6,593 research outputs found

    Jensen Shannon divergence as a measure of the degree of entanglement

    Get PDF
    The notion of distance in Hilbert space is relevant in many scenarios. In particular, distances between quantum states play a central role in quantum information theory. An appropriate measure of distance is the quantum Jensen Shannon divergence (QJSD) between quantum states. Here we study this distance as a geometrical measure of entanglement and apply it to different families of states.Comment: 5 pages, 2 figures, to appear in the special issue of IJQI "Noise, Information and Complexity at Quantum Scale", eds. S. Mancini and F. Marcheson

    Efficient generation of random multipartite entangled states using time optimal unitary operations

    Get PDF
    We review the generation of random pure states using a protocol of repeated two qubit gates. We study the dependence of the convergence to states with Haar multipartite entanglement distribution. We investigate the optimal generation of such states in terms of the physical (real) time needed to apply the protocol, instead of the gate complexity point of view used in other works. This physical time can be obtained, for a given Hamiltonian, within the theoretical framework offered by the quantum brachistochrone formalism. Using an anisotropic Heisenberg Hamiltonian as an example, we find that different optimal quantum gates arise according to the optimality point of view used in each case. We also study how the convergence to random entangled states depends on different entanglement measures.Comment: 5 pages, 2 figures. New title, improved explanation of the algorithm. To appear in Phys. Rev.

    Robustness of Highly Entangled Multi-Qubit States Under Decoherence

    Get PDF
    We investigate the decay of entanglement, due to decoherence, of multi-qubit systems that are initially prepared in highly (in some cases maximally) entangled states. We assume that during the decoherence processes each qubit of the system interacts with its own, independent environment. We determine, for systems with a small number of qubits and for various decoherence channels, the initial states exhibiting the most robust entanglement. We also consider a restricted version of this robustness optimization problem, only involving states equivalent under local unitary transformations to the |GHZ> state.Comment: 16 pages, 3 figures. Changes in Sec.

    A genuine maximally seven-qubit entangled state

    Full text link
    Contrary to A.Borras et al.'s [1] conjecture, a genuine maximally seven-qubit entangled state is presented. We find a seven-qubit state whose marginal density matrices for subsystems of 1,2- qubits are all completely mixed and for subsystems of 3-qubits is almost completely mixed

    Electronic Excitation Temperature Profiles in an Air Microwave Plasma Torch

    Get PDF

    Some features of the state-space trajectories followed by robust entangled four-qubit states during decoherence

    Get PDF
    In a recent work (Borras et al., Phys. Rev. A {\bf 79}, 022108 (2009)), we have determined, for various decoherence channels, four-qubit initial states exhibiting the most robust possible entanglement. Here we explore some geometrical features of the trajectories in state space generated by the decoherence process, connecting the initially robust pure state with the completely decohered mixed state obtained at the end of the evolution. We characterize these trajectories by recourse to the distance between the concomitant time dependent mixed state and different reference states.Comment: 13 pages, 5 figures; new title, minor change
    • …
    corecore