
Dynamic Adaptive Advance Bandwidth Reservation
in Media Production Networks

Maryam Barshan, Hendrik Moens and Bruno Volckaert

Department of Information Technology, Ghent University – iMinds
Technologiepark-Zwijnaarde 15, 9052 Gent, Belgium

Email: maryam.barshan@intec.ugent.be

Abstract—Media production networks deal with large and
predictable video transfers and streaming sessions which need to
be scheduled to optimally use the limited network capacity. As the
time and locality of transfers are predictable, advance bandwidth
reservation results in more effective use of the underlying
network. To offer reliable reservations, the incorporation of fault-
tolerance related features in bandwidth reservation strategies
resulting in redundancy is a necessity, but this incurs additional
costs and extra performance overheads as network capacity
remains unused to offer this protection. In order to mitigate
these side-effects, we present an efficient event-driven runtime
adaptive approach that continuously monitors the network trans-
fers, dynamically updating the transfer schedule. This dynamic
approach re-uses leftover network capacity to improve network
utilization. The resulting management system offers protection
from failures using resilient advance reservation, while also
improving the network utilization and request admittance ratio.
Our evaluation shows that the proposed approach leads to
significant improvements, up to 13.9% in percentage of admitted
requests in stable network conditions, compared to resilient
advance reservation algorithms.

Index Terms—Advance bandwidth reservation, media produc-
tion network, runtime adaptation, network utilization.

I. INTRODUCTION

The process of media production consists of multiple
interactions and collaborations among different actors such
as producers, directors, broadcasters, etc. and results in the
transmission of large files such as raw video and audio files.
The traditional way of distributing media content, such as
physical transportation systems or dedicated point-to-point
optical links, are highly inefficient in terms of installation time
and cost. By using point to point dedicated links, resources are
not shared and often underutilized. As such, deploying shared
substrate networks that connect all collaborated end-sites over
a large geographical area improves network utilization of
media production networks.

In such a shared network, bandwidth is a valuable resource.
Particularly for multimedia transfers, efficient bandwidth man-
agement is crucial [1]. In bandwidth-limited networks, a band-
width scheduling mechanism needs to be designed to fulfill
the QoS requirements, e.g. meeting deadlines and reliability.
Bandwidth scheduling refers to bandwidth allocations with
flexible options with regards to time and bandwidth require-
ments in both on-demand and in-advance reservation disci-

plines. Bandwidth reservation systems are generally capable of
both advance and immediate reservations. The former allocate
resources ahead of time in future time slots, while the latter
reserve resources upon availability in the next immediate time
slots. In media production networks, bandwidth requirements,
timing constraint and locality of network transfers are mostly
known hours or even days in advance. Consequently, de-
ploying advance bandwidth reservation techniques leads to an
increase in requests’ admittance ratio and network utilization.

In our previous work, we have presented deadline-aware
optimal advance bandwidth reservation formulations [2] and
efficient near-optimal equivalent solutions [3]. Two types of
video transfer requests have been taken into account: file-based
requests (FB) and video-streaming requests (VS). In case of
file-based transfers, the reserved resources for a request may
vary over time, as long as the delivery deadline is satisfied.
For each video stream request, a constant duration and a fixed
amount of reserved bandwidth is associated from source to
sink of the request. The implicit idea in both approaches was to
deliver the video files in earlier time slots and free up network
capacities for possible requests that may be submitted in the
future. Multiple requests in media production networks may
depend on each other, meaning that one request can only start
when other requests have been finished. This interdependence
is explicitly incorporated in our approaches. Reliability has
also been another concern of our previous work. In [4],
we extend our advance reservation algorithms to provide a
robust and resilient scheduling. This was a proactive approach
meaning that scheduling is made robust through a protection
mechanism. We try to find disjoint backup paths for the
scheduled requests in advance, before any failure occurs in
the network. This enables a fast reaction in case of a failure.

Based on discussions with industrial partners, we have
found that reservations made for video streams, are not com-
pletely utilized throughout the requested time. Video streams
can be resumed / played back multiple times during the
reserved period, which causes idle reservations between re-
sumes and playbacks. In our proposed approach, these unused
capacities can also be exploited to transfer additional data.
This means that we use these reserved capacities as double-
purpose but video streaming sessions are prioritized. In doing
so, as long as these reserved capacities are idle, extra data can
be transferred, and as soon as a video stream gets active, an978-1-4673-9486-4/16/$31.00 c© 2016 IEEE

58

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55733221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

event will be raised to prioritize the advance reservation made
for this streaming session over the extra data transfers.

The proposed approach consists of two sequential parts.
First, the network status and the reservation are being contin-
ually monitored and periodically updated. Second, the backup
and unused network capacities, e.g. unused video stream
reservations, are re-utilized to transfer more data than the
schedule made by the resilient advance reservation algorithms.
This leads to better utilization of substrate resources.

The remainder of this paper is organized as follows. We de-
scribe the work related to advance reservations and resilience
in Section II. The presented method to improve network
utilization is discussed in Section III. Section IV describes
the proposed algorithms. The experimental results showing the
efficiency of our approach are provided in Section V and we
conclude in Section VI.

II. RELATED WORK

In order to support large-scale time-bound data transfers,
there have been significant investigations in research and
education networks, such as ESnet [5], Internet2 [6], TeraP-
aths [7] and VNOD [8]. In [9], a deadline-aware and flexible
bandwidth reservation algorithm is proposed. However, these
works differ from our work as they instead focus on generic
data transfers and give little attention to video transfers with
various requirements, which mainly exist in media produc-
tion industry, as well as interdependencies among different
transfers. According to [10], in order to tackle failures, two
strategies can be distinguished: pre-failure and post-failure
strategies. Burchard et al. in [11] consider a pre-failure-based
strategy for advance reservations in grid environments. The
authors in [12] present a fault-tolerant job scheduling approach
for grid environments using adaptive task replication, which
is a post-failure approach. Since meeting strict deadlines and
QoS requirements is of great importance in our approach,
using protection mechanisms tends to be more reliable.

In this paper, we propose a dual approach making partial
use of our previous works [3] and [4]. In [3], we developed
a deadline-aware advance reservation scheduling algorithm,
customized for media production networks in which band-
width scheduling algorithms are based on extending the clas-
sical shortest path and maximum flow problems. In [4], an
extension of these algorithms is proposed to provide fault-
tolerance, creating a reliable and resilient advance reservation
scheduler by provisioning backup reservations for each flow.
As redundancy imposes costs and resource waste, the main
motivation of this paper is to mitigate the side-effect of using
redundant reservations by employing them for data transfers
as long as they are not needed for redundancy purposes.

III. RUNTIME ADAPTATION METHODOLOGY

Advance reservation scheduling has been proven to be a
viable solution in media production networks as it allows the
network manager to have efficient bandwidth management. In
addition, reliability of data transfers in media production is

similarly important. Resilient strategies enable reliable trans-
mission of accepted requests without any loss in QoS in
case of failure. In the resilient advance reservation algorithm,
the backup paths are disjoint from the primary ones. The
provisioned protection method guarantees a single link failure
recovery. The backups are determined to fulfill the maximum
bandwidth allocated on the links of the primary paths. This
means that to provide 100% backup, there is no need to
allocate the exact amount of bandwidth as in the primary
paths. For instance, if two disjoint paths of 100Mpbs and
200Mpbs are allocated to a flow (300Mbps in total), 200Mbps
is sufficient to be fulfilled by the backup paths. This is called
shared protection [4].

The key idea of using the runtime adaptation approach is
to benefit from the reliability and robustness provided by the
resilient advance reservation algorithm and at the same time
enhance network utilization and request admittance ratio. The
runtime adaptation approach is a two-stage procedure which
follows two sequential phases in every time slot: 1) the peri-
odic update and 2) the periodic adaptation. The periodic update
is the first step which takes into account the real transmitted
data instead of the scheduled one and updates the schedule
based on recent information by re-invoking the resilient AR
scheduling algorithm. In stable network conditions, the actual
transfers can potentially be ahead of schedule, due to the
exploitation of reserved but unused capacities.

Periodic adaptation is a complementary step to continually
adapt network transfers, taking into account the current state of
network and transfers and making use of idle network capacity.
The periodic update is repeated before the end of every time
slot and the periodic adaptation before the start of the next time
interval. In addition, the periodic adaptation algorithms are
also triggered when other events occur: e.g. whenever a failure
occurs, a file transfer is started, a file transfer is finished. These
circumstances will be handled using an event-driven approach.

The runtime adaptation methodology consists of seven com-
ponents as follows:

• Advance reservation component: in charge of produc-
ing an advance schedule using the resilient AR scheduling
algorithm. The AR algorithm is invoked under two cir-
cumstances. First, when new scenarios enter the reserva-
tion system leading to an update of the entire schedule for
all admitted and unfinished requests. Second, when the
schedule needs to be updated during the periodic update.
In both cases the schedule is modified at the start of the
next time slot.

• Global state manager: contains all information about
scheduling, network and request reservations, connec-
tions, demands, deadlines, etc. The time when the current
time slot is started or when it gets finished can be
retrieved from the global state.

• Monitoring system: keeps track of monitored times,
residual demand and allocated bandwidth for all requests.

• Job manager: contains the list of current advance-
scheduled requests and current waiting-list requests.
Advance-scheduled requests refer to the requests that

59

have already been scheduled by the AR algorithm to
be transferred in the current time slot. The waiting-list
requests are those requests that can be started in this time
slot, but are postponed due to limited network capacity.

• Connection manager: decides what to do when a transfer
is started or stopped. Whenever a connection for a file
transfer is terminated, the links that were in use by this
connection become free. In order to improve network
utilization, this capacity can be used by other active
requests if shared links were in use. To achieve this, after
completion of a file transfer, an event will be raised.

• Reservation manager: collects all the information about
the reservations of each request. Primary allocations,
backup reservations, extra allocations made during the pe-
riodic adaptation phase and allocated network resources
can be retrieved from this component.

• Adaptive optimization component: in charge of op-
timization to try and push more data than what has
been guaranteed through reservation. The Adaptive Op-
timization (AO) algorithm is the main algorithm in this
component. Based on this algorithm, the current schedule
is analyzed and adapted to use idle bandwidth capacities.

During the periodic update, first the current status of the
network and transfers is monitored and then the resilient AR
algorithm is invoked. This process updates the entire schedule
based on the information retrieved from the monitoring sys-
tem. This information is stored in the global state manager.
Then the reservations are derived from the AR schedule and
are set as advance-scheduled requests in the job manager.
The list of advance-scheduled requests contains all requests
which have been scheduled and are ready to be transferred.
However, there are other flows which can potentially be started
right now, but because of bandwidth constraints have been
scheduled to be transferred in the future. These requests are
kept in a waiting list to be processed during the periodic
adaptation phase.

In periodic adaptation, the transfers are being continuously
monitored to ensure that at least the advance-scheduled flows
are completely transferred. Any request start / stop time or any
failure will raise a specific event, which according to the event
type is handled differently. For example, if a video stream is
resumed, the extra data transfers that are currently being sent
over that video stream reservation have to be interrupted. Also,
any file-based transfer start / stop or failure will trigger the
AO algorithm to rearrange the reservations. As such, during
the periodic adaptation, the AO algorithm is triggered multiple
times as long as there are active requests in the system.

IV. RUNTIME ADAPTATION ALGORITHMS

In this section the algorithms which are used in the periodic
update and periodic adaptation phases of the runtime adapta-
tion approach are described.

A. Periodic update algorithms

The periodic update phase consists of two algorithms: the
UpdateRequestsInfo algorithm and the resilient AR scheduling

algorithm. We do not elaborate on the resilient AR scheduling
algorithm as it has already been explained in detail in [4]. In
the UpdateRequestsInfo algorithm, the demand of submitted
flows is updated. To achieve this, first finished and unadmitted
requests are removed from the reservation system and the
demand of all other submitted requests is updated based on
the type of request. For file-based requests we deal with
volume, so the allocated bandwidth is not fixed and may
vary from one timeslot to another. In contrast, for video-
steaming requests we deal with fixed and constant bandwidth
requirements. Therefore, in this algorithm for file transfers,
the last monitoring time, last allocated bandwidth and residual
volume are updated based on the monitoring information.
For video streams, the requests of which the deadlines have
expired will be added to the list of removed requests. As
our approach supports interdependencies among requests, all
requests with active dependencies are also re-evaluated to
check if they rely on removed requests.

B. Periodic adaptation algorithms

The Adaptive Optimization (AO) algorithm, which is fre-
quently triggered in the periodic adaptation phase of runtime
adaptation approach, is shown in Algorithm 1. This algorithm
also triggers the UpdateRequestsInfo algorithm. As such, the
demand of all requests is already updated whenever the AO
algorithm is called.

Based on this algorithm, the advance-schedule requests
and the list of waiting requests are retrieved from the job
manager and the reservations for backups and video streams
are ignored. Every video stream resume / play-back will trigger
an event which leads to prioritizing the video streams over
extra transfers. This provides us with a network in which only
the primary reservations occupy the network capacities. Then
sequentially for the requests in the advance-schedule requests
list and waiting-list requests the following steps are performed:
a new schedule for transfers over this residual graph is
computed. Therefore, extra reservations will be made on top of
the primary reservations and the assigned request bandwidth
will thus potentially be increased. For each request, these new
allocations will be updated in the reservation manager. Based
on these new allocations, the start time and finish time of the
requests are set and kept in the connection manager. All the
requests’ reservation and connection information is also saved
in the global state manager.

The earliest finished request will raise an event. This event
first cancels the stop time of all other active requests for which
the finished times are set. Then, the AO algorithm is triggered
to calculate new extra allocations and finish times. Since one
request is already finished and the allocated resources are freed
up, these new finish times tend to be earlier than the previously
(now canceled) ones. This cycle is repeated as long as active
requests trigger events. Detecting a failure / repair may also
cause another type of event. The failed / restored network
elements are removed from / restored to the network topology
and the AO algorithm is re-invoked.

60

UpdateRequestInfo();
ASReq← JobManager.getASReq(current time);
WLReq← JobManager.getWLReq(current time);
PriorityBasedSorting (ASReq);
PriorityBasedSorting (WLReq);
NewGraph ← graph.remove(VSs, Backups);
ExtraAlloc ← BWallocation(ASReq, NewGraph);
for (rq ∈ ASReq) do

TotalAlloc(rq)← PrimaryAlloc(rq) + ExtraAlloc(rq);
Stop(rq) ← EstimateStopTime(TotalAlloc(rq),
residualVol(rq));
rq.SetReservations();
rq.SetConnection(“start”, current time);
rq.SetConnection(“stop”, Stop(rq));

end
ExtraAlloc ← BWallocation(WLReq, NewGraph);
for (rq ∈ WLReq) do

if (ExtraAlloc(rq) ! = 0) then
Stop(rq)←EstimateStopTime(ExtraAlloc(rq),
residualVol(rq));
rq.SetReservations();
rq.SetConnection(“start”, current time);
rq.SetConnection(“stop”, Stop(rq));

end
end

Algorithm 1: Adaptive Optimization (AO) algorithm

V. EXPERIMENTAL RESULTS

In order to model the dynamic aspect of our model, we have
designed a discrete-event-based simulator using the Java-based
MASON multi-agent simulation toolkit [13].

A. Evaluation Setup

In this evaluation we have used two topologies for media
production networks which are depicted in Figure 1. We have
defined three use case scenarios based on the information
gathered from several Belgian media production actors. Each
scenario contains a collection of interdependent file and video
streaming requests. Use case 1 is composed of 5 different file
transfer requests. Use case 2 comprises 18 interdependent file
transfers. The third use case includes 4 file transfer requests
and 4 video streams. The interactions between different media
production actors in the use cases can be observed from [3].
A fixed time interval granularity of 1 hour is used and
each simulation run covers a 24 hour period. All results are
averaged over 50 runs with different randomized inputs, error
bars denote the standard error. In all evaluations throughout
this section, we assume that no failure has occurred and that
video streams have been reserved but do not get activated.
Throughout this section, DARA[XX%]+RA denotes that the
resilient version of dynamic advance reservation approach
(DARA) with XX% of backup is used. The second part (RA),
is optional and refers to usage or non-usage of the runtime
adaptation approach.

B. Impact of available bandwidth

For this evaluation, in the 8-node topology, the number of
use cases equals 20, of which 7, 7 and 6 belong to use case 1,
use case 2 and use case 3 respectively (209 requests in total)
and for the larger network, the number of scenarios is 50, of

(a) 8-node topology (b) 25-node topology

Fig. 1: Media production networks used for evaluation.

which 17, 17 and 16 belong to the first, second and third use
cases respectively (519 requests in total).

Figure 2a and Figure 3a show the impact of various network
capacities in 8-node and 25-node networks respectively. As can
be seen in both figures, the runtime adaptation approach has
noticeably improved request admittance ratio. These figures
also show that having a higher resiliency percentage reduces
the acceptance rate. Deploying the runtime adaptation ap-
proach, the percentage of admitted requests is improved up
to 10.4% and 13.9% in Figure 2a and Figure 3a respectively.

C. Impact of network load

Figure 2b and Figure 3b shows the impact of network load
on the performance of the runtime adaptation approach using
the 8-node and the 25-node topology respectively. In both
figures the network capacity of 300Mbps is used. Since the
network capacities remain fixed in all experiments, adding
more requests leads to an increase in rate of request rejection.
The results show that for both smaller and larger topologies,
the runtime adaptation approach improves the percentage of
admitted requests up to 4.26% and 9.1% on average in
Figure 2b and Figure 3b respectively.

D. Evaluation of execution times

Figure 2c and Figure 3c compare the computational ex-
ecution time of the resilient AR scheduling algorithm and
the proposed runtime adaptation approach. As can be seen in
both figures the percentage of resiliency has a low impact on
execution time. Therefore 50% or 100% backup are within
the same range with a negligible difference. Our results
in Figure 2c indicate that deploying the runtime adaptation
approach increases the execution time by 2.2 times when 20
scenarios are submitted to the reservation system to 10.2 times
when only 2 scenarios are active. The same trend can be
observed from Figure 3c. This figure shows that the resilient
advance reservation algorithms without deploying the runtime
adaptation approach executes between 2.3 to 8.4 times faster.

VI. CONCLUSION

In our previous work, we have proposed a resilient advance
reservation approach optimized for media production net-
works. This enables the reservation system to deliver reliable
and consistent performance in the presence of failures. How-
ever, using redundancy imposes significant performance over-
heads and extra costs. In order to mitigate these side-issues,

61

20

30

40

50

60

70

80

90

100

200 300 400 500 600 700 800 900 1000

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Physical network capacity (Mbps)

DARA[50%]

DARA[50%] + RA

DARA[100%]

DARA[100%] + RA

(a) Impact of available bandwidth

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Number of scenarios

DARA[100%]

DARA [100%] + RA

DARA [50%]

DARA [50%] + RA

(b) Impact of network load

0

500

1000

1500

2000

2500

2 4 6 8 10 12 14 16 18 20

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Number of scenarios

DARA[100%]

DARA[100%] + RA

DARA[50%]

DARA[50%] + RA

(c) Execution time

Fig. 2: Impact of the runtime adaptation approach on the performance of reservation system for 8-node topology

20

30

40

50

60

70

80

90

100

200 300 400 500 600 700 800 900 1000

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Physical network capacity (Mbps)

DARA[50%]

DARA[50%] + RA

DARA[100%]

DARA[100%] + RA

(a) Impact of available bandwidth

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Number of scenarios

DARA[100%]
DARA[100%] + RA
DARA [50%]
DARA[50%]+ RA

(b) Impact of network load

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40 45 50

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

Number of scenarios

DARA[100%]

DARA[100%] + RA

DARA[50%]

DARA[50%] + RA

(c) Execution time

Fig. 3: Impact of the runtime adaptation approach on the performance of reservation system for 25-node topology

in this paper, we have designed and evaluated a dynamic
event-driven approach aiming to increase network utilization
and request admittance ratio. In this dynamic approach, a
constant monitoring, adaptation and re-optimization is applied
at runtime. We exploit underutilized network capacities to
transfer more data than what has been scheduled as long as no
failure is detected. Experimental results show that deploying
this approach will noticeably increase the performance of the
advance reservation system and the percentage of admitted
requests up to 13.9% under stable network conditions.

ACKNOWLEDGMENT

The research leading to these results has been performed
within the context of ICON MECaNO. This project is
co-funded by iMinds, a digital research institute founded by
the Flemish Government. Project partners are SDNSquare,
Limecraft, VideoHouse, Alcatel-Lucent, and VRT, with
project support from IWT under grant agreement no. 130646.

REFERENCES

[1] K. Nahrstedt and R. Steinmetz, “Resource management in networked
multimedia systems,” Computer, vol. 28, no. 5, pp. 52–63, 1995.

[2] M. Barshan, H. Moens, J. Famaey, and F. De Turck, “Algorithms
for advance bandwidth reservation in media production networks,” in
Integrated Network Management (IM), 2015 IFIP/IEEE International
Symposium on, pp. 183–190, May 2015.

[3] M. Barshan, H. Moens, J. Famaey, and F. De Turck, “Deadline-
aware advance reservation scheduling algorithms for media production
networks,” Computer Communications, 2015.

[4] S. Sahhaf, M. Barshan, W. Tavernier, H. Moens, D. Colle, and M. Pick-
avet, “Resilient algorithms for advance bandwidth reservation in media
production networks,” DRCN2016, 2015. Submitted.

[5] “Esnet: Energy sciences network.” http://www.es.net/. Ac-
cessed: 2015-11-10.

[6] “Internet2.” http://www.internet2.edu/. Accessed: 2015-11-
10.

[7] B. Gibbard, D. Katramatos, and D. Yu, “Terapaths: end-to-end network
path qos configuration using cross-domain reservation negotiation,” in
Broadband Communications, Networks and Systems, 2006. BROAD-
NETS 2006. 3rd International Conference on, pp. 1–9, IEEE, 2006.

[8] D. Katramatos, S. Sharma, and D. Yu, “Virtual network on demand:
Dedicating network resources to distributed scientific workflows,” in
Proceedings of the Fifth International Workshop on Data-Intensive
Distributed Computing Date, DIDC ’12, (New York, NY, USA), pp. 53–
62, ACM, 2012.

[9] L. Shi, S. Sharma, D. Katramatos, and D. Yu, “Scheduling end-to-end
flexible resource reservation requests for multiple end sites,” in Com-
puting, Networking and Communications (ICNC), 2015 International
Conference on, pp. 810–816, IEEE, 2015.

[10] L.-O. Burchard and M. Droste-Franke, “Fault tolerance in networks with
an advance reservation service,” in Quality of ServiceâĂŤIWQoS 2003,
pp. 215–228, Springer, 2003.

[11] L.-O. Burchard, H.-U. Heiss, B. Linnert, J. Schneider, and C. A.
De Rose, “Vrm: a failure-aware grid resource management system,”
International journal of high performance computing and networking,
vol. 5, no. 4, pp. 215–226, 2008.

[12] B. Nazir, K. Qureshi, and P. Manuel, “Replication based fault tolerant
job scheduling strategy for economy driven grid,” The Journal of
Supercomputing, vol. 62, no. 2, pp. 855–873, 2012.

[13] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan, “Mason:
A multiagent simulation environment,” Simulation, vol. 81, no. 7,
pp. 517–527, 2005.

62

