
model allow for instance the introduction of CP violation
in the scalar sector, controlled flavor-changing neutral

currents or dark matter candidates. The models also have
a very different vacuum structure than the SM one, because
both charge and CP can be broken spontaneously.
Furthermore, it is the simplest extension where simulta-
neous minima of the same nature can occur.
With the mass of the Higgs boson determined with a

good precision, the discussion about the stability of the SM
Higgs potential has restarted. This involves studying the
evolution of the SM quartic coupling λ with the renorm-
alization group equations (RGE). Two effects are here in
play: on the one hand, the quartic coupling itself has a
positive contribution to its own RGE, and therefore tends to
increase its value as one goes to higher energy scales; on the
other hand, the top quark Yukawa coupling has a negative
contribution to the RGE of λ, and tends to reduce its value
as one goes up in energy scale. As a result of these two
effects, if the value of the quartic coupling at the weak scale
is too small, the RGE evolution will cause λ to turn negative
at some point, and therefore the potential becomes unstable.
If, however, the starting value of the quartic coupling is too
large, its RGE evolution will drive it to ever-higher values
so that the theory ceases eventually to be perturbative and λ
develops a Landau pole. Prior to the Higgs boson discov-
ery, these arguments were used to constrain its mass [4–13].
Now that we know its mass, we can verify whether the
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potential remains stable, and the theory perturbative, all the
way up to the Planck scale. If that were not the case, that
would most likely be a sign of the existence of new physics,
hitherto undiscovered, which would stabilize the RGE
evolution of the couplings. It has been shown, in fact, that
the SM vacuum is metastable if the theory is to be valid up
to the Planck scale [14–16]. The only way to have a stable
electroweak vacuum, according to these results, would
therefore be for new physics to exist at a scale well below
the Planck scale. The stability of the electroweak vacuum
can be cured with the addition of extra scalar degrees of
freedom. With all the parameters of the SM determined, the
addition of a scalar singlet is enough to cure the problem
[17–20]. As shown in [20], the addition of a complex
singlet provides a vacuum stable up to the Planck scale. In
the broken phase of the model, only one scalar with a mass
above 125 GeV is needed to stabilize the vacuum.
Therefore, since there are two extra CP-even scalars, the
remaining one can have a mass below 125 GeV. It has been
shown, however, in the context of the SM, that the presence
of new physics very close to the Planck scale can alter
considerably such conditions of stability of the potential
[21–23], and likewise eventual gravity contributions near
the Planck scale can have a sizeable impact [24].
The 2HDM belongs to the simplest extensions of the

SM. An extra scalar doublet enlarges the SM scalar model,
but the remaining fields (gauge and fermion) remain the
same, as do the gauge symmetries of the model. A larger
scalar sector implies a more complex scalar potential—
indeed the version of the 2HDM potential in this work
has 5 quartic couplings. And as in the SM, one can ask
whether the potential remains stable and perturbative, as
one considers progressively larger energy scales. As such,
the RGE evolutions of the quartic couplings of the 2HDM
were studied by several authors [25–28] to ascertain the
validity of the model up to higher energy scales and, prior
to the Higgs discovery, to attempt to impose constraints on
the unknown scalar masses of the model. After the Higgs
boson was discovered the stability of the several versions of
the 2HDM was revisited in a number of papers [29–37]. In
all these works, the lightest CP-even scalar is considered to
be the discovered Higgs boson, and there is a common
conclusion that, with all relevant theoretical and exper-
imental constraints taken into account, there always exists a
region of the parameter space where the 2HDM is valid up
to the Planck scale. Notice, however, that these studies
assume a softly broken Z2 symmetry, the most popular
version of the 2HDM, and the region of parameter space
found always included m2

12 ≠ 0. On the other hand, in
Ref. [29] a type II version with an exact Z2 symmetric
model was analyzed, concluding that the potential with
m2

12 ¼ 0 cannot be valid beyond 10 TeV without the
intervention of new physics, a conclusion later confirmed
in [31]. However, this conclusion is heavily dependent on
the value of the charged Higgs mass, mH� . We will show

that the type II model with an exact symmetry is, when
taking into account the most recent bounds on mH� , in fact
valid only up to a few hundreds of GeV.
All studies quoted above agree on the fact that the

quartic parameters of the potential are increasingly small
if the theory is to be valid up to higher and higher scales.
The issue of metastability in the 2HDM at high scales
was discussed in [34] while in Ref. [36] it was shown that
the heavy states of a 2HDM valid up to Planck scale can
be probed with a significance of at least 3σ in the LHC
high-luminosity run. In this investigation we will not
work in the exact alignment limit nor in the decoupling
limit as was done in previous works. Our main goal will
in effect be to show how 2HDM alignment may emerge
“naturally” from requiring stability and perturbativity of
the potential up to high-energy scales. We will further-
more scan over the entire parameter space allowed by the
experimental constraints to be described later. Moreover,
we will take into account the combination of all theo-
retical constraints, including the discriminant that forces
the minimum to be global1 at various scales. An inter-
esting conclusion we will reach is that it is enough to
have only one heavy scalar boson to have decoupling
(and therefore alignment) at a scale as low as 1 TeV. We
will argue that decoupling can be defined for masses as
low as 500 GeV—in other words, if even only one of the
extra scalar masses is required to be above 500 GeV, the
2HDM with good high-energy scale behavior up to scales
of the TeV order automatically has a scalar state with
SM-like properties.
We will analyze for the first time the stability of a softly

broken Z2 symmetric 2HDM in the case where the heaviest
CP-even scalar is the 125 GeV Higgs boson—the so-called
heavy Higgs scenario. Quite surprisingly, we will demon-
strate that for this scenario there are regions of the
parameter space for a type I model for which the theory
is well behaved all the way up to the Planck scale. This is
only possible if all the remaining scalar bosons have a mass
below 200 GeV. Obviously, due to the bound of 580 GeV
on the charged Higgs mass for a type II model, the heavy
Higgs scenario in type II ceases to be valid already below
an energy scale of about 1 TeV.
The paper is organized as follows. In Sec. II, we describe

the version of the 2HDM used in this work, and in Sec. III,
we present the theoretical constraints that we will impose
at the various scales. In Sec. IV, we discuss the parameter
space of the model in view of the most relevant theoretical
and up to date experimental constraints. In Secs. V–VII, we
present our results. Our conclusions are given in Sec. IX.
In Appendix A, we have collected the relevant RGEs for
this study.

1One-loop studies of the vacuum of some versions of the
2HDM were performed in [38,39].
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II. THE TWO-HIGGS-DOUBLET MODEL

The 2HDM is an extension of the SM in which the
scalar potential is built with two hypercharge 1 complex
SUð2Þ doublets Φ1 and Φ2. When all the fields transform
just as in the SM and no extra symmetries are imposed on
the Lagrangian, the most general Yukawa Lagrangian
gives rise to tree-level flavor-changing neutral currents
(FCNC) which are known to be severely constrained by
experimental data. Imposing a discrete symmetry on
the scalar fields, Φ1 → Φ1, Φ2 → −Φ2, and forcing the
potential to be invariant under this Z2 symmetry, except
for a dimension two soft breaking term, the potential can
be written as

VðΦ1;Φ2Þ ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 − ðm2

12Φ
†
1Φ2 þ H:c:Þ

þ 1

2
λ1ðΦ†

1Φ1Þ2 þ
1

2
λ2ðΦ†

2Φ2Þ2

þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ

þ 1

2
λ5½ðΦ†

1Φ2Þ2 þ H:c:�: ð2:1Þ

We will work with a CP-conserving potential by consid-
ering all parameters of the potential, together with the
vacuum expectation values, to be real. Also the parameter
space we will consider is such that no spontaneous CP
breaking occurs. This is in fact assured by simply
requiring that a CP-preserving minimum exists [40].
When the symmetry is extended to the fermions in such
a way that a fermion of a given charge couples only to
one doublet [41,42] the Higgs interaction terms become
proportional to the quark mass terms and therefore Higgs
FCNC are absent at tree level. There are four independent
choices for the Yukawa Lagrangian [43]. We will call
type I the model where only Φ2 couples to all fermions,
type II the model where Φ2 couples to up-type quarks and
Φ1 couples to down-type quarks and leptons, Flipped (F)
the model where Φ2 couples to up-type quarks and to
leptons and Φ1 couples to down-type quarks and finally
Lepton Specific (LS) the model where Φ2 couples to all
quarks and Φ1 couples to leptons. In this work we will
focus on type I and type II as the results for type F and LS
are similar to the ones for type II and type I, respectively.
In fact, as we will discuss later, the major difference
between the models is related to the bound on the charged
Higgs mass, which is similar for type I and LS and for
type II and F.
The two complex doublet fieldsΦ1 andΦ2 are expressed

in terms of charged complex fields ϕþ
i and real and

imaginary components of the neutral components of the
doublets, ρi and ηi (i ¼ 1, 2), respectively. After electro-
weak symmetry breaking (EWSB) we can expand the two
doublets about their vacuum expectation values (VEVs) v1
and v2 yielding

Φ1 ¼
� ϕþ

1

ρ1þiη1þv1ffiffi
2

p

�
and Φ2 ¼

� ϕþ
2

ρ2þiη2þv2ffiffi
2

p

�
: ð2:2Þ

The mass matrices are the components of the bilinear terms
in the potential. As we assume charge and CP conservation
we end up with three 2 × 2 matricesMS,MP andMC for
the neutral CP-even, neutral CP-odd and charged Higgs
sectors. The minimization conditions are given by

∂V
∂Φ1

����
hΦii

¼ ∂V
∂Φ2

����
hΦii

¼ 0; ð2:3Þ

which is equivalent to setting the two terms in the potential
linear in ρ1 and ρ2 to zero,

m2
11 −m2

12

v2
v1

þ λ1v21
2

þ λ345v22
2

¼ 0

m2
22 −m2

12

v1
v2

þ λ2v22
2

þ λ345v21
2

¼ 0; ð2:4Þ

where we have defined

λ345 ≡ λ3 þ λ4 þ λ5: ð2:5Þ

These equations allow one to replace the m2
11 and m2

22

parameters by expressions in terms of the remaining
parameters and the VEVs to obtain the following form
for the mass matrices,

MS ¼
� m2

12
v2
v1
þ λ1v21 −m2

12 þ λ345v1v2

−m2
12 þ λ345v1v2 m2

12
v1
v2
þ λ2v22

�
ð2:6Þ

MP ¼
�
m2

12

v1v2
− λ5

��
v22 −v1v2

−v1v2 v21

�
ð2:7Þ

MC ¼
�
m2

12

v1v2
−
λ4 þ λ5

2

��
v22 −v1v2

−v1v2 v21

�
: ð2:8Þ

In Eqs. (2.7) and (2.8), we already see that the pseudoscalar
and charged scalar matrices have determinant equal to
zero—and therefore a zero eigenvalue, corresponding to
the expected neutral and charged Goldstone bosons. The
diagonalization of the mass matrices is performed via the
following orthogonal transformations

�
ρ1

ρ2

�
¼ RðαÞ

�
H

h

�
; ð2:9Þ

�
η1

η2

�
¼ RðβÞ

�
G0

A

�
; ð2:10Þ
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�
ϕ�
1

ϕ�
2

�
¼ RðβÞ

�
G�

H�

�
; ð2:11Þ

where the rotation matrices have the form

RðϑÞ ¼
�
cos ϑ − sin ϑ

sinϑ cosϑ

�
; ð2:12Þ

with ϑ ¼ α or β. These rotations lead us to the physical
states, which include one neutral CP-odd state, A, two
neutral CP-even states, h and H, and two charged Higgs
bosons, H�, besides the longitudinal components of the
W� and the Z bosons, the pseudo-Nambu-Goldstone
bosons G� and G0, respectively.
The angle β can be defined at tree level as

tan β ¼ v2
v1

; ð2:13Þ

while v21 þ v22 ¼ v2 ≈ ð246 GeVÞ2 ensures the correct pat-
tern of symmetry breaking. The mixing angle α can be
written in terms of ðMSÞij (i, j ¼ 1, 2), which are the
entries of the CP-even scalar mass matrix, as

tan 2α ¼ 2ðMSÞ12
ðMSÞ11 − ðMSÞ22

: ð2:14Þ

Introducing the quantity M defined as

M2 ≡ m2
12

sβcβ
; ð2:15Þ

with the short-hand notation sx ≡ sin x etc., we can
write [44]

tan 2α ¼ s2βðM2 − λ345v2Þ
c2βðM2 − λ1v2Þ − s2βðM2 − λ2v2Þ

: ð2:16Þ

Finally, the scalar masses may be written as

m2
h;H ¼ 1

2

�
ðMSÞ11 þ ðMSÞ22

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððMSÞ11 − ðMSÞ22Þ2 þ 4ððMSÞ12Þ2

q �

m2
A ¼ M2 − λ5v2

m2
H� ¼ M2 −

λ4 þ λ5
2

v2: ð2:17Þ

The potential has eight independent parameters and we
choose: the four scalar masses (the two masses of the CP-
even states, the mass of the CP-odd state and the mass of
the charged Higgs boson), the rotation angle in the CP-
even sector, α, the ratio of the vacuum expectation values,

tan β ¼ v2=v1, the soft breaking parameter m2
12 and

v2 ¼ v21 þ v22. Without loss of generality, we adopt the
conventions 0 ≤ β ≤ π=2 and −π=2 ≤ α ≤ π=2.
The two doublets Φ1 and Φ2 are not physical fields,

unlike the mass eigenstates. This means that any linear
combination of the doublets which preserves the form of
the kinetic terms of the theory is equally acceptable. This
reparametrization freedom implies that different bases of
the doublet fields can be chosen, without changing physical
predictions of the model and potentially simplifying the
theory. It is sometimes useful to work in the so-called Higgs
basis, wherein one performs a Uð2Þ transformation on Φ1,
Φ2 in such a manner that only the first of the transformed
fields, fH1; H2g, has a VEV. The Higgs basis may be
defined for our model by the rotation2

�
H1

H2

�
¼ RH

�Φ1

Φ2

�
≡

�
cβ sβ
−sβ cβ

��Φ1

Φ2

�
; ð2:18Þ

and hence the potential can be written as [45]

VðH1; H2Þ ¼ Y1H
†
1H1 þ Y2H

†
2H2 − ðY3H

†
1H2 þ H:c:Þ

þ 1

2
Z1ðH†

1H1Þ2 þ
1

2
Z2ðH†

2H2Þ2

þ Z3ðH†
1H1ÞðH†

2H2Þ þ Z4ðH†
1H2ÞðH†

2H1Þ

þ
�
1

2
Z5ðH†

1H2Þ2 þ ½Z6H
†
1H1

þ Z7H
†
2H2�H†

1H2 þ H:c:

	
; ð2:19Þ

with the minimization conditions of the potential in this
new basis implying that the parameters Y3 and Z6 are
related to one another.
The reason why we are interested in this form of the

potential is that it allows to write expressions that facilitate
in some cases the discussion of alignment and decoupling
limits in the 2HDM [46]. Let us clarify what we mean by
alignment and decoupling: the LHC has shown beyond all
doubt that the 125 GeV scalar which has been discovered
has SM-like behavior, meaning it seems to couple to gauge
bosons and fermions very much like the SM Higgs boson
would do. Within models with two doublets, this implies
that the scalar state with 125 GeV mass needs to be almost
aligned with the VEV. How does one obtain such aligned
regimes in the 2HDM? The key issue is looking at the CP-
even mass matrix from Eq. (2.6): in the Higgs basis, this
matrix becomes

2The Higgs basis is in fact defined up to an arbitrary complex
phase multiplying the second doublet.
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MS ¼
�
Z1v2 Z6v2

Z6v2 m2
A þ Z5v2

�
: ð2:20Þ

Having an aligned scalar means that there won’t be much
mixing between the two CP-even states, and this can be
achieved in two ways:

(i) One of the diagonal elements in Eq. (2.20) is much
bigger than the other one. Since Z1 is a quartic
coupling and therefore expected not to be large, this
forces the (2,2) entry in the matrix to be quite large,
and it is simple to show that all extra scalars will be
heavy. In this regime, alignment is achieved in the
decoupling limit.

(ii) The off-diagonal elements in Eq. (2.20) are much
smaller than the diagonal ones. In this regime, the
masses of the extra scalars are not necessarily large,
and the SM-like behavior of the 125 GeV state is
said to be caused by the alignment limit.

Looking specifically at the couplings of h or H to gauge
bosons, the relevant expressions for our discussion are
[33,37]

jsβ−αcβ−αj ¼
jZ6jv2

m2
H −m2

h

; ð2:21Þ

and

Z1v2 ¼ m2
hs

2
β−α þm2

Hc
2
β−α; ð2:22Þ

with Z1 and Z6 given in terms of the original parameters of
the Lagrangian by [45]

Z1 ¼ λ1c4β þ λ2s4β þ
1

2
λ345s22β;

Z6 ¼ −
1

2
s2β½λ1c2β − λ2s2β − λ345c2β�: ð2:23Þ

Assuming that the lightest state is the one that is aligned
with the VEV, and that it has a mass of 125 GeV, its tree-
level couplings are very close to the SM Higgs ones. This
limit is attained by setting cβ−α → 0. Equation (2.21) tells
us then that it is sufficient to have Z6 ≪ 1 to be in the
alignment limit. In this regime, although the couplings of
the 125 GeV Higgs are all SM-like, the other Higgs
bosons can in principle be light and therefore be within
the reach of the LHC. To have alignment in the
decoupling limit the masses of the non-125 Higgs bosons
must be much larger than 125 GeV. Defining a common
mass scale mϕheavy

with ϕheavy ¼ H, A and H� one can
write [44]

m2
ϕheavy

¼ M2 þ fðλiÞv2 þOðv4=M2Þ; ð2:24Þ

where fðλiÞ denotes a linear combination of λ1…λ5.
3 If

M2 ≫ fðλiÞv2 all masses are of the order of M and
therefore quite large—and from Eq. (2.21) again we
obtain j cosðβ − αÞj ≃ 0.
In the case sβ−α → 0 there is again alignment but now

with the heavy CP-even Higgs H, meaning this would
correspond to the heavy Higgs scenario mentioned above.
The condition for this regime to occur is still Z6 ≪ 1, but
now decoupling is not possible, as the non-SM-like Higgs
boson masses are not all much larger than 125 GeV, in
particular not mh.

III. THEORETICAL CONSTRAINTS
ON THE PARAMETRERS

The main goal of this study is to understand the effects
of the RGE evolution of the couplings, from the weak
scale (the mass of the Z boson, mZ) to higher scales all the
way up to the Planck scale, Λ ¼ 1019 GeV. Our procedure
consists in first inputting a set of 2HDM parameters at the
weak scale and verifying whether they satisfy the following
theoretical demands:

(i) The potential is bounded from below, so that the
theory is guaranteed to have a stable vacuum of
some sort.

This is achieved by demanding that the quartic
couplings of the potential obey [47,48]

λ1>0; λ2>0;

λ3>−
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; λ3þλ4− jλ5j>−

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
: ð3:1Þ

These conditions have been shown to be necessary
and sufficient [49] to ensure that the scalar potential
is bounded from below (in the “strong sense” as
defined in Refs. [50,51]).

(ii) That the minimum is global and provides the right
pattern of electroweak symmetry breaking.

Contrary to the SM, the 2HDM can have several
simultaneous stationary points. Besides the CP-
conserving minimum, the model can have CP-
violating (CPV) and Charge Breaking (CB) minima,
which are spontaneously generated. As shown in
[40,49,52,53], if the potential is in a CP-conserving
minimum, any other stationary point, if of a different
nature (either CPV or CB), is a saddle point
with higher value of the potential. Still, there is a
possibility that two CP-conserving minima could
co-exist. In this case tunnelling could occur from our
minimum to another one with a different electro-
weak scale. In [54,55] this minimum was called the
panic vacuum. However, it was found that verifying
if the parameters of the potential obey a simple

3In fact, we see from Eq. (2.17) that for mA and mH� the v4
terms are not even present.
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condition [54–56] it is possible to know exactly
whether our CP-conserving vacuum is the global
one. We define the discriminant

D ¼ m2
12ðm2

11 − k2m2
22Þ

�
v2
v1

− k

�
; ð3:2Þ

where k ¼ ffiffiffiffiffiffiffiffiffiffiffi
λ1=λ2

4
p

, and the VEVs are the ones that
define the correct pattern of symmetry breaking
(meaning, they predict the correct gauge boson
and fermion masses, v21 þ v22 ¼ ð246 GeVÞ2Þ. The
existence of a panic vacuum is thus summarized in
the following theorem:
The vacuum with the correct pattern of symmetry

breaking is the global minimum of the potential if
and only if D > 0.

(iii) That perturbative unitarity4 holds.
We enforce tree-level perturbative unitarity by

requiring that the eigenvalues of the 2 → 2 scalar
scattering matrix are below 8π [57]. The full 2 → 2
scattering matrix of the fields in the gauge basis has
been computed [57] (see also [58,59]), and its
eigenvalues are

b� ¼ 1

2



λ1 þ λ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ2Þ2 þ 4λ25

q �

c� ¼ 1

2



λ1 þ λ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ2Þ2 þ 4λ24

q �

e1 ¼ λ3 þ 2λ4 − 3λ5

e2 ¼ λ3 − λ5

fþ ¼ λ3 þ 2λ4 þ 3λ5

f− ¼ λ3 þ λ5

f1 ¼ λ3 þ λ4

p1 ¼ λ3 − λ4: ð3:3Þ

In this calculation, only the eigenvalues of the
two-particle scattering matrix were considered—
all two-particle states made of scalars, either physi-
cal (the five Higgs bosons) or unphysical (the
Goldstone bosons) were included in the calculation.
The above eigenvalues are not all independent.
As noted in [57],

3f1 ¼ p1 þ e1 þ fþ ð3:4Þ

3e2 ¼ 2p1 þ e1 ð3:5Þ

3f− ¼ 2p1 þ fþ: ð3:6Þ

This means that the conditions on f1, e2 and f−
can be dropped. Moreover, adding the fact that λ1,
λ2 > 0 is needed for the potential to be bounded
from below, we obtain

jcþj > jc−j ð3:7Þ

jbþj > jb−j: ð3:8Þ

The resulting conditions for tree-level perturbative
unitarity are thus given by

jλ3 − λ4j < 8π

jλ3 þ 2λ4 � 3λ5j < 8π���� 12 ðλ1 þ λ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ2Þ2 þ 4λ24

q
Þ
���� < 8π

���� 12 ðλ1 þ λ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ2Þ2 þ 4λ25

q
Þ
���� < 8π: ð3:9Þ

If a given choice of 2HDM parameters satisfies all of
these constraints, it is accepted (provided it further satisfies,
at the weak scale, the experimental constraints described in
the next section). At this stage we include the effect of the
renormalization group running of the parameters of the
theory to understand how it affects the allowed parameter
space. We use the one-loop β functions for the parameters
of the model (and also the VEVs v1 and v2), presented in
Appendix A, and for each point in the parameter space
chosen. We adopt the following procedure:

(i) Perform the RGE running of all potential parameters
and VEVs starting at mZ.

(ii) At each scale between mZ and the Planck scale,
verify whether the theoretical constraints detailed
above (potential bounded from below; positive
discriminant; perturbative unitarity) are still
verified.5

(iii) If all the theoretical constraints are verified, proceed
to a higher scale and repeat.

(iv) If at a given scale Λ any of the theoretical constraints
is not verified, stop the RGE running and keep the
information on this cutoff scale.

There is a further constraint which must be considered—for
a large region of the initial parameter space, the RGE
running will hit Landau poles—i.e., the parameters will
tend to infinity—at some scale between mZ and the Planck
scale. As in the SM, this is easily understood if one
considers the structure of the couplings in the β functions
of the model. For instance, the contributions of the Yukawa
couplings to the β functions of the quartic couplings are
negative and tend to reduce their values as one increases the
renormalization scale; but the quartic couplings have

4We note that a model that does not respect perturbative
unitarity is not necessarily wrong. However, discussing this
possibility is beyond the scope of this work.

5An alternative approach, which enlarges the parameter space
considered, was advocated in Ref. [60].
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positive contributions to those β functions and thus tend to
increase their values. As a consequence, only initial values
of the quartic couplings with small magnitudes will not
develop Landau poles during the RGE running up to the
Planck scale. For completion, we assume a Landau pole
occurs if either (a) one of the gauge couplings, Yukawa
couplings or quartic couplings of the potential reaches the
absolute value of 100 or (b) if either m2

11, m
2
22 or m2

12

reaches the absolute value of 1010 × v2ðv ¼ 246 GeVÞ or
(c) if v2=v1 > 100. Notice that since the β functions are
highly coupled, as soon as one given parameter hits a
Landau pole typically others will as well.
If some choice of parameters is such that one theo-

retical constraint is violated or a Landau pole occurs at a
given scale Λ, this means that the theory ceases to be valid
above Λ and requires new physics (NP) above Λ to
correct the RGE evolution (for example, extra scalars to
stabilize the vacuum, or extra fermions to prevent Landau
poles). Thus, if one believes that the 2HDM should be
valid up to a given high-energy scale ΛNP, the RGE
running described will discard many combinations of
parameters, reducing the parameter space of the model
and improving its predictability. The higher ΛNP is the
more severe is the elimination of parameters. To give the
reader an idea of the importance of each of our require-
ments on the curtailment of the 2HDM parameter space,
we found that the appearance of a Landau pole at
ΛNP ¼ 1 TeV reduces the number of original points to
about 46% in model type I, and 33% in model type II6

requiring the potential to also be bounded from below and
unitarity to be obeyed up to the same scale of 1 TeV will
amount to a further reduction to 17% (8%) for type I
(type II) of the original points. Finally, the discriminant
plays a very small role, with a further reduction of less
than 1% for again a scale of 1 TeV, for both model
types. In fact, the discriminant will almost play no role
in this analysis—the number of points which do not
survive RGE running all the way to the Planck scale
because only the discriminant condition is violated is
extremely small.
Finally, a word on thresholds: we have taken the

weak scale, mZ, as the starting point of our RG
analysis. A more refined analysis would take into
account the possibility of thresholds in the RG running
(for instance, using the 5-flavor β functions between mZ
and the top threshold). Alternatively, we could have
started the RG running at a higher scale. In either case,
the impact of these refinements in the RG running in
our analysis is minimal, at most slightly shifting the
cutoff scales Λ. The substance of our conclusions
would not be affected.

IV. THE 2HDM PARAMETER SPACE

The 2HDM is implemented as a model class in
ScannerS [61,62], and we used this code to generate
our data samples. The theoretical bounds described in the
previous section, plus all relevant experimental constraints
(available at the time of write-up), are either inbuilt in the
code or interfaces with several other codes allow to take
them into account in the sample generation.
We will now briefly describe the experimental con-

straints on the model and how they are applied. The most
relevant exclusion bounds on the mH� − tβ plane are those
which arise from the B → Xsγ measurements [63–67]. A
2σ bound on the charged Higgs mass of mH� > 580 GeV
for the models type II and Flipped that is almost indepen-
dent of tan β was recently discussed in [67]. In all types of
2HDMs, there is also a hard bound on the charged Higgs
mass coming from LEP, with the process eþe− → HþH−

[68] which is approximately 100 GeV. We have used all the
flavor constraints, plus the ones from the Rb [63,69]
measurement. These constraints are 2σ exclusion bounds
on themH� − tβ plane. Furthermore, all points comply with
the electroweak precision measurements. We demand a 2σ
compatibility of the S, T and U parameters with the SM fit
presented in [70]. The full correlation among these param-
eters is taken into account.
The mass of the SM-like Higgs boson, denoted by h125,

is set to mh125 ¼ 125.09 GeV [71]. The HiggsBounds
4.3.1 (the latest stable version) code [72–74] is used to
check for agreement with all 2σ exclusion limits from LEP,
Tevatron and LHC Higgs searches. The decay widths and
branching ratios were calculated with HDECAY [75,76],
which includes off-shell decays and state-of-the-art QCD
corrections. All Higgs boson production cross sections via
gluon fusion (ggF) and b-quark fusion (bbF) are obtained
from SusHiv1.6.0 [77,78], at NNLO QCD. The SM-
like Higgs rates are forced to be within 2 × 1σ of the fitted
experimental values given in [79]. In that reference, bounds
are presented for the quantities

μF
μV

; μγγ; μZZ; μWW; μττ; μbb; ð4:1Þ

where μF (μV) is the ratio, for each channel, between the
measured cross section, and its SM expected value, for the
gluon-gluon fusion and tt̄H (VBFþ VH) production proc-
esses; the quantities μxx are then defined as

μxx ¼ μF
BR2HDMðHi → xxÞ
BRSMðHSM → xxÞ ð4:2Þ

for Hi ≡ h125 and the SM Higgs boson HSM. Because
custodial symmetry is preserved, μZZ ¼ μWW ≡ μVV , and
we are allowed to combine the lower 2 × 1σ bound from
μZZ with the upper bound on μWW [79],

6The β functions are, of course, different for each of the model
types considered; see Appendix A.
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0.79 < μVV < 1.48: ð4:3Þ

In type II, we choose the charged Higgs mass to be in the
range

580 GeV ≤ mH� < 1 TeV; ð4:4Þ

while in type I, we have taken

80 GeV ≤ mH� < 1 TeV: ð4:5Þ

We have performed a uniformly distributed random
sampling.
Taking into account all the constraints, in order to

optimize the scan, we have performed a sampling in the
following regions in the remaining input parameters:
0.8≤ tanβ≤35, −π

2
≤α< π

2
, 0GeV2≤m2

12<500000GeV2,
30 GeV ≤ mA < 1000 GeV and finally 130 ≤ mH <
1000 GeV for the light Higgs scenario, but 30 < mh <
120 GeV for the heavy Higgs scenario. The sampling of
values was performed in a uniformly distributed random
way before applying all the constraints.

V. THE LIGHT HIGGS SCENARIO

In this section, we will consider the standard approach to
the 2HDM, in which the lightest CP-even scalar is taken to
be the observed 125 GeV Higgs boson. The heavy Higgs
scenario is dealt with in the next session. Our goal now is to
carefully analyse what impact the requirement of imposing
the theoretical constraints described in the previous section
has, plus the absence of Landau poles, for all scales above
the weak scale.

A. Results with no collider bounds

We start the discussion with a sample of points that
have passed all the theoretical constraints, the electroweak
precision tests and all B-physics constraints—the most

important one being the constraint from b → sγ, which in
type II forces the charged Higgs mass to be above 580 GeV
at 2σ. However, we have not imposed the LHC bounds on
the observed Higgs rates from [79] on this parameter
sample. What we will observe is that the requirement that
the potential is well-behaved for increasingly high-energy
scales will curtail the parameter space so much that, in
some situations, the 125 GeV scalar becomes “naturally”
aligned.
Let us begin with the analysis of the type II model.

The data sample we used had almost 1 million different
parameter combinations, and for each of those points we
performed the RGE running described above, verifying the
cutoff scales Λ for which either the theoretical constraints
we imposed were violated or a Landau pole was reached.
The results of this work allowed us to obtain Fig. 1, which
we now analyze in detail.
On the left panel of Fig. 1 we present the charged Higgs

mass vs cosðβ − αÞ. We show in grey the points that passed
the theoretical, S, T, U and B-physics constraints. Notice
how clearly the LHC bounds were not present in the initial
sample, since cosðβ − αÞ varies from −1 to 1, whereas
current experimental results point to the observed Higgs
having SM-like behavior, which would necessitate values
of j cosðβ − αÞj much closer to zero. The colored points in
the plot are the subset of the initial data sample which
survived the RGE running up to a scale of 1 TeV—
meaning, for which no theoretical constraint was violated,
nor a Landau pole occurred, between mZ and 1 TeV. The
color bar shows the minimum value of mH, which shows
a similar trend to the charged Higgs mass. For example,
with the cutoff scale of 1 TeV, the minimum value of mH
allowed is about 440 GeV. It is clear that, already at such a
small scale as 1 TeV, the range of variation of cosðβ − αÞ
has shrunk from the original j cosðβ − αÞj < 1 to about
j cosðβ − αÞj < 0.2—which means that the simple require-
ment that the type II potential is well behaved up to a scale
of about 1 TeV implies that the Higgs boson must have

FIG. 1. Charged Higgs mass vs cosðβ − αÞ in the type II 2HDM. On the left panel we show, in grey, the points that passed the
theoretical, electroweak and B-physics constraints at the scalemZ. The remaining points have survived the RGE running up to a scale of
1 TeV. The color bar shows the value of mH . On the right panel we present the same plot but where the color bar shows the cutoff scale.
The points are sorted from dark to brighter colors.
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SM-like behaviour provided that one of the scalars has a
mass above ≈500 GeV. Here we see alignment arising in a
“natural” way from the behavior of the theory, rather than
requiring a particular choice of the parameter region to fit
the data.
On the right panel of Fig. 1 we show the result of

continuing the RGE running for higher scales than 1 TeV.
Again we plot mH� vs cosðβ − αÞ, but now the color code
provides information on the cutoff scale Λ, that is, the scale
at which either a Landau pole occurs or any of the
theoretical conditions is violated. As expected from pre-
vious analyses, many points survive up to the Planck scale
with values of cosðβ − αÞ increasingly closer to zero. The
2HDM of type II can therefore be a valid description of
particle physics all the way up to the Planck scale—and
since we made sure the potential is bounded from below
and the correct electroweak minimum is the global one at
all scales, we conclude that within the framework of this
model it is possible to choose parameters to even avoid the
issue of metastability which has been discussed for the SM.
What is the origin of the quick approach of the alignment

regime, at such a remarkably low energy scale as 1 TeV? In
Fig. 2 we present the points that have survived the running
up to the cutoff scaleΛ. On the left we see thatM has a very
fast increase, reaching a maximum value of 423 GeV at
1 TeV. For higher scales we see that M can take many
values, but its minimum value then stabilizes, with a value
close to the charged Higgs mass at Λ ≈ 103 TeV, and
remains constant up to the Planck scale.
On the right panel of Fig. 2 we show the values of

λ4 þ λ5 for the points which survive from mZ up to the
Planck scale. Clearly, the absolute value of λ4 þ λ5 is
decreasing, and the sum of the two couplings can only
take values close to zero if the model is to be valid up to
very high-energy scales. Indeed, already at 1 TeV we have
jλ4 þ λ5j≲ 5.7 and we can attempt an analytical explan-
ation for the approach to alignment, using

M2 −m2
H� ¼ −

λ4 þ λ5
2

v2 ⇒M −mH� ¼ −
ðλ4 þ λ5Þv2
2ðMþmH�Þ :

ð5:1Þ

Inserting the maximum value for λ4 þ λ5 and the minimum
value formH� andM for 1 TeV in these formulae, we obtain
jM −mH�j ≈ 163 GeV. This provides an approximation
for the maximum mass difference between the several
scalars. To reinforce this point, in Fig. 3 we plot mA −mH�

vs mH −mH� in the type II 2HDM. Again, the grey points
have passed all theoretical constraints and comply with
b → sγ at the scale mZ. On the left plot, the remaining
points, color coded with the values of tan β, have survived
the RGE running up to a scale of 1 TeV. As discussed, we
can see clearly in the plot that all mass differences are
below �200 GeV—and since in type II the charged Higgs
mass is constrained by the b → sγ results to be above
580 GeV, this gives us possible lower bounds on the masses
for the pseudoscalar or the heavier CP-even scalar of about
430 GeV.
Let us now consider the right plot of Fig. 3, where we

can see the dependence of the cutoff scale. Because the
absolute values of the quartic couplings decrease and the
lowest value of M stabilizes with increasing cutoff scale,
the mass differences approach zero. As the quartic cou-
plings decrease, then, all masses are increasingly controlled
byM and they tend to be of the same order. Thus, validity at
very high scales (≫1 TeV) implies, for model type II, that
all extra scalars have necessarily high masses, and align-
ment is reached via decoupling—we found the minimum
acceptable values for the scalar masses if the model is valid
above 1011 GeV is roughly 600 GeV. However, if one is
more conservative and only assumes that the 2HDM
describes particle physics up to a scale of about 1 TeV,
then alignment can be reached with relatively low masses
(450 GeV) for A and H, and one could argue that we are

FIG. 2. On the left (right) panel we present jMj (λ4 þ λ5) as a function of the cutoff scale Λ in the type II 2HDM. The points have
passed both the theoretical constraints and b → sγ at the scale mZ and have also survived the RGE running up to the cutoff scale.
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observing the alignment limit, instead of the decoupling
limit. In either case, though, the result is the same:
requiring the type II 2HDM to be well behaved at least
up to a scale of 1 TeV automatically means that alignment
must be satisfied.
The situation is, however, different for a 2HDM of type I.

In Fig. 4 we show the analog, for type I, of Fig. 1. And
the striking difference is that requiring the validity of the
model up to high energy scales does not necessarily imply
alignment for the lightest Higgs boson—we see, in the plot
of the right, plenty of points away from alignment (with
large absolute values of cosðβ − αÞ) which survive all the
way up to the Planck scale. Thus validity of the 2HDM up
to high-energy scales does not necessarily imply alignment
for type I, though it does for type II. The left plot of Fig. 4
shows that the charged Higgs mass is playing a crucial role
in this respect—in fact, if in model type I one were to
impose mH� > 500 GeV, again one would have alignment
emerging from requiring that the model be valid up to
energy scales of at least 1 TeV. However, for model type I
there is no compelling physics reason to impose such a
cut on the charged mass, unlike what happens in type II.
Still, the reasoning can be inverted: if particle physics is

described by a type I 2HDM, the fact that LHC indicates
that the lightest scalar is aligned means that, for the model
to be valid up to very high-energy scales, the “natural”
expectation is to have a charged Higgs mass superior to
500 GeV. This may be understood from the right plot in
Fig. 4—points where validity occurs up to the Planck scale
with lower charged masses are certainly possible, but not
necessarily aligned. Thus, if the charged mass is below
roughly 500 GeV, validity of the model up to the Planck
scale is possible, but alignment does not arise “naturally”; it
needs to be further imposed on the model, as a fine-tuning
of its parameters. If mH� > 500 GeV, on the other hand,
validity up to scales as low as ∼1 TeV already implies
alignment.

B. Results with collider bounds

In the previous section, we showed how alignment
arises, in type II, from requiring that the 2HDM be valid
up to high-energy scales. In type I, alignment does not arise
automatically from that requirement, unless one further
demands that the charged Higgs mass be superior to
500 GeV. Let us now see what the requirement of validity

FIG. 3. mA −mH� vs mH −mH� in the type II 2HDM. On the left panel we show in grey the points that passed the theoretical,
electroweak and B-physics constraints at the scale mZ. The remaining colored points survived the RGE running up to a scale of 1 TeV.
The color bar shows the values of tan β. On the right panel we present the same plot but where the color bar shows the cutoff scale.

FIG. 4. Charged Higgs mass vs cosðβ − αÞ in the type I 2HDM. On the left panel we show, in grey, the points that passed the
theoretical, S, T, U and B-physics constraints at the scale mZ. The remaining points have survived the RGE running up to a scale of
1 TeV. The color bar shows the value of mH . On the right panel we present the same plot but where the color bar shows the cutoff scale.
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to high-energy scales combined with the LHC bounds on
Higgs physics teaches us about 2HDM phenomenology.
In this section, we have used a sample where, besides all
theoretical constraints, electroweak precision bounds and
constraints from B-physics, we have imposed all available
collider bounds, and in particular those that restrict the
Higgs couplings to fermions and gauge bosons, which are
the most relevant ones. The further constraints arising from
requiring validity of the model to high scales will obviously
increase the predictability of the theory.
A first observation to take into account is that LHC

collider bounds are a lot less restrictive for the 2HDM type I
than for type II (see, for instance, [80,81]). Even with the
latest run II data, the allowed parameter space permits
substantial deviations from alignment. We start by present-
ing in Fig. 5 (left) a plot for the type I 2HDM in the
charged Higgs mass vs cosðβ − αÞ plane. As previously
discussed, because there are no strong bounds on the
charged Higgs mass, nor on any other scalar besides the
125 GeV one, there is no major difference in the allowed
range of cosðβ − αÞ for low and high scales of validity of
the theory. This means that, whatever the collider bounds
on the type I models are, the model may be valid up to the
Planck scale even with large deviations from the alignment
limit. Notice the yellow points in the left plot of Fig. 5 with
charged Higgs masses as low as ∼150 GeV and large
absolute values of cosðβ − αÞ, corresponding to 2HDM
type I parameter sets for which the model is valid up to the
Planck scale—and while not satisfying alignment, they still
satisfy all existing LHC bounds.
Still, we would recover the type II results if we had the

same bound on the charged Higgs mass as for type II—
once again, if the charged mass is superior to 500 GeV,
alignment is an automatic consequence of requiring validity
of the model up to high scales. On the right plot, we present
mA −mH� vs mH −mH� as a function of the cutoff scale.
As for the type II model, the mass differences become
increasingly smaller with increasing Λ, which again sug-
gests that they are controlled by the scale M especially

when we move closer to the Planck scale where the quartic
couplings are extremely small in magnitude. The reason
why we are not driven to decoupling in the generic type I is
shown in Fig. 6. Contrary to type II, and although the value
ofM increases also very fast, its lowest value stabilizes at a
value close to 100 GeV. Since for high values of the cutoff
scale Λ the quartic couplings are very close to zero, their
contribution to the masses is negligible when compared
to that of M (see Eq. (2.17). Thus, light masses, of order
100–200 GeV, are still allowed even if the type I model is
valid up to high scales.
This leads us to a discussion on the alignment limit,

given the plots shown in Fig. 7. There we plot the values of
the Z6 Higgs-basis coupling (defined in Eqs. (2.19) and
(2.23), for both type I and type II models, vs cosðβ − αÞ.
The “cloud” of points in the type II plot, with large values
of cosðβ − αÞ, corresponds to the wrong sign limit in that
model, to be discussed shortly. As can be seen in the left
plot of Fig. 7, values of Z6 very close to zero are possible,

FIG. 5. On the left panel we present the charged Higgs mass vs cosðβ − αÞ in the type I 2HDM, color coded with the cutoff scale. The
points have passed all constraints at the scale mZ and have survived up to a given cutoff scale. On the right we present the plot for the
mass differences mA −mH� vs mH −mH� as a function of the cutoff scale.

FIG. 6. M as a function of the cutoff scale Λ for type I. These
points fulfil all experimental and theoretical bounds.
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particularly with the model valid up to the Planck scale.
However, even with Z6 of very low magnitude, cosðβ − αÞ
clearly still varies in a very wide range, and therefore we are
not in the alignment limit. Notice the striking difference
with the same plot for model type II—there, alignment
indeed corresponds to small Z6. The difference in behavior
between the two models is clearly due to the lower bound
on the charged Higgs mass. Therefore, very small values of
the quartic couplings may not be enough to make us reach
the alignment limit—although for the type II model small
Z6 is indeed sufficient for alignment, the same cannot
be said for type I. For this model, small Z6 needs to be
complemented by a large enough bound on the charged
Higgs mass so that one reaches alignment. We therefore
would argue that the alignment limit condition jZ6j ≪ 1 is a
necessary condition, albeit not a sufficient one. Still, there
are certainly values of Z6 closer to zero for which alignment
would occur independently of the values of the scalar
masses, because the matrix in Eq. (2.20) becomes very
nearly diagonal for increasingly smaller Z6.
In previous works [81,82] two of the authors have

discussed the wrong-sign limit of the 2HDM. We define

κ2i ¼
Γ2HDMðh → iÞ
ΓSMðh → iÞ ð5:2Þ

which at tree level is just the ratio of the couplings
κi ¼ g2HDMi =gSMi and for the hWþW− coupling reads

κ2W ¼ Γ2HDMðh → WþW−Þ
ΓSMðh → WþW−Þ ¼

�
g2HDMhWþW−

gSMhWþW−

�
2

¼ sin2ðβ − αÞ:

ð5:3Þ

Representing the down-type (up-type) fermion final states
by κD (κU), the wrong-sign limit is defined by κDκV < 0,
that is, the down-type couplings have a minus relative sign
to the SM couplings. Other wrong-sign limits could be
defined but they are all excluded by experiment [81,82].
For completeness, the wrong sign limit is only possible in
the type II model, and for the light Higgs scenario it implies
α > 0, which leads to sizeable values of cosðβ − αÞ.
On the left panel of Fig. 8 we present a plot of κD as a

function of κV , where all the theoretical and experimental
constraints have been imposed, and the color code indicates
the scale up to which the model is valid. Notice that the
only region for which the model is valid to higher scales
corresponds to κD > 0—thus the validity of the 2HDM up
to high scales eliminates the wrong sign limit. To enforce
this conclusion, consider the right plot in Fig. 8, wherein
we show the values of cosðβ − αÞ as a function of the cutoff

FIG. 7. Z6 as a function of cosðβ − αÞ in type I (left) and type II (right) color coded with the cutoff scale.

FIG. 8. Left: κD as a function of κV in the type II 2HDM. The color bar indicates the cutoff scale at which the model is no longer valid.
Right: cosðβ − αÞ as a function of the cutoff scale Λ.
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scale Λ. We clearly see that above about half a TeV the
theory is valid only for points with very low values of
cosðβ − αÞ. Since the wrong sign limit can only occur with
sizeable values of cosðβ − αÞ [81,82], it is therefore
excluded if one requires the model to be valid up to scales
as low as 1 TeV.
In fact, it is easy to understand why the wrong sign limit

is excluded by the high scale behavior of type II, if one
remembers the results from Fig. 3. Our analysis of those
plots led us to conclude that validity up to high scales of
type II placed us definitely in the decoupling regime—and
as was shown in [82], the wrong sign limit corresponds to a
nondecoupling regime, wherein the charged Higgs boson
has an irreducible contribution to observables such as the
diphoton width of the SM-like Higgs boson or the gluon
fusion cross section.

VI. THE HEAVY HIGGS SCENARIO

In this section, we will discuss the scenario where the
heavier of the two CP-even Higgs bosons is the discovered
125 GeV scalar [83]. In this scenario decoupling cannot
happen because the lightest scalar mass is constrained to be
below 125 GeV. Hence, one would expect that the theory
would only be valid up to a certain scale, at least for the
type II model—as we have seen, validity of type II to very
high scales is only possible if the model is in the alignment
limit and all extra scalar masses are heavy. Recall also that
what makes possible the validity of the model up to the
Planck scale is not only the fact that there is a new scalar,
relative to the SM, but also that the mass scale is driven by
theM parameter and not by the quartic couplings. Since we
are considering the possibility of scalars lighter than
125 GeV, the LEP constraints [84,85] assume a special
relevance in what follows.
In Fig. 9 we present the charged Higgs mass as a function

of the cutoff scale for type I (left) and type II (right). In the
type I model it can be clearly seen that there is a range of
masses, both for the charged and pseudoscalar, that survive

up to the Planck scale. In particular, acceptable charged
masses are above the LEP bound but below 200 GeV.
Therefore, the type I model survives up to the Planck scale
if the charged Higgs boson and/or the pseudoscalar are
light. On the other hand, in type II, the stringent bound of
580 GeV not only precludes the possibility of a light
charged scalar but the theory ceases to be valid already at
Λ ≈ 150 GeV. Even if we consider only the appearance
of Landau poles the type II model is valid only up to
about 1.5 TeV.
In fact, in type I, it is not only the charged Higgs boson

that needs to be light for the model to be valid up to the
Planck scale. In Fig. 10 we show mA −mH� vs mh −mH�

for type I (left) and type II (right). The color code shows at
which energy either a Landau pole occurs or one of the
theoretical conditions is violated. It is clear that for type I to
be valid up to the Planck scale the pseudoscalar also needs
to be light, and in fact all mass differences have to be below
100 GeV. We have also checked that the value of M has to
be of the same order and lies between 40 GeVand 120 GeV.
The cutoff scale has no major influence on the range7 of
sinðβ − αÞ nor on the range of tan β. In fact, there is only
a slight reduction in the allowed region with a slight
increase in the lower bound of tan β, which moves closer
to tan β > 4.
The situation is radically different in the type II model,

as can be appreciated from the plot on the right in Fig. 10.
We may conclude from that plot that, due to the bound on
the charged Higgs mass, the type II model barely survives
up to a scale of 200 GeV. Once again, this is due to the fact
that validity of the type II model up to high scales
eliminates the possibility of nondecoupling regimes, of
which the heavy Higgs scenario is certainly one. However,
there are regions in the parameter space of type I, in the
heavy Higgs scenario, valid up to the Planck scale, which is

FIG. 9. Charged Higgs mass as a function of the cutoff scale Λ, for type I (left) and type II (right). The color coded bar in the left plot
shows the value of mA.

7Note that in the heavy Higgs scenario the alignment limit is
attained for sinðβ − αÞ ≈ 0.
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certainly surprising. The conditions for this to happen are
mH� ≈mA ≈M and all masses below about 200 GeV.
There is no preferred value of the lightest scalar mass even
when one requires the model to be valid up to the Planck
scale.8 And as in the case of the light Higgs scenario, the
running does not force the type I model to move further
close to the alignment limit.

VII. HIGH SCALE BEHAVIOR AND 2HDM
SYMMETRIES

The potential presented in Eq. (2.1) is Z2 symmetric,
softly broken by the m2

12 (or M) term. The potential has an
exact Z2 symmetry whenM ¼ 0. We have shown in Fig. 2
(left) M as a function of the cutoff scale Λ in the type II
2HDM while in Fig. 6 we show the same plot but now for
type I. These plots allow us to analyze the possibility of the
Z2 symmetry actually being an exact symmetry, unbroken
even softly. To do that, we simply need to investigate the
possibility of M—and therefore m2

12—being equal to zero
while the 2HDM is still valid up to high-energy scales.
Now, it is quite clear from Fig. 2 (left) thatM ¼ 0 is only

a possibility for type II if the validity scale of the model
is well below 1 TeV9—thus one can conclude that a type II
model with an exact Z2 symmetry is already strongly ruled
out. For the type I model, Fig. 6 shows that M ¼ 0 is a
possibility for theories valid up to scales of roughly 10 TeV,
but no more than that. Thus an exact Z2 symmetry is a
possibility for a type I model, but only if new physics is
present at ∼10 TeV. Once again, the explanation for this is
due to the fact that most nondecoupling regimes are
excluded if one considers the 2HDM valid to very high
energies—and the motivation for introducing a soft
breaking term in the potential is indeed to allow for the

possibility of a decoupling regime occurring. Still, as we
have showed for type I, although there is no decoupling in
the heavy Higgs scenario, it is only the existence of the term
m2

12 that allows the model to survive up to the Planck scale.
With m2

12 absent, the 2HDM becomes a nondecoupled
theory, where some quantities (such as the diphoton width)
never conform to SM expectations [44].
We were also able to investigate the possibility of the

2HDM possessing a Uð1Þ Peccei-Quinn symmetry [86].
This symmetry would imply λ5 ¼ 0 and in its exact form,
also m2

12 ¼ 0. Again one can break it with a soft breaking
term and the symmetry is extended to the Yukawa sector in
the same manner as the Z2 model. But in this model the
pseudoscalar A is massless if no soft breaking term m2

12 is
introduced, so we are not interested in the exact symmetry
scenario. And since λ5 ¼ 0 is enforced by a symmetry, it is
a fixed point in the RGE running of the quartic couplings.
Thus we may ask if, given all collider constraints existent,
and requiring the model to be valid up to very high scales,
the RGE running is making the Z2 model tending to the
Peccei-Quinn one. This would happen if only values of λ5
close to zero—more generically, of magnitude much
smaller than the remaining couplings—would survive the
running. However, the results show that all λi have similar
allowed ranges at the Planck scale and therefore λ5 does not
approach zero faster than any of the other λi. Moreover, at
the Planck scale the range of allowed values of λ5 is similar
to all other λi. This was checked for all scenarios presented
in this work.

VIII. TWO-LOOP RUNNING,
ONE-LOOP MATCHING

The two-loop β functions of the 2HDM are well
established in the literature (see, for instance, the imple-
mentation of these functions in SARAH [87–91], and the
explicit expressions in [32]), and it has been shown that
their impact on 2HDM phenomenology may not be
negligible [32,35,92] for certain regions of parameter
space. Therefore, the question may arise, how would the
results we have hitherto presented change, if one considers

FIG. 10. The mass difference mA −mH� vs mh −mH� for type I (left) and type II (right). The color code shows the cutoff scale Λ.

8It is easier to fit the existing data with mh above roughly
62.5 GeV, but that is due to possible H → hh decays potentially
enlarging the branching ratio of H beyond what is acceptable to
be compatible with the LHC data on the Higgs rates.

9We differ from previous calculations [29,31,32] due to the
higher charged Higgs mass bound, which had used a value of
350 GeV.
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two-loop running of the parameters? The answer is, not
very much. Before presenting the results of such running,
some general considerations are in order:

(i) In this paper, we have been concerned with general
trends in the 2HDM parameter space, not precision
studies. The use of higher-order expressions will
surely change predictions for cutoff scales or mass
bounds for specific parameter choices, but the overall
conclusions,we will show, remain unchanged.

(ii) As has been discussed previously, one of the greatest
contributors in reducing the allowed 2HDM param-
eter space is the development of Landau poles at
high scales. This implies that the theory becomes
nonperturbative at high scales—for such parameter
choices, care must be exercised when interpreting
higher-order corrections. If the model is not pertur-
bative already when one is considering one-loop
expressions, introducing two-loop ones might be
problematic or useless.

(iii) Running with an N-loop β function requires that
one obtains the parameters of the model (Yukawa,
quartic and gauge couplings, for instance) through
N − 1-loop expressions for the masses of the mod-
el’s particles (the so-called “matching” procedure10).
One-loop expressions for quark, gauge boson
[93,94] and scalar masses (see, for instance, [95])
were therefore considered.

(iv) One-loop expressions for the unitarity conditions
[35,96] were also considered at all scales.

(v) It is well known that one-loop corrections to the
quartic couplings can be very large in some regions of
the 2HDM parameter space [97,98]. As these are then
used in the matching procedure, large deviations are
to be expected in the one-loop matching procedure
[99,100] compared to the values obtained via tree-
level matching. Therefore, substantial phenomeno-
logical differences in individual choices of parameters
may be expected, but again, an overall analysis of the
parameter space will yield mostly the same trends in
terms of scale validity and mass bounds.

We therefore repeated the analysis of the several scenarii
of the previous sections, but now with two-loop β func-
tions, one-loop mass matching and one-loop unitarity
conditions. In Fig. 11 we show the analogue of the left
plot in Fig. 5 for the validity analysis of the Type I model
including present collider constraints, redone with the
higher-order analysis described above. It is plain to see,
comparing both figures, that the conclusions drawn in
Sec. V B remain unchanged—there are regions of param-
eter space for which the type I model is valid all the way up
to the Planck scale; and if the charged Higgs mass is above
roughly 500 GeV, the model can only survive to high scales

if it is aligned. We present this plot as an example of the
results obtained with the higher-order procedure—the
conclusions drawn in the previous sections, with minor
changes, remain valid. The one major difference between
the plots in Fig. 11 and 5 is howmuch “sharper” the narrow,
aligned-like parameter space in the former is, compared to
the latter. This can be tracked to the effect of the one-loop
unitarity conditions on the parameter space considered.
Going through the different 2HDM versions analyzed, one
concludes that:

(i) For the light Higgs scenario in type I, the model is
valid all the way up to the Planck scale if alignment
occurs; the mass differences between the different
models behave, for the higher-order analysis, just
as in Fig. 5; smaller values of the M coefficient
now survive RG running up to a scale of ∼107 GeV,
instead of up to 105 GeV as in Fig. 6.

(ii) For the heavy Higgs case in type I, the two-loop
running, one-loop matching procedure does not
change the fact that there are 2HDM parameter
space regions for which this scenario is valid all the
way up to the Planck scale, and, as in Fig. 9, such
validity occurs with all extra scalars with masses
below roughly 200 GeV.

(iii) For the light Higgs scenario in type II, as before,
requiring that the model be valid up to a scale as low
as 1 TeV already implies a strongly aligned regime;
and as before, there are parameter regions of the
model for which it is valid all the way up to the
Planck scale, provided all extra scalar masses are
close in value, and the two-loop running, one-loop
matching procedure yields results akin to those
of Fig. 3.

(iv) Finally, the heavy Higgs scenario in type II is
completely excluded with the higher-order pro-
cedure. Again, the large contributions of one-loop
corrections to the quartic couplings that are used in
the matching procedure lead to an exclusion of the

FIG. 11. Charged Higgs mass vs cosðβ − αÞ in the type I
2HDM, with two-loop running, one-loop matching and one-loop
unitarity conditions. The color bar shows the cutoff scale.

10A recent work, however, proposed that N-loop matching
should be considered [92].
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parameter space based on perturbative unitarity
considerations already at the weak scale. The same
is true for the wrong sign scenario in the light Higgs
scenario in type II.

Therefore, the one substantial change from the one-loop
running, tree-level analysis is the exclusion of the heavy
Higgs scenario in type II already at the weak scale.
However, we could argue that this is not surprising—in
the previous analysis, this scenario was already excluded
at the few TeV scale, which hinted that a very careful
selection of parameters needed to be made if one were to
consider a minimally successful implementation of the
model. The one-loop matching and unitarity analysis
further constrains the validity of the scenario, seemingly
excluding it—although the existence of some corner of
parameter space where it could be viably implemented
cannot be wholly excluded and could be the objective of a
dedicated study beyond the scope of the current paper.
The conclusion therefore is that the two-loop running,

one-loop matching procedure does not add much to the
conclusions drawn from the simpler analysis—clearly, if
one is aiming at precision studies, higher-order contribu-
tions are fundamental, but a generic analysis of the
2HDM’s validity can already be obtained with one-loop
running, tree-level matching. And where substantial
differences occur, they are related to large values of the
quartic couplings, wherein the 2HDM’s perturbativity is
already questionable, even at tree level. On that note, one
could argue that one-loop running is even a more adequate
approach—in Ref. [101] the running of the top Yukawa
coupling was considered in supersymmetric (SUSY) mod-
els, up to four loops, to analyze the available parameter
space for the so-called “quasi-infra-red fixed point”. As in
the current work, the possibility of Landau poles occurring
curtailed the available parameter space. What one observes
from Fig. 2 of that work is an “oscillating” behavior, in
which β functions up to odd orders develop Landau poles
for smaller values of low-scale couplings, whereas even-
order β functions allow for a larger domain of attraction at
the weak scale. Assuming an asymptotic nature for the
perturbation theory [102] of these β functions, a Padé-Borel
resummation was then undertaken. Fig. 3 of Ref. [101] then
shows that, for larger values of the couplings, the one-loop
β function seems a better approximation to the resummed
theory than the four-loop one (again, for emphasis, for the
region of larger couplings). Extrapolating this argument
from SUSY to the 2HDM situation herein discussed, one
could argue that, if already at tree level, or one-loop, one is
running into issues of perturbative breakdown due to large
values of couplings, considering higher-order contributions
in such situations may be of dubious usefulness.

IX. CONCLUSIONS

We have analyzed the high-scale behavior of a softly
broken Z2 symmetric 2HDM focusing on two particular

Yukawa types, type I and type II. If the lightest CP-even
scalar is the 125 GeVone, there are regions of the parameter
space for both types that survive up to the Planck scale.
This is a confirmation of many previous studies in the
literature. There are, however, new and quite interesting
results, some of them unexpected that we will now discuss.
One of the most interesting conclusions of our study is

that for the model to be close to the alignment limit it is
enough to require it to be valid up to about 1 TeVand at the
same time to have one of the scalar masses above about
500 GeV (in the specific case of type II B-physics bounds
force the charged Higgs mass to be above 580 GeV). No
other bounds need to be considered to reach this limit. As
the scale up to which we want the model to be valid
increases, the allowed region of parameter space moves
closer and closer to alignment. Therefore, alignment is
reached via decoupling—at least a large (above roughly
500 GeV) scalar mass is required.
On the contrary, we have shown that for type I, for which

there are no strong bounds on the scalar masses, validity up
to the Planck scale will not imply alignment, if the masses
are low enough. In fact, even when all experimental
constraints are considered, the type I model can be far from
alignment, except for large scalar masses where we then
recover the results obtained for type II. In this sense, validity
up to higher scales (as low as 1 TeV in certain cases),
complemented with one sufficiently large scalar mass
(above 500 GeV) implies alignment in the 2HDM, a
phenomenon we might call “radiative alignment.” In this
sense, alignment in the 2HDM is therefore fundamentally
caused by the behavior of the theory at high scales, instead
as, for instance, the occurrence of symmetries—ofwhich the
inert doublet model [103–106] is a prime example; another
possibility would be the model developed in Ref. [107].
The validity up to high scales of the scenario where the

heaviestCP-even scalar is the 125 GeVHiggs was analyzed
here for the first time. Interestingly,we have shown that there
are regions of the parameter space where a type I model, in
the heavy Higgs scenario, is valid up to the Planck scale.
That is, a model with no decoupling limit can be valid up to
the Planck scale. The most interesting point to note is that
also in this case it is the soft parameterM that sets the mass
scale for validity at high energies. In fact, all masses have to
be below about 200 GeV to ensure that the model does not
require new physics up to the Planck scale. On the contrary,
and again due to the bound on the charged Higgs mass, the
type II model in the heavy Higgs scenario does not survive,
even to a scale of just a few hundred GeV. In all these
scenarios we should highlight the important role played by
the parameter M. Indeed, because the quartic couplings
become increasingly small, all models that survive up to
the Planck scale need a nonzero M and all masses are of
the order of M (except for the 125 GeV Higgs boson).
The previous result is even more interesting when

combined with knowledge that nondecoupling scenarios
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in type II, such as the wrong sign limit, will not survive to
scales as low as a few TeV. As the quartic couplings
increase with energy, they have to be quite small to survive
the running. Hence, any nondecoupling regime that needs
large quartic couplings will not survive to high scales.
We have also shown that the model does not approach

the exact Z2 symmetry nor the softly broken Uð1Þ
symmetry when the validity of the theory is required up
to the Planck scale. In fact, the value of M2 ¼ 0 is
disallowed for type II already at a scale well below
1 TeV while for type I it happens at a scale of about
10 TeV. As for the softly broken Uð1Þ where λ5 ¼ 0, we
have shown that requiring the validity of the model up to
the Planck scale forces all the quartic couplings to be small
so that λ5 behaves just like the other quartic couplings.
Finally, repeating the analysis with running from two-

loop β functions, one-loop matching (and one-loop uni-
tarity conditions) does not produce significantly different
results.
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APPENDIX: RGES FOR THE 2HDM

The one-loop RGEs for the gauge couplings, Yukawa
couplings and λ’s are taken from [108]. The one-loop RGEs
for the quadratic parameters m2

ij from Eq. (2.1) are taken
from [109]. We define

βx ¼ 16π2
∂x

∂ ln μ : ðA1Þ

The RGEs for the Uð1ÞY , SUð2ÞL and SUð3Þ gauge
couplings g, g0 and gs, respectively, are given as

βgs ¼ −7g3s ; ðA2Þ

βg ¼ −3g3; ðA3Þ

βg0 ¼ 7g03: ðA4Þ

For the Yukawa sector (see below Eqs. (A38),(A39),(A40)
for the definition of the Yukawa matrices Yx) we have in
type I

βYu
¼ auYu þ T22Yu −

3

2
ðYdY

†
d − YuY

†
uÞYu; ðA5Þ

βYd
¼ adYd þ T22Yd þ

3

2
ðYdY

†
d − YuY

†
uÞYd; ðA6Þ

βYe
¼ aeYe þ T22Ye þ

3

2
YeY

†
eYe; ðA7Þ

and in type II

βYu
¼ auYu þ T22Yu þ

1

2
ðYdY

†
d þ 3YuY

†
uÞYu; ðA8Þ

βYd
¼ adYd þ T11Yd þ

1

2
ðYuY

†
u þ 3YdY

†
dÞYd; ðA9Þ

βYe
¼ aeYe þ T11Ye þ

3

2
YeY

†
eYe; ðA10Þ

with

ad ¼ −8g2s −
9

4
g2 −

5

12
g02; ðA11Þ

au ¼ −8g2s −
9

4
g2 −

17

12
g02; ðA12Þ

ae ¼ −
9

4
g2 −

15

4
g02: ðA13Þ

For type I, we define

T11 ¼ 0; ðA14Þ

T22 ¼ 3Y†
uYu þ 3Y†

dYd þ Y†
eYe; ðA15Þ

and for type II, we have

T11 ¼ 3Y†
dYd þ Y†

eYe; ðA16Þ

T22 ¼ 3Y†
uYu: ðA17Þ

For the quartic couplings, we have in type I

βλ1 ¼ 12λ21 þ 4λ23 þ 4λ3λ4 þ 2λ24 þ 2λ25 þ
9

4
g4

þ 3

2
g2g02 þ 3

4
g04 − 4γ1λ1; ðA18Þ

βλ2 ¼ 12λ22 þ 4λ23 þ 4λ3λ4 þ 2λ24 þ 2λ25 þ
9

4
g4 þ 3

2
g2g02

þ 3

4
g04 − 4γ2λ2 − 12Tr½Y†

dYdY
†
dYd þ Y†

uYuY
†
uYu�

− 4Tr½Y†
eYeY

†
eYe�; ðA19Þ
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βλ3 ¼ ðλ1 þ λ2Þð6λ3 þ 2λ4Þ þ 4λ23 þ 2λ24 þ 2λ25

þ 9

4
g4 −

3

2
g2g02 þ 3

4
g04 − 2ðγ1 þ γ2Þλ3; ðA20Þ

βλ4 ¼ 2ðλ1 þ λ2Þλ4 þ 8λ3λ4 þ 4λ24 þ 8λ25

− 2ðγ1 þ γ2Þλ4 þ 3g2g02; ðA21Þ

βλ5 ¼ 2ðλ1 þ λ2 þ 4λ3 þ 6λ4Þλ5 − 2ðγ1 þ γ2Þλ5; ðA22Þ

and in type II

βλ1 ¼ 12λ21 þ 4λ23 þ 4λ3λ4 þ 2λ24 þ 2λ25 þ
9

4
g4 þ 3

2
g2g02

þ 3

4
g04 − 4γ1λ1 − 12Tr½Y†

dYdY
†
dYd�− 4Tr½Y†

eYeY
†
eYe�;
ðA23Þ

βλ2 ¼ 12λ22 þ 4λ23 þ 4λ3λ4 þ 2λ24 þ 2λ25 þ
9

4
g4 þ 3

2
g2g02

þ 3

4
g04 − 4γ2λ2 − 12Tr½Y†

uYuY
†
uYu�; ðA24Þ

βλ3 ¼ ðλ1 þ λ2Þð6λ3 þ 2λ4Þ þ 4λ23 þ 2λ24 þ 2λ25 þ
9

4
g4

−
3

2
g2g02 þ 3

4
g04 − 2ðγ1 þ γ2Þλ3 − 12Tr½Y†

dYdY
†
uYu�;
ðA25Þ

βλ4 ¼ 2ðλ1 þ λ2Þλ4 þ 8λ3λ4 þ 4λ24 þ 8λ25 − 2ðγ1 þ γ2Þλ4
þ 3g2g02 þ 12Tr½Y†

dYdY
†
uYu�; ðA26Þ

βλ5 ¼ 2ðλ1 þ λ2 þ 4λ3 þ 6λ4Þλ5 − 2ðγ1 þ γ2Þλ5; ðA27Þ

with

γ1 ¼
9

4
g2 þ 3

4
g02 − T11; ðA28Þ

γ2 ¼
9

4
g2 þ 3

4
g02 − T22: ðA29Þ

For the dimensionful couplings we have

βm2
11
¼ 6λ1m2

11 þ ð4λ3 þ 2λ4Þm2
22 − 2γ1m2

11; ðA30Þ

βm2
22
¼ ð4λ3 þ 2λ4Þm2

11 þ 6λ2m2
22 − 2γ2m2

22; ðA31Þ

βm2
12
¼ ð2λ3 þ 4λ4 þ 6λ5Þm2

12 − ðγ1 þ γ2Þm2
12: ðA32Þ

The RGEs for the VEVs are given by [110,111]

βv1 ¼ γ1v1; ðA33Þ

βv2 ¼ γ2v2: ðA34Þ

Our starting values are given by

gs ¼
ffiffiffiffiffiffiffiffiffiffi
4παs

p
; ðA35Þ

g ¼ 2mW

v
; ðA36Þ

g0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Z −m2
W

p
v

; ðA37Þ

Yu ¼
ffiffiffi
2

p

v2

0
B@

mu 0 0

0 mc 0

0 0 mt

1
CA; ðA38Þ

Yd ¼
ffiffiffi
2

p

vd
VCKM

0
B@

md 0 0

0 ms 0

0 0 mb

1
CAV†

CKM; ðA39Þ

Ye ¼
ffiffiffi
2

p

ve

0
B@

me 0 0

0 mμ 0

0 0 mτ

1
CA; ðA40Þ

VCKM ¼ 13×3; ðA41Þ

where αs ¼ g2s=ð4πÞ is the strong coupling constant. In
type I, we have

ve ¼ v2; ðA42Þ

vd ¼ v2; ðA43Þ

and in type II,

ve ¼ v1; ðA44Þ

vd ¼ v1: ðA45Þ

The fermion masses are chosen as [112–115]

mu ¼ 0.1 GeV; ðA46Þ

mc ¼ 1.51 GeV; ðA47Þ

mt ¼ 172.5 GeV; ðA48Þ

md ¼ 0.1 GeV; ðA49Þ

ms ¼ 0.1 GeV; ðA50Þ

mb ¼ 4.92 GeV; ðA51Þ
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me ¼ 0.510998928 × 10−3 GeV; ðA52Þ

mμ ¼ 0.1056583715 GeV; ðA53Þ

mτ ¼ 1.77682 GeV: ðA54Þ

The VEV is given by

GF ¼ 1.1663787 × 10−5 GeV−2; ðA55Þ

v ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
GF

q ; ðA56Þ

and the strong coupling is

αs ¼ 0.119: ðA57Þ

The W and Z boson masses are given by [112,113]

mW ¼ 80.385 GeV; ðA58Þ

mZ ¼ 91.1876 GeV: ðA59Þ
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