180 research outputs found

    Molecular mechanisms separating two axonal pathways during embryonic development of the avian optic tectum

    Get PDF
    During embryonic development of the avian optic tectum, retinal and tectobulbar axons form an orthogonal array of nerve processes. Growing axons of both tracts are transiently very closely apposed to each other. Despite this spatial proximity, axons from the two pathways do not intermix, but instead restrict their growth to defined areas, thus forming two separate plexiform layers, the stratum opticum and the stratum album centrale. In this study we present experimental evidence indicating that the following three mechanisms might play a role in segregating both axonal populations: Retinal and tectobulbar axons differ in their ability to use the extracellular matrix protein laminin as a substrate for axonal elongation; the environment in the optic tectum is generally permissive for retinal axons, but is specifically nonpermissive for tectobulbar axons, resulting in a strong fasciculation of the latter; and growth cones of temporal retinal axons are reversibly inhibited in their motility by direct contact with the tectobulbar axon's membrane

    Afferent projections of the trigeminal nerve in the goldfish, Carassius auratus

    Full text link
    The horseradish peroxidase (HRP) histochemical technique was used to examine the peripheral distribution and afferent projections of the trigeminal nerve in the goldfish, Carassius auratus . Sensory fibers of the trigeminal nerve distribute over the head via four branches. The ophthalmic branch distributes fibers to the region above the eye and naris. The maxillary and mandibular branches innervate the regions of the upper and lower lip, respectively. A fourth branch of the trigeminal nerve was demonstrated to be present in the hyomandibular trunk. Upon entering the medulla the trigeminal afferent fibers divide into a rostromedially directed bundle and a caudally directed bundle. The rostromedially directed bundle terminates in the sensory trigeminal nucleus (STN) located within the rostral medulla. The majority of fibers turn caudally, forming the descending trigeminal tract. Fibers of the descending trigeminal tract terminate within three medullary nuclei: the nucleus of the descending trigeminal tract (NDTV), the spinal trigeminal nucleus (Spv), and the medial funicular nucleus (MFn). All projections, except for those to the MFn, are ipsilateral. Contralateral projections were observed at the level of the MFn following the labeling of the ophthalmic and maxillomandibular branches. All branches of the trigeminal nerve project to all four of the trigeminal medullary nuclei. Projections to the STN and MFn were found to be topographically organized such that the afferents of the ophthalmic branch project onto the ventral portion of these nuclei, while the afferents of the maxillo- and hyomandibular branches project to the dorsal portion of these nuclei. Cells of the mesencephalic trigeminal nucleus were retrogradely labeled following HRP application to the ophthalmic, maxillary, and mandibular branches of the trigeminal nerve. In addition to demonstrating the ascending mesencephalic trigeminal root fibers, HRP application to the above-mentioned branches also revealed descending mesencephalic trigeminal fibers. The descending mesencephalic trigeminal fibers course caudally medial to the branchiomeric motor column and terminate in the ventromedial portion of the MFn.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50283/1/1051980202_ftp.pd

    Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells.

    No full text
    International audienceEmbryonic Purkinje cells (PCs) from cerebellar primordia grafted in adult pcd mutant cerebellum replace missing PCs of the host, and become synaptically integrated into the defective cerebellar circuit. This process of neuronal replacement starts with the invasion of grafted PCs into the host cerebellum, and their radial migration through its molecular layer. The present study is aimed at determining whether the glial axes for this migration are embryonic radial glial cells that comigrate with the grafted PCs, or adult Bergmann fibers of the host, transiently reexpressing the molecular cues needed for their guidance of the migration. Transplants from a transgenic mouse line (Krox-20/lacZ14) in which Bergmann fibers could be identified by lacZ expression reveal that, despite the presence of X-gal-stained Bergmann fibers in the graft remnants and of grafted PCs in the host molecular layer, all Bergmann fibers in the host cerebellum lack of beta-galactosidase activity. Thus, these migratory axes belong to the host, not to the donor. Transplants from normal isogenic mouse embryos show that during the radial migration of grafted PCs (7 d after grafting) the involved host Bergmann fibers reexpress nestin (identified with monoclonal antibody Rat-401 immunostaining), normally expressed only by immature Bergmann fibers. Five days later, when grafted PCs have arrested their migration, host Bergmann fibers again become Rat-401 negative. These results indicate that embryonic PCs can trigger in adult cerebellum the molecular changes necessary for their own migration and ultimate synaptic integration in the host cortical circuitry

    Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells.

    No full text
    International audienceEmbryonic Purkinje cells (PCs) from cerebellar primordia grafted in adult pcd mutant cerebellum replace missing PCs of the host, and become synaptically integrated into the defective cerebellar circuit. This process of neuronal replacement starts with the invasion of grafted PCs into the host cerebellum, and their radial migration through its molecular layer. The present study is aimed at determining whether the glial axes for this migration are embryonic radial glial cells that comigrate with the grafted PCs, or adult Bergmann fibers of the host, transiently reexpressing the molecular cues needed for their guidance of the migration. Transplants from a transgenic mouse line (Krox-20/lacZ14) in which Bergmann fibers could be identified by lacZ expression reveal that, despite the presence of X-gal-stained Bergmann fibers in the graft remnants and of grafted PCs in the host molecular layer, all Bergmann fibers in the host cerebellum lack of beta-galactosidase activity. Thus, these migratory axes belong to the host, not to the donor. Transplants from normal isogenic mouse embryos show that during the radial migration of grafted PCs (7 d after grafting) the involved host Bergmann fibers reexpress nestin (identified with monoclonal antibody Rat-401 immunostaining), normally expressed only by immature Bergmann fibers. Five days later, when grafted PCs have arrested their migration, host Bergmann fibers again become Rat-401 negative. These results indicate that embryonic PCs can trigger in adult cerebellum the molecular changes necessary for their own migration and ultimate synaptic integration in the host cortical circuitry
    • …
    corecore