2,793 research outputs found

    MRI Super-Resolution using Multi-Channel Total Variation

    Get PDF
    This paper presents a generative model for super-resolution in routine clinical magnetic resonance images (MRI), of arbitrary orientation and contrast. The model recasts the recovery of high resolution images as an inverse problem, in which a forward model simulates the slice-select profile of the MR scanner. The paper introduces a prior based on multi-channel total variation for MRI super-resolution. Bias-variance trade-off is handled by estimating hyper-parameters from the low resolution input scans. The model was validated on a large database of brain images. The validation showed that the model can improve brain segmentation, that it can recover anatomical information between images of different MR contrasts, and that it generalises well to the large variability present in MR images of different subjects. The implementation is freely available at https://github.com/brudfors/spm_superre

    QGP tomography with photon tagged jets in ALICE

    Full text link
    Îł+\gamma +jet events provide a tomographic measurement of the medium formed in heavy ion collisions at LHC energies. Tagging events with a well identified high pTp_{T} direct photon and measuring the correlation distribution of hadrons emitted oppositely to the photon, allows us to determine, with a good approximation, both the jet fragmentation function and the back-to-back azimuthal misalignement of the direct photon and the jet. Comparing these two observables measured in pppp collisions with the ones measured in AAAA collisions will reveal the modifications of the jet structure induced by the medium formed in AAAA collisions and consequently will infer the medium properties.Comment: 3 pages, 3 figures, Proceedings for 5th International Conference on Quarks and Nuclear Physic

    Joint Total Variation ESTATICS for Robust Multi-Parameter Mapping

    Get PDF
    Quantitative magnetic resonance imaging (qMRI) derives tissue-specific parameters -- such as the apparent transverse relaxation rate R2*, the longitudinal relaxation rate R1 and the magnetisation transfer saturation -- that can be compared across sites and scanners and carry important information about the underlying microstructure. The multi-parameter mapping (MPM) protocol takes advantage of multi-echo acquisitions with variable flip angles to extract these parameters in a clinically acceptable scan time. In this context, ESTATICS performs a joint loglinear fit of multiple echo series to extract R2* and multiple extrapolated intercepts, thereby improving robustness to motion and decreasing the variance of the estimators. In this paper, we extend this model in two ways: (1) by introducing a joint total variation (JTV) prior on the intercepts and decay, and (2) by deriving a nonlinear maximum \emph{a posteriori} estimate. We evaluated the proposed algorithm by predicting left-out echoes in a rich single-subject dataset. In this validation, we outperformed other state-of-the-art methods and additionally showed that the proposed approach greatly reduces the variance of the estimated maps, without introducing bias.Comment: 11 pages, 2 figures, 1 table, conference paper, accepted at MICCAI 202

    The ALICE EMCal L1 trigger first year of operation experience

    Full text link
    The ALICE experiment at the LHC is equipped with an electromagnetic calorimeter (EMCal) designed to enhance its capabilities for jet, photon and electron measurement. In addition, the EMCal enables triggering on jets and photons with a centrality dependent energy threshold. After its commissioning in 2010, the EMCal Level 1 (L1) trigger was officially approved for physics data taking in 2011. After describing the L1 hardware and trigger algorithms, the commissioning and the first year of running experience, both in proton and heavy ion beams, are reviewed. Additionally, the upgrades to the original L1 trigger design are detailed.Comment: Proceedings of TWEPP-12, Oxford. 10 pages, 9 figure

    Production of Neutral Pions and Eta-mesons in pp Collisions Measured with ALICE

    Full text link
    Invariant cross sections for neutral pions and eta mesons in pp collisions at sqrt(s) = 0.9, 2.76, and 7 TeV were measured by the ALICE detector at the Large Hadron Collider. Next-to-leading order (NLO) perturbative QCD calculations describe the pi0 and eta spectra at 0.9 TeV, but overestimate the measured cross sections at 2.76 TeV and 7 TeV. The measured eta/pi0 ratio is consistent with mT scaling at 2.76 TeV. At 7 TeV indications for a violation of mT scaling were found.Comment: 4 pages, 2 figures, to appear in the proceedings of the XXII International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Quark Matter 2011, Annec

    Evaluation and comparison of integer programming solvers for hard real-time scheduling

    Full text link
    [EN] In order to obtain a feasible schedule of a hard real-time system, heuristic based techniques are the solution of choice. In the last few years, optimization solvers have gained attention from research communities due to their capability of handling large number of constraints. Recently, some works have used integer linear programming (ILP) for solving mono processor scheduling of real-time systems. In fact, ILP is commonly used for static scheduling of multiprocessor systems. However, two main solvers are used to solve the problem indistinctly. But, which one is the best for obtaining a schedulable system for hard real-time systems? This paper makes a comparison of two well-known optimization software packages (CPLEX and GUROBI) for the problem of finding a feasible schedule on monoprocessor hard real-time systems.This work was supported under Grant PLEC2021-007609 funded by MCIN/AEI/10.13039/501100011033 and by the "European Union NextGeneration EU/PRTR"Guasque Ortega, A.; Balbastre, P. (2022). Evaluation and comparison of integer programming solvers for hard real-time scheduling. IEICE Transactions on Information and Systems. E105-D(10):1726-1733. https://doi.org/10.1587/transinf.2022EDP707317261733E105-D1

    Groupwise Multimodal Image Registration Using Joint Total Variation

    Get PDF
    In medical imaging it is common practice to acquire a wide range of modalities (MRI, CT, PET, etc.), to highlight different structures or pathologies. As patient movement between scans or scanning session is unavoidable, registration is often an essential step before any subsequent image analysis. In this paper, we introduce a cost function based on joint total variation for such multimodal image registration. This cost function has the advantage of enabling principled, groupwise alignment of multiple images, whilst being insensitive to strong intensity non-uniformities. We evaluate our algorithm on rigidly aligning both simulated and real 3D brain scans. This validation shows robustness to strong intensity non-uniformities and low registration errors for CT/PET to MRI alignment. Our implementation is publicly available at https://github.com/brudfors/coregistration-njtv

    Modelling the propagation of electromagnetic waves across complex metamaterials in closed structures

    Full text link
    [EN] Metamaterials are currently one of the most popular fields in microwave technology because their particular electromagnetic properties lead to a plenty of very relevant applications, both military and civilian. Additionally, the analysis and design of microwave components based on this kind of materials is one of the more challenging problems found by the applied electromagnetism community due to the complexity introduced in the mathematical formulation by their constitutive relationships. The most general case of metamaterial is the bi-anisotropic one, where both the electric field and the electric induction simultaneously depend on the magnetic field and the magnetic induction. In this paper, we present a new and powerful Finite Element Method scheme valid for the analysis of the most general waveguides, filled with lossy bi-anisotropic linear materials. Edge elements have been used in order to prevent the appearance of spurious solutions and the final eigensystems are very sparse, thus allowing a great memory and computing time saving.Balbastre Tejedor, JV.; Nuño Fernández, L. (2019). Modelling the propagation of electromagnetic waves across complex metamaterials in closed structures. Journal of Computational and Applied Mathematics. (352):40-49. https://doi.org/10.1016/j.cam.2018.11.004S404935
    • …
    corecore