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Advanced Methods for Improving the Efficiency
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Akondi Vyas, M. B. Roopashree and B. Raghavendra Prasad
Indian Institute of Astrophysics, II Block, Koramangala, Bangalore

India

1. Introduction

Wavefront sensor is a device that measures the optical wavefront aberration. The Shack
Hartmann wavefront sensor (SHWS), named after Johannes Franz Hartmann and Roland
Shack, is one of the most often used optical wavefront sensor. It is made up of an array of
microlenses (all having the same focal length and aperture size) and a detector placed at the
focal plane of these microlenses. Johannes Franz Hartmann developed a device that consisted
of an opaque screen with multiple holes to test the quality of imaging in large telescope
systems and fine-tune the telescope focus (Hartmann, 1900). In the process of developing
an adaptive optics system to improve the resolution of satellite images taken from the earth,
Roland Shack came up with a feasible model of the sensor by using an array of tiny lenses
instead of holes (Shack & Platt, 1971). The technological advancements in the field of optical
fabrication allowed the industry to make lenses as small as 100 µm using materials like fused
silica, ZnS, ZnSe, Si, Ge, etc. Individual microlenses are also called subapertures and the
SHWS spots formed at the focal plane where the detector is placed are referred to as “spots”
in this chapter.

SHWS is widely used in diverse wavefront sensing applications. It is very commonly used
in astronomical adaptive optics systems (Gilles & Ellerbroek, 2006), lens testing (Birch et al.,
2010), ophthalmology (Wei & Thibos, 2010) and microscopy (Cha et al., 2010). It is used in
the correction of errors due to non-flatness of spatial light modulators in holographic optical
tweezer applications (López-Quesada et al., 2009). A few modifications over the simple SHWS
were also suggested in the literature. A hexagonal arrangement of the lenslet array can
increase the sensitivity and dynamic range of the detector (Wu et al., 2010). A differential
SHWS was proposed which measures the wavefront slope differentials (Zou et al., 2008). In
order to make a dynamic microlens array with greater dynamic range, digital SHWS were
developed with the help of Liquid Crystal-Spatial Light Modulators (LC-SLMs) (Zhao et al.,
2006). It is also possible to characterize atmospheric turbulence using the SHWS via the
structure function measurements, C2

N profile measurements, wind velocity profile estimation
and measurement of deviations from the theoretical model of Kolmogorov turbulence
(Sergeyev & Roggemann, 2011; Silbaugh et al., 1996). Also, using the SHWS is advantageous
over the curvature sensor when large numbers of sensing elements (subapertures) are to be
used (Kellerer & Kellerer, 2011) and hence is the best option in large telescope adaptive optics.

The simplest model of a SHWS is shown in Fig. 1. When a plane wavefront is incident on
the SHWS, it produces equidistant focal spots at the detector plane. Any wavefront distortion
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2 Adaptive Optics

Fig. 1. Description of SHWS: Phase screen (left) following the Kolmogorov turbulence model
of the atmosphere, simulated using the Fast Fourier Transform (FFT) technique. Simulated
spot pattern with no turbulence assuming a SHWS with 10 × 10 subapertures is shown in the
center and the distorted spot pattern image simulated by taking the turbulence into account
is shown on the right.

introduced in the incident wavefront will displace the spots from their original locations. The
distance moved by individual spots contains the information of the local wavefront slopes
of the incoming distorted wavefront. The retrieval of the wavefront shape in a SHWS is a
two step process. In the first step, the positions of the spots corresponding to individual
subapertures is determined through spot centroiding techniques and the local slopes, (βx , βy)
of the wavefront are subsequently determined by calculating the shift in the spots from a
reference location (calculated from image of the spot pattern captured when no distortion is
present). As a second step, the shape of the wavefront is reconstructed from the measured
local slope values.

The simplest method of locating the spot is to identify the pixel with maximum intensity.
In this technique of peak identification, the finite number of detector pixels per subaperture
limits the accuracy of locating the position of the spot. In order to accurately determine
the location of the spots, we need to calculate the location of the spot in subpixel units or
increase the resolution of imaging. Dealing with high resolution images means more readout
time and greater computational effort and hence should be avoided in applications requiring
high-speed operation. The slopes are related to the centroid locations in the following manner,

βx =
xp − xr

f
=

∆x

f
, βy =

yp − yr

f
=

∆y

f
(1)

where R = (xr , yr) is the reference coordinate and P = (xp , yp) is the position within a single
subaperture to which the spot is moved after distortion of the wavefront, ∆x = xp − xr and
∆y = yp − yr represent the magnitude of shifts along ‘x’ and ‘y’ directions and ‘ f ’ is the focal
length of the microlenses.

Since most of the wavefront reconstruction error arises from inaccurate centroiding, it is a
very important step. Centroiding in the case of astronomical adaptive optics is even more
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Advanced Methods for Improving the Efficiency of a Shack Hartmann Wavefront Sensor 3

challenging because the science objects under observation are weak light sources and hence
need longer exposure times (several seconds to a few minutes). This even makes them
inappropriate for wavefront sensing, which needs to be done at a much faster rate. For this
reason, another star (called Natural Guide Star or NGS) in the close vicinity of the science
target is used as a reference source. In the absence of a NGS, an artificial star (called Laser
Guide Star or LGS) is generated by shining a high power laser into the atmosphere, and is
used as a reference source.

LGS has become an integral part of adaptive optics systems for better sky coverage
(Fugate et al., 1991; Primmerman et al., 1991). LGS can be of two types - Rayleigh or sodium
beacon. Rayleigh beacon is formed by the light scattered from molecules at lower altitudes,
ranging from 10 km to 15 km depending on the power of the laser and the site conditions
(Thompson & Castle, 1992). This low altitude reference source would lead to under sampling
and hence the problem of focal anisoplanatism arises (Fried, 1982). A high power 589 nm
laser can be used to excite the meteoric origin sodium atom layers in the mesosphere which
are present at a mean altitude of 92 km and with a mean thickness of ∼10 km (Hart et al., 1995).
The de-excitation of the atoms from the upper states (3p 3

2
and 3p 1

2
) to the lower state (3s 1

2
) via

spontaneous decay results in resonant backscattering and hence an artificial star. Increasing
the power of the laser enhances the chances of stimulated emission against spontaneous decay
and thereby reducing the intensity of the desired backscattered photons, eventually leading
to population inversion and medium saturation. To avoid this problem, an optimum laser
power is used. The limit on the power of LGS also limits the number of available photons
for wavefront sensing. The number of available photons, pN decides the centroiding accuracy
and the minimum exposure time which in turn controls the adaptive optics servo bandwidth
(Hardy, 1998).

The other noise concerns include background noise due to Rayleigh scattering of laser light
and under sampling of the spot due to servo bandwidth constraints. In the case of laser guide
star (LGS) based sensing, the elongation of the spots in large telescopes and the variability in
sodium density profile cause further errors. Readout noise of the detectors in addition to the
photon noise may also seriously degrade centroiding accuracy in a few cases. The following
section discusses a few basic centroiding algorithms discussed in the literature.

2. Centroiding algorithms

2.1 Center of gravity

The method of center of gravity (CoG) calculates the centroid location as the weighted mean of
the position coordinates, (x, y) and the weight being the spot intensity as a function of position
coordinates, I(x, y) = I(X, Y). Here, X, Y are used to denote discreteness. The centroid,
(xs, ys) of a single subaperture spot pattern, (I) is evaluated using,

(xs, ys) =

(

∑ IijXij

∑ Iij
,

∑ IijYij

∑ Iij

)

(2)

where i, j are row and column indices running from 1 to M, where M × M is the size of a
single subaperture matrix. This is the simplest of all the centroiding techniques and is best
suited to situations where the light intensity levels are sufficiently high and the signal to noise
ratio (SNR) is good enough.
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4 Adaptive Optics

2.2 Weighted center of gravity

If the shape of the spot pattern is known beforehand, then this method takes advantage of this
additional information for accurate determination of the location of the centroid (Fusco et al.,
2004). The mathematical form that is assumed for the shape of the spot is called the weighting
function and is multiplied with the intensity function before applying the CoG algorithm as
previously discussed. The estimated centroid location becomes:

(xs, ys) =

(

∑ Wij IijXij

∑ Wij Iij
,

∑ Wij IijYij

∑ Wij Iij

)

(3)

The weighting function W(x, y) is generally assumed to be a Gaussian function when a natural
guide star (NGS) is used as the reference in wavefront sensing:

W(x, y) = Amplitude × exp

[

−
(x − x0)

2

2σ2
x

−
(y − y0)

2

2σ2
y

]

(4)

The spots cannot be assumed to be Gaussian in a digital SHWS due to the domination of
diffractive noise and instability of the light source. Hence, an adaptive thresholding and
dynamic windowing method is used in this case for accurate centroid detection (Yin et al.,
2009). Also, in the case of LGS adaptive optics system, the spot cannot be assumed to be
Gaussian for large telescope systems due to the problem of spot elongation. In this case, the
weighting function, W(x, y) can be simulated by assuming ideal conditions (no turbulence)
(Vyas et al., 2010c).

This algorithm is best suited in the closed loop adaptive optics systems where the shift in the
spots over consecutive temporal measurements is small. It is not suitable for large shift in
the spots and hence inappropriate to open loop systems and large phase errors (Vyas et al.,
2009b).

2.3 Intensity Weighted Centroiding

Intensity Weighted Centroiding (IWC) is similar to WCoG with a difference that the weighting
function, Wij is the intensity distribution of the spot pattern, Iij. Hence, in IWC, the estimated
centroid position becomes,

(xc, yc) =

[

∑ij I2
ijxij

∑ij I2
ij

,
∑ij I2

ijyij

∑ij I2
ij

]

(5)

In comparison to the CoG method, this algorithm performs a better job under low light level
conditions and low background and readout noise.

2.4 Iteratively weighted center of gravity

The problem of inaccurate centroiding in the case of large shift in the spots can be overcame
by using the iteratively weighted center of gravity (IWCoG) algorithm where the centroid
location is computed iteratively (Baker & Moallem, 2007). The weighting function is modified
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Advanced Methods for Improving the Efficiency of a Shack Hartmann Wavefront Sensor 5

after each iteration and is centered around the new centroid location, (xn
s , yn

s ) identified by the
nth iteration. The centroid location in the nth (n ≥ 2) iteration is defined as,

(xn
s , yn

s ) =

{

∑ij Wn
ij Iijxij

∑ij Wn
ij Iij

,
∑ij Wn

ij Iijyij

∑ij Wn
ij Iij

}

(6)

where

Wn(x, y) = Amplitude × exp

[

−

{

(x − xn−1
s )2

2σ2
x

+
(y − yn−1

s )2

2σ2
y

}]

(7)

The first (initial) iteration uses the weighting function defined in Eq. 4. The width of the
Gaussian can also be modified after each iteration, but in general has a very little effect on the
accuracy of centroid estimation if the same optimal width is used in all the iterations. Any
iterative process carries along with it problems like - saturation of performance, non uniform
convergence and speed. These issues are answered by a hybrid algorithm (Vyas et al., 2010b),
a combination of the IWCoG and the correlation technique, which is discussed in the coming
sections.

2.5 Matched Filter algorithm

The Matched Filter Centroiding (MFC) algorithm measures the centroid location
by maximizing the cross correlation of the spot with an assumed reference spot
(Leroux & Dainty, 2010). Interpolation is performed on the resultant cross correlation matrix
to locate the centroid with sub-pixel accuracy (Poyneer, 2003).

3. Wavefront reconstruction from SHWS slope measurements

3.1 Vector Matrix Multiply (VMM) method

The wavefront phase can be obtained by assuming the Southwell’s sampling geometry (as
shown in Fig. 2) which defines the relation between the wavefront phase and the local slope
measurements. Other sampling geometries (Fried, 1977; Hudgin, 1977) can also be adopted
instead of Southwell’s. From the grid geometry shown in the Fig. 2, it can be shown that
(Southwell, 1980) for a SHWS with a pitch of ‘h’ and N × N subapertures,

Sx
i+1,j + Sx

ij

2
=

φi+1,j − φij

h
, i = 1, 2, ...N − 1 and j = 1, 2, ...N

S
y
i+1,j + S

y
ij

2
=

φi,j+1 − φij

h
, i = 1, 2, ...N and j = 1, 2, ...N − 1 (8)

The application of least square curve fitting model, on the SHWS slope data, reduces the
problem into a matrix form, DS = Aφ, where D and A are sparse matrices of sizes 2N2 × 2N2

and 2N2 × N2 respectively. S is a vector containing the measured slope values, ‘x’ slopes
followed by ‘y’ slopes. The wavefront phase can therefore be evaluated using the following
expression,

φ = (A† A)−1 A†DS (9)

To solve for φ using Matlab, we can apply the in-built command, LSQR on the linear system
of equations, Aφ = B, where B(= DS) is a vector of size 2N2 × 1.

171Advanced Methods for Improving the Efficiency of a Shack Hartmann Wavefront Sensor
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6 Adaptive Optics

Fig. 2. Southwell slope geometry (for case of 5 × 5 SHWS) which defines the relation
between the wavefront phase and the local slope measurements. The dots represent points
where the phase is being estimated and the horizontal and vertical lines over the dots
represent the ‘x’ and ‘y’ slopes measured by the SHWS. The dotted lines show the separation
between the lenslets.

3.2 Fast Fourier Transform (FFT) based reconstructor

This is a modal reconstruction process where complex exponentials are used as basis functions
and the wavefront can be reconstructed from its local discrete slopes by a simple multiplicative
filtering operation in the spatial frequency domain (Freischlad & Koliopoulos, 1986). Taking
the case of Hudgin geometry where the first differences, of the phase values, are the measured
slope values,

Sx
i,j = φi+1,j − φi,j

S
y
i,j = φi,j+1 − φi,j (10)

Applying the Fourier transform and using the shift property of the discrete Fourier transform
on Eq. 10 gives,

S
x
k,l = Φk,l

[

exp

(

î2πk

N

)

− 1

]

S
y
k,l = Φk,l

[

exp

(

î2πl

N

)

− 1

]

(11)

where S and Φ represent the Fourier transforms of vectors containing slopes and phase values
respectively. Φ can now be solved and an inverse Fourier transform performed to arrive at the
wavefront phase profile, φ. The suitability of different geometries for FFT technique is studied
in comparison with the VMM method (Correia et al., 2008).

3.3 Monte Carlo simulations

Monte Carlo simulations are used for testing adaptive optics systems. It involves the
generation of atmosphere like turbulence phase screens, simulation of the SHWS spot pattern
and the retrieval of the wavefront shape using centroiding and wavefront reconstruction
algorithms. The performance of the SHWS and the wavefront sensing algorithm is quantified
by calculating the correlation coefficient between the simulated (initial) phase screen and the
reconstructed wavefront.

172 Topics in Adaptive Optics
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Advanced Methods for Improving the Efficiency of a Shack Hartmann Wavefront Sensor 7

3.3.1 Temporally evolving phase screens

Atmospheric statistics are determined by two important parameters, turbulence strength
determined by the profile of the refractive index structure constant, C2

N(h) and vertical wind
velocity profile, vw(h). These metrics are functions of altitude from the surface of the Earth,
’h’. Hence, it can be viewed as if the atmosphere is made up of infinite number of turbulence
layers. In most situations, it is enough to consider a finite number of discrete layers1 to closely
depict the atmosphere. Hence, we limit ourself to a few layers while simulating atmospheric
wavefronts. FFT techniques are generally used for the generation of large phase screens
in quick time. The limitations like inefficient representation of low frequency turbulence
characteristics in the FFT method of phase screen generation can be minimized by the addition
of low frequency subharmonics (Johansson & Gavel, 1994; Sedmak, 2004).

Random wavefronts with turbulence parameters corresponding to different layers can be
generated and superposed to simulate a wavefront which closely represents the effect of
the full column of the atmosphere. This method of simple superposition of wavefronts is
well suited to obtain static and temporally uncorrelated wavefronts. To simulate temporally
evolving wavefronts, frozen in turbulence approximation can be used on individual layers
for simplicity. A very large wavefront (Xl of size M × M square pixels corresponding to
layer l) with turbulence strength defined for a single layer may be simulated as a first step.
A small portion of this very large wavefront can then be chosen as the initial phase screen
(Pl

1(t = 0), ‘t’ represents time) in the temporal evolution of this particular layer. Subsequent

phase screens (Pl
i (t), i=2,3,...n) at later times are formed by translating the initially selected

portion on the very large wavefront Xl in a definite direction and well defined velocity read
from a pre-assumed wind velocity profile (as shown in Fig. 3). The number of such phase
screens generated is limited by the number of pixels on the large wavefront, Xl . If the size of
Pl

i (t) ∀ i is N × N square pixels, then the maximum value ‘n’ can take is equal to (M − N + 1).
The time interval between two temporally adjacent phase screens is defined as: ∆T = dl /
vl , where vl is the layer velocity and dl is the distance moved on the phase screen in a time
∆T. In the simulation of temporally evolving phase screens, ∆T is kept a constant for all the
layers and dl (representative of the number of pixels moved within ∆T in accordance with the
wind velocity of the layer ‘l’) is varied for different layers. The phase screens representing the
evolution of atmospheric turbulence are finally obtained by superposing different evolving
layers. The correlation of the phase screen P(t) at time t = 0 with the phase screen at any
other time, t = t′ reduces with increasing t′ as shown in Fig. 4 for the simulated temporally
evolving phase screens.

The simulation of temporally evolving phase screens described above has a serious problem
when a finite number of pixels are used for their representation. The structure of the wind
profile would not always allow to move the phase screen by integral number of pixels on the
large wavefront, Xl in time intervals of ∆T. 2 Hence the question of moving the phase screen
by sub-pixel value arises. The most commonly used mathematical tool for moving Pl

i (t) on Xl

is through bilinear interpolation. This method is although simple and well established, it does
not completely retain the phase statistics of the simulated wavefronts. Therefore, methods
like random mid point displacement (interpolates at the mid point of the pixel) and statistical

1 A single atmospheric layer is defined as the depth over which the variations of C2
N(h) and vw(h) profiles

are insignificant
2 dl is always not an integral multiple of pixel values

173Advanced Methods for Improving the Efficiency of a Shack Hartmann Wavefront Sensor
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Fig. 3. Vertical wind profile used for simulation of multilayered evolving turbulence
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Fig. 4. Simulation of temporal evolution of turbulence based on a seven layer wind model -
Drop in the correlation coefficient with time

interpolation (Wu et al., 2009) have been devised. Statistical interpolation is preferred over
random mid point displacement method since it can interpolate to any fraction of pixel
pitch. A comparison of the performance of statistical interpolation with other interpolation
techniques in simulating evolving phase screens is reported by Roopashree et al. (2010).

3.3.2 Metric for comparison

Wavefront reconstruction accuracy is quantified through the correlation coefficient (CC)
which is used as a metric for comparing the simulated phase screen and the reconstructed
one,

CC =
E(XY)− E(X).E(Y)

σXσY
(12)

where E represents the expectation value, X and Y are vectors containing the pixel values of
the phase profiles under comparison and σX , σY represents the standard deviations.

4. Optimizing the SHWS design parameters

The accuracy of wavefront sensing depends largely on the design parameters of the SHWS,
which are highly interdependent and they include, the number of subapertures (NS),
subaperture size (d) and the focal length of the microlenses ( f ). The ability of the SHWS
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Advanced Methods for Improving the Efficiency of a Shack Hartmann Wavefront Sensor 9

in precisely estimating the wavefront shape depends dominantly on the number of detector
pixels corresponding to a single subaperture (NP), the detector readout noise and its quantum
efficiency (Hardy, 1998). As ‘NS’ increases, the wavefront sensing accuracy increases at
the cost of increased detector readout time and additional computational effort. Increasing
the subaperture size will enhance the number of collected photons and in turn reduce the
wavefront sensor error. The subaperture size cannot be increased beyond the Fried parameter,
‘r0’ so that the angular resolution is not limited by the spatial scale of turbulence, but by the
subaperture size. The focal length of the microlens array determines the maximum detectable
tilt range of each subaperture. To increase the dynamic range of the SH sensor, detectors with
large ‘NP’ could be selected, but at the cost of reduced wavefront sampling frequency. There
can be a significant degree of error due to ill-positioning of the imaging device at the focal
plane of the microlenses. The experimental limits to the performance are light intensity levels,
exposure time scales and operating speeds.

5. Working model

This section describes a working model of the low cost, simple laboratory SHWS at
the AO Laboratory, Indian Institute of Astrophysics. A CCD camera (model Pulnix
TM-1325CL, readout noise = 50 e−, pitch = 6.45µm) placed at the focal plane of an array
of microlenses (from Flexible Optical B.V., pitch = 200µm, f = 4 cm) makes our wavefront
sensor. A continuous membrane deformable mirror (Multi-DM from Boston Micromachines,
140 actuators, pitch = 450µm, maximum stroke = 5.5µm) was used to generate distorted
wavefronts. He-Ne laser (15mW, λ=632.8nm) was used as the light source. Also, 4-f geometry
was used to remove high frequency noise. The number of pixels per subaperture is 31 in our
case and for sensing the whole DM aperture, we used 25 × 25 microlenses. Low resolution
higher order Zernike polynomials (matrix of size: 12 × 12) are simulated and corresponding
voltage values to be addressed on the DM actuators are calculated. The maximum voltage
value that is applied to a single DM actuator is 40V, in order to avoid crosstalk between the
adjacent subapertures of the SHWS.

Fig. 5a shows the simulation of a low resolution Zernike polynomial (Zn
m with radial index,

n = 10 and azimuthal index, m = 4). The maximum gray scale in the image corresponds
to 40V and minimum gray scale is 0V. The CCD image of the SHWS spot pattern that was
captured by addressing the simulated Zernike polynomial, Z10

4 on the DM is shown in Fig.
5b. The wavefronts reconstructed using CoG and WCoG methods are shown in Figs. 5c
and 5d respectively. Readout noise does not significantly affect wavefront reconstruction
accuracy in our wavefront sensing experiment. This was tested by performing multiple trials
of reconstructing the same wavefront distortion introduced on the DM. We find that the
percentage error in the wavefront reconstruction accuracy due to readout noise is ∼0.24%.
The existence of a good light level makes CoG a better option over WCoG (Roopashree et al.,
2011).

6. Advanced centroiding algorithms

This section discusses the problems associated with the centroiding techniques described in
the earlier sections and brings out advanced methods to deal with those issues in the case of
astronomical sensing. The following subsections discuss the algorithms: improved iteratively

175Advanced Methods for Improving the Efficiency of a Shack Hartmann Wavefront Sensor
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(a) (b)

(c) (d)

Fig. 5. (a) Simulated low resolution Zernike polynomial, Z10
4 addressed on the DM (b) Spot

pattern on the SHWS: I = 0.28µW at the location of the photodetector, SLM in off state (c)
Reconstructed phase using CoG, c = 0.733 (d) using WCoG, c = 0.718.

weighted center of gravity, thresholded Zernike reconstructor based centroiding and Gaussian
pattern matching algorithm.

6.1 Improved iteratively weighted center of gravity

The advent of large telescopes made the sensing process more challenging by posing multiple
problems due to the use of the LGS. To make it even more complicated, the field of view can
only be widened by making use of more than one LGS. The finite thickness of the sodium layer
makes it difficult to generate spots with an artificial source that is point-like. The situation
becomes worse while dealing with large aperture telescopes (≥10 m). The observed spots are
elongated with the elongation length being a function of the distance of the spot from the laser
launch point and the elongation axis in the direction of the line joining the subaperture center
and the launch point. The spot elongation (ǫ) can be estimated by,

ǫ ≈
LδH

H2 + H.δH
(13)

where L is the physical distance from the subaperture center to the launch point of LGS,
δH is the sodium layer thickness and H is the altitude of the sodium layer. The result
from the simulation of an elongated spot pattern (no atmosphere) with the launch point
matching with the center of the telescope aperture is shown in Fig 6. Another problem
along with the non uniform elongation is the temporal variability of the vertical sodium
density profile (Davis et al., 2006). Hence, an advanced image processing tool is necessary for
accurate detection of the centroid position in the case of LGS based Shack Hartmann sensor
(Schreiber et al., 2009; Thomas et al., 2008).

Any iterative process like the IWCoG carries along with it problems like - saturation of
performance, non uniform convergence and slow convergence, which can be confirmed from
a detailed Monte Carlo analysis (Vyas et al., 2010b). The density of sodium peaks nearly at an

176 Topics in Adaptive Optics
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Advanced Methods for Improving the Efficiency of a Shack Hartmann Wavefront Sensor 11

Fig. 6. Laser guide star spot pattern as seen at the focal plane of the lenslet array
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Fig. 7. Single mode and bimodal vertical line profiles of the column of Sodium layer in the
mesosphere. Altitude in km units

altitude of 90 km. It was also experimentally observed that there exists two peaks instead of
one and hence it is called as bimodal vertical sodium density profile (Drummond et al., 2004).
The line profile can be approximated with a single mode (Gaussian distribution) or modeled
as if it is bimodal (linear combination of two Gaussian functions) in nature as shown in Fig 7.

̺(h) =

⎧

⎨

⎩

exp
[

−
(h−90)2

102

]

; single modal profile

1
1.2025

[

exp
(

−
(h−84)2

8.242

)

+ exp
(

−
(h−94.5)2

2.352

)]

; bimodal profile
(14)

Here, “h" represents the altitude from sea level and ̺(h) is the unit normalized density as a
function of “h". A factor of 1

1.2025 in bimodal profile arises due to the unit normalization of
density profile when h ∈ [65 115]. The single mode is centered on 90 km with FWHM of 10 km.
The bimodal profile has two peaks centered on 84 km and 94.5 km with FWHM of 8.24 km and
2.35 km respectively. The effect of temporally varying sodium layer profile as shown in Fig. 8
can be included in the simulations of elongated laser guide star spots. To generate randomly
varying single modal sodium layer profile, as a first iteration, pseudo random number picked
from a normal distribution is added to the mean height of the profile (h=90 km) in Eq. 14. In
the subsequent iterations, ‘i’ pseudo random numbers are added to the earlier iteration value,
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Fig. 9. Spot patterns (using single mode vertical sodium profile) with different SNRs (a)∞ (b)
1 (c) 2 (d) 3

‘hi−1’. In the case of bimodal profile, the peaks of the two Gaussian functions are modified by
adding pseudo random numbers, similar to the case of single modal profile.

Instead of simulating the entire adaptive optics loop, we concentrate on simulating the
case of centroiding the noisy spot pattern corresponding to a single subaperture. A single
subaperture spot pattern is simulated by convolving the vertical sodium layer density profile
(length proportional to the elongation length defined in Eqn. 13 with atmosphere like phase
screen (Schreiber et al., 2009). The simulated phase screen includes the effect of the round
trip that the laser has undertaken and the phase screens can be easily simulated based on a
Fourier technique (Harding et al., 1999). The phase screens simulated are based on spatial and
temporal superposition of multiple layers of the atmosphere (Roopashree et al., 2010).

Once the spot pattern is simulated, photon noise and readout noise are added. Poisson noise
is added to the simulated spot pattern by replacing intensity values at individual pixels by
pseudo Poisson random numbers picked up from a Poisson distribution generated with mean
equal to the intensity value at those pixels. Readout noise is added by generating M2 (as
many as the number of pixels in the spot) pseudo Gaussian random numbers (zero mean and
standard deviation defined by SNR) and adding to individual intensity values in the spot
pattern. The resultant spot pattern images for different SNR are shown in Fig 9.

The Centroid Estimation Error (CEE) can be used as a performance metric in determining the
accuracy of centroiding in the Monte Carlo simulations. It is defined as,

CEE =
√

(xAct − xs)2 + (yAct − ys)2 (15)
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Fig. 10. Saturation and non uniform convergence of IWCoG algorithm at different SNR

where (xAct, yAct) is the actual centroid position of the spot that is although unknown in real
situations, is predefined while performing Monte Carlo simulations.

6.1.1 Error saturation

We expect that increasing the number of iterations would reduce the CEE which does not
happen in the case of iterative algorithms in general. The error tends to saturate after a finite
number of iterations. In the IWCoG algorithm, in most cases, the CEE saturates within a few
(3-10) iterations as shown in Fig 10. This error saturation effect can prove to become a serious
problem since the CEE cannot be reduced further at the cost of increased computational time
and effort, as a result leading to redundant calculations.

The saturation of CEE in IWCoG algorithm can be circumvented by implementing a simple
and effective technique called the Iterative Addition of Random Numbers (IARN). After the
nth iteration, the new weighting function for the (n + 1)th iteration is calculated such that it is
centered on a modified centroid location, (xn

R, yn
R) instead of (xn

c , yn
c ) such that,

(xn
R , yn

R) = (xn
c + Nxrn

x , yn
c + Nyrn

y ) (16)

where, rn
x and rn

y are the generated pseudo random numbers with zero mean and unit
variance, which assumes different values after each iteration. Nx and Ny are normalization
constants (crudely they define the magnitude of randomness introduced; in our case Nx = Ny

= N). The addition of these pseudo random numbers would not allow the saturation of CEE.
This process although creates other problems like irregular convergence or no convergence
as shown in Fig. 11, the minimum CEE that can be reached reduces by a large amount. This
method is more significant at low SNR as depicted in Fig. 12.

6.1.2 Non uniform convergence

It can also be observed from Fig. 10 that at different SNR, the iteration number with minimum
CEE is different. Due to the non uniform convergence as seen in Fig. 11, the CEE after the last
iteration may not be the minimum CEE among all the iterations. For SNR of 0.2, the minimum
occurs at n=10; and for SNR=2, minimum CEE occurs at n=5. This suggests that the optimum
iteration number is a function of SNR. Hence, we need a technique to identify the iteration
with minimum error.
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Fig. 11. The effect of error saturation can be overcome by using the IARN based IWCoG
algorithm. This procedure largely reduces the CEE.

1 2 3 4 5

0

0.1

0.2

0.3

0.4

Signal to Noise Ratio (RON)

C
en

tr
o
id

 E
st

im
a
ti

o
n

 E
rr

o
r

 

 

Before IARN

After IARN

Fig. 12. IARN based IWCoG algorithm. Monte Carlo simulations were performed for 1000
different spot patterns at different SNR and the CEE is taken as a minimum among 1000
iterations.

A simple technique based on iterative computation of correlation can be used to identify
the iteration with minimum error. After the nth iteration, an ideal spot pattern (simulated
using PSF with atmospheric turbulence excluded and with zero noise) is calculated with its
center at (xn

c , yn
c ) and compared with the actual noisy spot pattern image using the correlation

coefficient as the metric for comparison. There exists a strong negative correlation between
this metric and the CEE as shown in Fig 13. At this point we make a hypothesis that the
iteration number with minimum error corresponds to the one with maximum correlation
coefficient. However, there exists a finite decorrelation between this metric and CEE which
cannot be always neglected. To thoroughly validate the obtained result, the centroid location
with minimum error is estimated multiple number of times based on this hypothesis.

This modified version of IARN based IWCoG method is a consistent performer. Simulations
show that there is a significant improvement in the obtained CEE after the application of this
modified IARN method on IWCoG as against simple IWCoG (Fig 14).
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noisy spot pattern with a ideal spot pattern positioned at the new centroid estimated in a
particular iteration of IWCoG algorithm, i.e. dips in CEE correspond to peaks in the
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Fig. 14. Improved CEE after application of modified IARN based IWCoG algorithm

6.1.3 Speed of convergence

The maximum number of iterations (nmax) used although increases the accuracy in some cases,
the number of iterations it needs to go below a predefined error threshold or minimum error
sets a limit on the maximum speed of computation. IWCoG algorithm with nmax > 1 is
the slowest among all the other centroiding techniques discussed here. The need to compute
large number of iterations for cases of low SNR causes additional burden on the processor. An
improved speed of convergence reduces the number of iterations to be performed and hence
improves speed.

The time taken to compute the centroid position of a single subaperture in the lenslet array as
a function of the number of iterations is shown in Fig 15. The Monte Carlo simulations were
performed on a 1.4GHz Intel(R) Core(TM)2 Solo CPU with 2GB RAM.
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Fig. 15. Time taken for computations. The graph looks like a staircase. This is because of the
discrete measurements made by the computer using MATLAB R2008a.
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Fig. 16. Increased speed of convergence at low iteration number

A simple and efficient technique can improve the speed significantly. In the first
(initial) iteration, the weighting function is centered on the point of maximum intensity
(XI−Max , YI−Max) in the spot pattern image. The improved speed of convergence at low
iteration number in this faster IWCoG as against regular IWCoG method is shown in Fig 16
(Monte Carlo simulations performed using 1000 spot pattern images for SNR = 1). Although
it seems as if only the first few (three) iterations converge faster using this modified IWCoG,
for nearly 10% of the spot images the convergence improves by atleast five iterations.

A comparison of the improved IWCoG algorithm based on IARN is shown in Figs 17 and 18
for high and low SNR. It can be observed that the performance of improved IWCoG based on
IARN is better at low SNR (≤ 5).

The novelty of this improved IARN based IWCoG algorithm is its consistency and constancy
of CEE irrespective of the SNR. In addition, it is highly accurate and fast centroiding
technique. The normalization constant N plays an important role and is a subject of further
numerical understanding. Small value of N introduces small variations in the estimated
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Fig. 17. A comparison of IARN based IWCoG with other algorithms. It can be observed that
IARN is most appropriate at SNR ≤ 5. At high SNR, simple IWCoG performs better. A
proper choice of “N" may allow IARN based IWCoG method to dominate at higher SNR also.
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Fig. 18. The consistency of IARN method at very low SNR makes it a more reliable
centroiding technique

centroid position and large N introduces large variations. Simulation results shown here
use N=1, i.e. the centroid is moved within a pixel. The disadvantage of the correlation
based identification of iteration with minimum error is that it is time-consuming. Also, the
dependence of this minimum error iteration detection technique has to be investigated further
for its performance at different SNR.

6.2 Thresholded Zernike reconstructor

In this section, a centroiding technique based on thresholded Zernike reconstructor is
presented. This technique relies on removing the high spatial frequency noise present in the
spots by reconstructing them via the calculation of lower order complex Zernike moments.
The reconstructed spots are thresholded to remove unwanted noise features and the position
of the centroid is then estimated using the weighted centroiding algorithm.
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Fig. 19. Spot corresponding to a single subaperture with SNR = 1,2,3,4,5 from left to right.

The parameters of interest include the spot elongation, spot orientation (depends on the
position of the laser launch point with respect to the subaperture), the amount of shift in
the spot, spot size in non-elongated direction and the SNR. The sample spots at different SNR
are shown in Fig. 19.

The proposed method of centroiding is based on image reconstruction using Zernike
polynomials. A detailed description of the mathematical procedure for the calculation of
Zernike moments for individual sub aperture images is given in Vyas et al. (2010c). The major
parameters of interest include number of Zernike moments used for reconstruction and the
thresholding percentage. Once the spot is reconstructed using Zernike polynomials, it is ready
to be thresholded. A threshold percentage is chosen in the first place. Generally preferred
between 50 and 90%; anything lower or higher would either retain noise features after
thresholding or remove pixels that are very essential for centroiding purposes. Individual
pixels on single subaperture spots are treated as ‘object pixels’ if the value of the pixel is
greater than the threshold. Imposing an intensity threshold on the spot pattern allows us to
remove most of the high spatial frequency events (or noise features). A sample spot image
at different SNR that is reconstructed and threholded is shown in Fig 20. Also, an improper
choice of the thresholding percentage can lead to erroneous features in the reconstructed spot
images as shown in Fig. 21.

The Zernike reconstructed and thresholded spots are then subjected to weighted centroiding.
In the case of NGS, a Gaussian weighting function is assumed and for the case of LGS, the
weighting function used is a standard reference of the spot pattern without noise, by assuming
the most probabilistic simple sodium layer profile. The thresholded Zernike reconstructor
based centroiding has been numerically tested for the case of NGS and LGS based sensing
(Vyas et al., 2010a;c).

Based on the Monte Carlo simulations, we could see a significant improvement in the centroid
estimation accuracy when thresholded Zernike reconstructor is applied in conjugation with
the weighted centroiding technique. A comparison of this technique with simple center of
gravity (CoG), weighted center of gravity (WCoG), iterative addition of random numbers
(IARN) based iteratively weighted center of gravity (Baker & Moallem, 2007; Vyas et al.,
2010b) (IWCoG) is shown in Fig. 22. It can be observed that TZR algorithm performs equally
in comparison with other algorithms at SNR between 1 and 2. At a SNR less than 1, IWCoG
performs better than TZR. When TZR is combined with WCoG instead of CoG, it performs
better than any other algorithm at low SNR.

The elongation (e) of the LGS spot pattern is assumed to be equal to the elongation of the
equivalent closest ellipse.

e =
a − b

a
(17)
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Fig. 20. The first row contains spots (32 × 32 pixels) with SNR = 1,2,3,4. The second row
contains spots reconstructed using Zernike moments with n ≤ 24. The third row contains the
thresholded spots with intensity greater than 60% of maximum intensity.

Fig. 21. Left most spot pattern is the noisy spot of size 30 × 30 pixels with SNR = 1, the
reconstructed spot is shown on its right using n ≤ 29 and thresholded spots (65, 70, 75%) are
shown in the same order.

where ‘a’ and ‘b’ are the major and minor radii of the ellipse. The elongation of the LGS spot
has little effect on the centroiding estimation error after application of TZR as shown in Fig. 23.
When compared against smaller spots or streaks, the performance of the algorithm is better in
the case of larger ones.

The effect of spot orientation on centroid estimation accuracy is shown in Fig. 24. The estimate
for the centroid location is best when the spots are oriented along the direction of the pixels
(at 0 orientation angle). The performance of the algorithm can be improved by using a polar
coordinate detector where the major axis of each rectangular pixel is aligned with the axis of
elongation (Thomas et al., 2008).

The temporal fluctuations in the vertical sodium layer density profile is simulated and shown
in Fig. 25. The centroiding estimation error in the case of fluctuating profile is shown in
Fig. 25. It can be observed that the fluctuations in the sodium profile nearly doubles the
centroid estimation error. It is hence important to continuously monitor the fluctuations and
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Fig. 22. A comparison of different centroiding algorithms with the TZR method in
conjugation with WCoG. It can be seen that at low SNR, TZR performs much better than any
other centroiding technique. The performance is also stable. Although when applied alone
without WCoG, TZR is not better than IWCoG.
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Fig. 23. TZR method performs well at different elongation lengths.

make corrections to the weighting function used in the centroiding of the spots. Numerical
observations suggest that by doing so, the centroiding estimation error reduces by little above
10%, but does not reach the value that is obtained with zero fluctuations.

Using a very few Zernike moments for reconstruction weakens the spot of its details and
having too many of them include the higher order effects which can be identified with noise.
As the image size increases, it becomes important to include more and more Zernike terms to
closely reconstruct the features of the spot. Percentage thresholding has significant effect on
centroid estimation as can be seen in Fig. 26. Centroid estimation error dropped with reducing
thresholding percentage up to 60%. Reducing the thresholding percentage further is risky and
would retain noise features which may lead to large errors in the case of a spot of size 30 × 30
pixels with 29 Zernike modes.

186 Topics in Adaptive Optics

www.intechopen.com



Advanced Methods for Improving the Efficiency of a Shack Hartmann Wavefront Sensor 21

0 2 4 6 8 10
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Signal to Noise Ratio

C
e
n
t
r
o
i
d
i
n
g
 
e
s
t
i
m
a
t
i
o
n
 
e
r
r
o
r

 

 

0

10

20

30

40

45

Fig. 24. Spot orientation affects the centroiding estimation accuracy. It is best when the
streaks are oriented in the direction of the sides of the detector pixels.
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Fig. 25. A comparison of the performance of centroiding accuracy with and without sodium
layer fluctuations in the case of TZR method. Since the weighting function was not modified
with changing sodium layer profile, the mean centroiding accuracy reduces when
fluctuations exist. Hence, it becomes important to track the profile fluctuations continuously.

The number of pixels used for a single subaperture can also influence centroiding estimation
while using TZR. This is because image reconstruction in the case of smaller images becomes
easier with fewer Zernike moments. The effect of changing image size is shown in Fig. 27. At a
low SNR, reconstructing a 24 × 24 spot pattern using n ≤ 29 leads to inefficient representation
of all the required spot features, whereas representation of a 12 × 12 spot with the same
number of Zernike modes is more efficient. Hence, in this case (n ≤ 29 and 60% thresholding)
at low SNR, smaller spots must be preferred. On the other hand, at a high SNR, fewer Zernike
modes are sufficient to represent all the features of the spot. Centroiding accuracy is good for
larger spot pattern at high SNR.
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Fig. 26. The effect of centroiding at different thresholding percentage on spots reconstructed
with n ≤ 29.
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Fig. 27. Spots reconstructed using n ≤ 29 and 60% thresholding. Spot orientation was 300;
with spot size along non-elongated direction being 3 pixels uniformly for all image sizes.
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6.3 Gaussian pattern matching

At high noise conditions, the thresholded Zernike reconstructed images lead to multiple noisy
features along with the actual spot pattern as depicted in Figs. 20 and 21. This is due to the
fact that at high noise level conditions there can be large scale features (sometimes the features
can be scaled to dimensions comparable to that of the spot) which might not be removed even
after the denoising procedure is implemented.

To use this erroneous spot for accurate centroiding, we take the advantage of the fact that
in the case of NGS, the spot finally formed at the focal plane of a lens must assume an
airy pattern which can be approximated to a Gaussian like structure. The pattern matching
algorithm is implementing in three steps: feature recognition, shape identification and profile
identification.

6.3.1 Feature recognition

In this step, the features on the spot pattern image are counted and identified. Feature
recognition can be performed by using many existing pattern recognition algorithms. In this
algorithm, we used a simple Hough peak identification method to detect the features and
number them in the order of peak height. To eliminate small scale features which may arise
due to unavoidable scintillations, we impose threshold conditions on the size of the features.

6.3.2 Shape identification

Most features don’t have a circular shape. The circularity or the extent of the feature being
circular is measured for each of the features. This can be measured in many ways. In the
proposed algorithm, the local centroid for the feature is calculated and the distance from the
centroid at which intensity becomes zero is measured. This distance is called the distance
parameter. The distance parameter is estimated at different angles (0-360) from the feature
centroid position. We define circularity, C of a single feature as the inverse of the variance
of the distance parameter computed over different angles from the centroid position. For an
ideal circular feature, the circularity is infinity since the variance is zero. A lower cutoff for
this parameter is chosen to eliminate features that are not close to a circular shape.

6.3.3 Profile identification

In the previous step, the shape of the spot was used for selective elimination. In this step,
the intensity profile is used to choose the actual spot feature. The number of features are
recounted and identified. The fall off in the intensity from the centroid of individual features
is measured and compared with a standard Gaussian shape. In this process, the features that
do not follow a Gaussian like structure are eliminated. This technique is more suitable to use
along with the CoG and IWC methods (Vyas et al., 2010a).

7. Improved consistency: Dither based SHWS

It can be shown that the wavefront reconstruction accuracy is not a constant, but fluctuates
about a mean value irrespective of the sensing geometry at place (see Figs. 28 and 29),
by applying Monte Carlo simulations on VMM and FFT methods. These inconsistencies
will have a serious effect on the stability of imaging and maintenance of a good Strehl
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Fig. 28. Inconsistency of the wavefront reconstruction accuracy in the case of FFT technique
when applied to evolving atmosphere like turbulence phase screens

ratio. In this section, a possible solution to this problem is addressed. The wavefront
reconstruction accuracy in SHWS depends strongly on the way wavefront distortion points
match with the points of phase estimation (position of the lenslets in the SHWS). A small
dither signal which acts like a translating operator on the wavefront sensor with respect to the
phase screen can be used to improve the wavefront reconstruction accuracy. For temporally
evolving turbulence, the dither signal applied on the sensor can improve the consistency of
the wavefront reconstruction accuracy.

For phase screens simulated using the Kolmogorov model, the wavefront reconstruction
accuracy is calculated by applying dither such that the sensor shifts in all directions and by
different magnitudes. Probabilistically the point of the best wavefront reconstruction is found
to be near the center of the phase screen. We show through numerical simulations that the
consistency and the accuracy of wavefront reconstruction can be significantly improved using
this technique. In real-time systems, the dither signal to be applied can be obtained from the
wavefront sensor data of the immediate past within the wavefront decorrelation time. The
practicality of building such a sensor is also discussed.

A dither signal is applied on the wavefront sensor (ie. the lenslet array; the detector is
placed at a fixed position) so that it is displaced to a new location such that the wavefront
reconstruction accuracy is maximized (Fig. 30). This idea is evaluated through numerical
simulations. Considering the case of a telescope with an effective diameter of 1m at a site with
r0 ∼ 10cm and a Shack Hartmann sensor with 100 subapertures Monte Carlo simulations
were performed. The wavefront reconstruction accuracy depends on the way in which the
wavefront distortion points match with the centers of subapertures. The center of the lenslet
array was displaced to different discrete locations with respect to the center of the incoming
wavefront within the distance of a single subaperture. The point of the best wavefront
reconstruction is the point to which the center of the lenslet array has to be moved to. It can
be seen that the application of dither signal not only increases the accuracy of reconstruction,
but also significantly improves the consistency in the case of Fourier and VMM reconstruction
procedures (Figs. 31 and 32). In a real situation, the position of best wavefront reconstruction
must be obtained by looking at the strehl ratio. The position of the maximum intensity point
varies with time as shown in Fig. 33.
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Fig. 29. Inconsistency of the wavefront reconstruction accuracy in the case of vector matrix
multiply wavefront reconstruction technique when applied to evolving atmosphere like
turbulence phase screens

Fig. 30. Schematic demonstration of the dither based sensor

Probabilistically the point of the best wavefront reconstruction occurs close to the center of
the wavefront as shown in Fig. 34 (computed for the case of a single phase screen). Hence
it is enough to apply a dither close to the center of the wavefront. The choice of the spatial
range over which the dither signal may be applied varies with the number of Shack Hartmann
subapertures, the Fried parameter and the degree of freedom in the lenslet array.

The dither should be applied at a frequency three times the frequency of adaptive optics
wavefront correction. This gives enough time to check the strehl ratio and make suitable
corrections to the dither applied. The variance of wavefront reconstruction accuracy as a
function of the time interval between the application of two dither signals is shown in Fig. 35.

It can be seen that by applying dither within shorter intervals of time gives smaller variance
in the wavefront reconstruction accuracy and hence is more consistent.

This dither based sensor can be realized using a Liquid Crystal based Spatial Light Modulator
(LC-SLM) by projecting a digital diffractive optical lenslet array on it (Vyas et al., 2009a;
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Fig. 31. Inconsistency of the wavefront reconstruction accuracy in the case of vector matrix
multiply wavefront reconstruction technique when applied to evolving atmosphere like
turbulence phase screens
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Fig. 32. Inconsistency of the wavefront reconstruction accuracy in the case of vector matrix
multiply wavefront reconstruction technique when applied to evolving atmosphere like
turbulence phase screens
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Fig. 33. The propagation of the position coordinate with the maximum wavefront
reconstruction accuracy. The analysis performed at time intervals of 0.005 sec
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Fig. 34. Probability case of VMM
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Fig. 35. Dependence of variance of wavefront reconstruction on the time interval between
application of two dither signals on the wavefront sensor. This plot is a result of 20 sets of
temporally evolving phase screens (100 in number each)

Zhao et al., 2006). The application of the dither signal is much simpler here since the physical
movement of the sensor is not needed. The speed and physical dimensions of the SLM limits
its application to this method in different situations. It has been recently shown that the
application of multiple dither sensors improves the wavefront reconstruction accuracy and
its consistency in the case of large telescope AO systems (Vyas et al., 2011).
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